
ft3HEWLETT
IK~ PACKARD

Adding Control Integration to peTE

Huw Oliver
Information Management Laboratory
HP Laboratories Bristol
HPL-91-62
May, 1991

CASE, software
engineering
environments,
PCTE, SoftBench

The PCTE interfaces provide data-integration
services. In a good Software Engineering
Environment (SEE), however, it is also
necessary to have control integration to
automatically start tools and share services.
We report on our intermediate practical
experience of adding control integration to
PCTE. More precisely, we show how
Broadcast Message Services can be layered on
the PCTE platform, thus forming a SEE
framework that spans the tool integration
dimensions.

© Copyright Hewlett-Packard Company 1991

Internal Accession Date Only

1 Introduction

The computer support environment provided for software engineering today typically consists
of a set of standalone tools. These tools are monolithic. These tools do not usually cooperate.
They cannot access each other's functionality. They have no access to each other's data (and
would not be able to understand it if they could). Their user-interfaces differ widely.

The tools are monolithic in that they provide many of the services more naturally provided
by the framework within which they operate or by other tools. For instance, some document
processing tools today offer version control even though it is also provided by configuration
management tools. Such tools provide so much because the tool providers have no way of
composing tools from small modular pieces.

We are interested in how the framework can provide different types of composition or inte
gration services. These integrating services would help tools to be smaller, more modular
and built into the support environment as needed by the software engineer.

A complete support environment for software engineering will be a large, complex system.
Neither the high level of financial resources nor the wide range of expertise required to provide
all the elements of a support environment will be found within a single organisation. The
use of open standards for these elements is an essential enabling factor for the production of
quality SEE implementations.

We have looked at two technologies which provide elements of a support environment and
investigated how they might be combined. The technologies are SoftBench [2] [4] and
PCTE [7] [8] [9].

SoftBench is a product of Hewlett-Packard. It consists of an integration framework and an
integrated set of tools.

PCTE stands for "a basis for a Portable Common Tools Environment". PCTE defines
an interface to support CASE tools and development environments. PCTE itself does not
provide any tools: it is a framework on which to build and integrate tools. The development
of the interface has culminated in the ECMA PCTE abstract specification [9] which the
ECMA general assembly adopted as an ECMA standard in December 1990.

We have undertaken a prototyping activity to show how these components can be combined.
The goals of our prototyping activity are to investigate how to construct a support environ
ment, to learn how to use it and to examine the benefits of working with it. We are using an
implementation of version 1.5 [7] of the PCTE interface in our prototyping activities. We re
port here our intermediate technical results from constructing the prototype SEE framework
in the HP research laboratories;

I

1

2 Integration Services in an SEE Framework

The ECMA CASE environment framework reference model [1] identifies and defines integra
tion services that a framework may provide to support a SEE, and groups related integration
services together. Figure 1 shows the overall structure of the reference model (this is an con
ceptual architecture not an implementation architecture).

The reference model (RM) can be used to categorise the services offered by an SEE frame
work. Although the ECMA RM activity was spawned from the ECMA PCTE Standards
committee, the RM is completely independent of PCTE. The RM can be used to position
standards proposals and commercial products, and helps to understand the relationships
between different framework offerings.

This section quickly sketches the services required of an SEE framework in terms of those
detailed in the RM.

The RM identifies three main aspects of tool integration:

• Data Integration (addressed by the data repository plus data integration services) is
the sharing of data and descriptions of that data (schemas) between the users and tools
of the support environment.

• Control Integration (addressed by the task management plus the message services) is
the management of cooperation between independently developed tools to achieve a
coordinated effect.

• User Interface Integration (addressed by the user interface services) is a common look
and feel for tools.

2.1 Data Integration

The maintenance, management, and naming of data entities or objects and the relationships
among them is the general purpose of the data repository services. Basic support for process
execution and control is also addressed here along with a location service to support physical
distribution of data and processes.

