
r~3 HEWLETT
.:~ PACKARD

On Predicated Execution

Joseph C. H. Park, Mike Schlansker
Software and Systems Laboratory
HPL-91-58
May, 1991

control dependence,
If-conversion,
Modulo Scheduling,
predicated
execution, program
dependence graph,
software pipelining

Predicated execution as required in Modulo
Scheduling technique for parallelizing innermost
loops with conditional statements is examined.
We obtain an improved semantics for predicate
operations together with an optimal and efficient
algorithm for their use.

© Copyright Hewlett-Packard Company 1991

Internal Accession Date Only

1 Introduction
In compiling techniques, specifically software pipelining, for instruction-level
parallelism, as in the loop scheduling technique (called Modulo Scheduling) of
Cydrome due to Rau and others[4,9,lO], Predicated Execution (simply, PE) consisting
of If-conversion and certain architectural support (to be described) play an essential
role. Given a control flow graph (simply, graph) representing a fragment of code, say,
the body of an innermost natural loop, PE is used to remove all branching operations
of the body thereby collapsing all blocks into a single block of straight line code.
Succinctly, PE thus allows loops with conditional statements to be overlapped.
Compared to other approaches the particular architectural support utilized
distinguishes PE from a pure software approach such as Lam's Hierarchical
Reduction in software pipelining[5].
An efficient method of If-conversion has been discovered by Ferrante et al.[3] in
connection with Program Dependence Graph (PDG) proposed there. PDG has been
studied as an intermediate representation yielding many benefits with respect to
transformations that occur in parallelizing compilers. Here we derive for use in PE a
variant of their technique pertaining to control dependence. Informally the meaning
of a Control Predicate (simply, predicate) is such that blocks associated with the same
predicate can be executed concurrently subject only to data dependence as soon as the
predicate is defined to be true. Or, in a more picturesque language, nodes far apart in
control flow are brought