The data integration services enhance the data repository services by providing higher-level
semantics and operations with which to handle the data stored in the repository.

2.2 Control Integration

A high level of control integration implies that a tool can invoke or stimulate another tool
to perform 150me piece of the software process. Control integration is governed by the extent

2

USER INTERFACE SERVICES

TOOL SLOTS

DATA REPOSITORY SERVICES

DATA INTEGRATION SERVICES

TASK MANAGEMENT SERVICES

MESSAGE SERVICES

Figure 1: Reference Model Structure

3

to which a tool makes it possible for other tools to invoke the functionality it provides, and
the extent to which the tool calls other tools to communicate changed circumstances.

The message services aim to provide a standard communication service that can be used for
inter-tool and inter-service communication.

2.3 User Interface Integration

User interface services are required by all applications. Efforts such as OSF/Motif provide
generic services which are suitable for SEEs.

3 Enabling Technologies

The application of the RM to an interface definition will result in a detailed analysis of
what SEE framework services are covered by that interface. We have carried out several
such applications. Included among these are the application of the RM to PCTE and to
SoftBench.

The following important points result from positioning PCTE 1.5 and the tool integration
component of HP's SoftBench environment against the RM:

• PCTE covers the majority of the data integration facilities;

• SoftBench addresses control integration via its Broadcast Message Server.

• SoftBench addresses user interface integration via OSF/Motif.

SoftBench treats control integration as an orthogonal issue to data management. SoftBench
can be used with many different repositories. We chose PCTE because of its wide coverage
of data management facilities and because it is a standard tool portability platform.

From the point of view of integration technology, SoftBench and PCTE are complementary
and add value to one another. This analysis encouraged us to investigate the combination
of the SoftBench and PCTE integration technologies in practice. We next give an overview
of each of SoftBench and PCTE and then describe our approach to combining them.

3.1 SoftBench

The SoftBench environment consists of a set of integration services and an extensible set of
tools that communicate by sending and receiving messages. From the point of view of an en
vironment builder, SoftBench consists of the Broadcast Message Server(BMS), the Execution
Manager (EM), the user interface, support for distribution, the set of tools and the Encap
sulator. The BMS and the Execution Manager are described in further detail by Cagan [2].
Further information about SoftBench tools can be found in Gerety's description [4].

4

3.1.1 SoftBench Integration Services

1. SoftBench's Broadcast Message Server (BMS) enables executing SoftBench tools to
cooperate in supporting a software engineer to carry out tasks. Executing tools in
SoftBench send a message to the BMS when they: require a service; have performed
an action that may be of importance to others; or have a failure to report. The
BMS forwards this message to all the executing tools that have registered interest in
a "message-pattern" that the message matches (so the message 'broadcast' is in fact
selective). Messages can be sent to the BMS by tools so they can register and unregister
interest in patterns.

2. The Execution Manager (EM) in SoftBench keeps track of the tools that are execut
ing. The execution manager cooperates closely with the BMS so that when a request
message is received by the BMS, the EM determines whether a new tool should be
started to service that request or whether the request can be satisfactorally handled
by a tool that is already running. SoftBench tools are grouped into classes. Differing
criteria can be applied for differing classes of tools. A class is a set of tools that provide
equivalent services. Example tool classes are EDIT, COMPILE, or DEBUG.

3. All SoftBench tools have a common look and feel which conforms to the OSF/Motif [3]
standard.

4. SoftBench is designed to operate over a distributed network of workstations, and offers
distributed computing support of three kinds. Firstly, SoftBench can start tools and
support transparent communications between tools executing on remots hosts. Sec
ondly, SoftBench tools are built on the network transparent X Window System which
means that programs can run on one system and display visually on another. Thirdly,
SoftBench supports access to remote data.

3.1.2 SoftBench Tools

The initial set of tools delivered with the SoftBench product concentrates on support for de
veloping, versioning, and debugging C and C++ programs. An increasing number of Encap
sulated tools are available to extend the core environment, for example tools for configuration
management, documentation, structured analysis and structured design, and testing.

Some fundamental SoftBench troIs of particular relevance to our work to date are the Tool
Manager, the Message Monitor' and the Development Manager.

• The Tool Manager presents a way for a user to directly invoke tools. While this is
useful at the start of a 'fork session the user will later take advantage of the BMS
and EM support for conlol integration. The user will normally be working within a
particular tool (such as debugger) and will be accessing the functionality of other
tools from within that to 1.

5

• The Message Monitor displays all messages that get sent in the environment.

• The Development Manager offers a view of the underlying file system, including an
indication of the type of information held within the file (e.g. C source or build
information). It also presents a set of operations available on those files (such as
versioning). The set of operations made available dynamically matches the type of the
file (e.g. it is not possible to even try to check-out a non-versioned file).

We see in section 4.2.3 how we have modified these tools to run on a combined SoftBench
and PCTE framework.

The user sees tools working synchronously because cooperation between tools can be spec
ified and the SoftBench system supports the execution of that cooperation. For example,
should the user change the source code of a program while working in the static analysis
tool, notification of those changes are automatically forwarded to any editor working on the
source file for that code. The SoftBench user is also presented with seamless functionality
(synergy) in that the services provided by one tool appear (to the user) to be available from
several other tools also. For example, code can be recompiled through a user request to
the debugger (which is automatically forwarded to the build tool via the BMS). The real
benefit of SoftBench to a software developer is that it makes available these advantages of
well-presented control integration.

SoftBench provides a further tool called the Encapsulator. This tool enables existing tools
to be integrated into the SoftB~nch support environment without source code modification.
It enables a wrapper to be developed for a tool so that its input and output is monitored.
Suitable SoftBench messages c411 then be sent and acted upon by the encapsulated tool, and
a SoftBench user interface can be developed so that the tool looks as well as behaves like
a true SoftBench citizen [although this holds for a particular set of tools: those that can
use standard input/standard output and that can be decoupled from any bitmapped screen
handling they do).

3.2 peTE Integration Services

A major contribution of PCTE is its Object Management System (OMS), designed to meet
the data integration needs of CASE tools. The OMS provides the ability to model relation
ships between data objects, by supporting a variant of the entity-relationship-attribute data
model. Object management facilities include typing, schemas and transactions to support
data structuring and data sharing, and to maintain data integrity.

PCTE provides a complete interface for the tool writer, including process management and
inter-process communication. PCTE provides synchronous and asynchronous calling of pro
cesses on local or remote hosts. The services provided are at a higher level of abstraction
than those typically provided by the operating system. PCTE inter-process communication

6

i
i IMoti User I terface

T- rt t-o
0

~

.... f-- - - -
SoFtBen~h ~oo
In~egra~io~ P atform (BMS)

,

peTE

I Any O/S,bare 1achine I I Any O/S,bare machine I
Fjigure 2: Prototype Architecture

services are provided via the IrCTE message queue. These services are closely modelled
on the XI Open System V UN~Xl interfaces. These services are also at a higher level of
abstraction than, say, socket bssed communication primitives.

The hardware architecture fori a PCTE system is a network of bitmapped workstations
connected by a high speed reliable LAN. PCTE is a distributed architecture, and all the
object management and process management facilities are transparently distributed.

4 Prototyping Experience

In this section, we report on our intermediate results from building a prototype SEE frame
work.

4.1 Architecture

The architecture of the prototYlPe is shown in figure 2. Because PCTE provides a complete
interface for the tool writer and because the BMS control integration serives are at a higher
level than the PCTE facilities, iwe have re-implemented the BMS on top of PC'I'E.

Each of the boxes shows one ~f the existing components from which we constructed the
prototype. The arrows from the tools show which services were accessed by the tools. Thus
the tools are linked in with and make calls to:

1 UNIX is a registered trademark ofUN~em Laboratories Inc.

7

1. the Motif X Window libraries;

2. the BMS component of tle SoftBench libraries;

3. the PCTE libraries.

It can be seen from the arch~.ecture that the SoftBench Tool Integration Platform only
provides the BMS services. are investigating extending this so that tools only access
the PCTE services through thi intermediate layer. This has the advantages of protecting
the system from changes in successive PCTE versions and minimising the task of providing
data integration in some way o~her than through the PCTE object base. It would also mean
that existing SoftBench tools ¢auld be ported with a minimum of effort to the combined
SoftBench/PCTE framework.

4.2 Description of t~e prototype

We are using the GIE Emeraude implementation of the PCTE 1.5 specifications known as
Emeraude v12. It is a complete implementation of the PCTE 1.5 interfaces with additional
Common Services (e.g. Metabase, Version Management).

PCTE's claim to provide a po[tability platform was verified by us when we ported several
thousand lines of source code i between workstations of different hardware from different
manufacturers.

Figure 3 shows some of the elements of the prototype. The top box represents the BMSj the
boxes in the second row represent class managers; the boxes in the bottom row represent
instances of tools. All communication is via the BMS. We now describe these elements in
more detail.

4.2.1 The BMS

The BMS runs as an PCTE process. The BMS communicates with all the tools through the
PCTE inter-process communication mechanism of message queues. These replace the socket
connections in the SoftBench UMS.

The BMS has an associated message queue whose whereabouts in the object base must be
known by all tools. The messaie queue's location was (arbitrarily) chosen to be linked to the
static context of the BMS (sta ic context is the PCTE term for 'program'). Essentially the
BMS maintains a 'pattern rna ' which is a map from tool identifiers to the set of message
patterns in which those tools h ve registered interest. It continuously reads from its message
queue, suspending execution until a message arrives. The message will be forwarded to any
interested tools or may cause t~e pattern map to be updated.

I

8

o

BMS

Message Registrations

o
EDIT

Manager

Tool Info

API

MORITOR
Manager

Tool Info

API

INVOKE
Manager

Tool Info

API

0 0 0 0

I~IT) I~~1T) Monitor tool...atarter
(MORITOR» (INVOKE)

o represents a message queue

represents a message route

Figure 3: Current Prototype

9

4.2.2 The Class Managers

Every tool belongs to a class. Each class defines the functionality which tools of that class
will provide to other tools. This functionality is accessed by sending request messages to
the tool. There is a class manager for each class. The class manager maintains a list of the
running tools of its class and carries knowledge of whether there is a tool able to service any
given request or whether a new tool needs to be started.

Each class manager runs as a PCTE process. They each have an associated message queue
linked to their static context. Each class manager continuously reads from its message
queue, suspending execution until a message arrives. Any request message will be forwarded
to whichever tool is able to service it. All class managers are very similar except for the
knowledge about when new tools should be started up. This knowledge is more complicated
in PCTE where objects do not have unique pathnames and where the context of a tool
includes the working schema ofl that tool.

The amalgamation of all the class managers corresponds to the Execution Manager in Soft
Bench. By separating out the blass manager processes we were able to make the decisions
about whether to start new tools to handle requests specific to the class of the tool. In
SoftBench the Execution Manager used the UNIX execution primitives. In our prototype
these have been replaced with the PCTE execution primitives.

4.2.3 Tools

A number of simple tools have been put together for this prototype:

• The INVOKE tool corresponds to the SoftBench Tool Manager. It allows the user to
select, start and stop tools of any of the available tool classes.

• The MONITOR tool corresponds to the SoftBench Message Monitor. It registers an
interest in all kinds of messages and displays them. It provides a window onto the
BMS activities.

• The DM tool corresponds to the SoftBench Development Manager. While the Soft
Bench development manager gives an interface to the UNIX file system, the DM tool
gives a similar interface to the PCTE object base. This enables us to navigate around
the object base. The tool includes some version management facilities using the com
mon services provided with the Emeraude product.

• the DMGRAPH tool is a graphical interface tool to the PCTE object base. It navigates
the object base via mouse selection of objects, displays the object graph to a user cho
sen depth, reorientates a4d manipulates the graphical representation and dynamically
manipulates working sch1mas to provide views on the object base.

10

• The EDIT tool is for editing the contents of objects.

Each tool, like the class managers, runs as a PCTE process. They each have an associated
message queue linked to their static context. Each tool continuously reads from its message
queue (not suspending execution) until a message arrives. Any request message will be
serviced in a tool specific way.

4.2.4 Additional P'C'I'E features of interest

A PCTE installation will typically be distributed over a set of workstations connected by
a local area network. The transparent distribution facilities provided by PCTE meant that
we did not have to concern ourselves with distribution when designing the prototype. We
believe that the SoftBench distribution facilities can be provided on top of PCTE with the
added advantage of location transparent access to data.

ECMA PCTE implementations will provide more services than PCTE 1.5. One such service
is the ability to respond to events such as access to particular objects in the object base.
Adding such services to our existing control integrations services are of much interest and
will provide further research directions.

We have not used the PCTE support for concurrency and integrity control and activities.
We have not heavily used the schema management facilities.

5 Summary of What We have Learnt

Several points came out of our construction work with respect to PCTE:

• we found the PCTE interface useful in building the BMS and the prototype tools. It
provided all the facilities we needed and many of the services were at a higher level
than that provided by the operating system.

• peTE is an effective portability platform;

• we found object identification somewhat confusing, having to switch between path
names, internal references, external references and volume number, object number
pairs. A clear notion of object surrogate would have simplified our task.

• documentation is needed to guide the tool writer through the many design decisions
he needs to make. This should include a guide for data integration (how to use the
schemas provided and how to write new ones, etc.), and a guide for control integration
(how to use the interfaces exported by existing tools and what new message interface
a tool should provide, etc.) ;

11

• a clear and well documented migration path from existing toolsets will be needed;

• The distribution facilities provided by PCTE meant that we did not have to concern
ourselves with distribution issues when designing the prototype.

There are many software architecture decisions which should be made by tool writers even
if PCTE is not used as the basis for the support environment (such as the production of
appropriate schemas and the use of integrating service libraries which hide the underlying
technology). These are generally good engineering practices but will protect investment in
tools and will ease the transition to PCTE.

The prototyping work at HP Laboratories has proven the feasibility of adding a BMS to
PCTE. We are starting a new prototyping phase to experiment with rehosting the SoftBench
environment on PCTE.

6 References

[1] A. Earl. A Reference Model for Computer Assisted Software Engineering Environment
Frameworks. Technical Report ECMA/TR/90/55, ECMA, 17 August 1990.

[2] M. R. Cagan. The HP SoftBench Environment: An Architecture for a New Generation
of Software Tools. Hewlett-Packard Journal, 41(3):36-47, June 1990.

[3) A. O. Deininger and C. V. Fernandez. Making Computer Behaviour Consistent: The
OSF /Motif Graphical User Interface. Hewlett-Packard Journal, 41(3):6-26, June 1990.

[4] C. Gerety. A New Generation of Software Development Tools. Hewlett-Packard Journal,
41(3):48-58, June 1990.

[5] F.Gallo G.Boudier and I.Thomas. Overview of PCTE and PCTE+. ACM SIGPLAN
Notices, 24(2), February 19$9.

[6] I.Thomas. PCTE Interfaces: Supporting Tools in Software Engineering Environments.
IEEE Software, November 1989.

[7] Brussels Commission of the European Communities. PCTE Functional Specifications,
Version 1.5, November 198$.

[8] Software Sciences Ltd. GIE Emeraude, Selenia Industrie Elettroniche Associate. PCTE+
Functional Specification, Issue 3, October 1988.

[9] Portable Common Tool Environment - Abstract Specification. Technical Report ECMA
Standard 149, ECMA, Geneva, December 1990.

12

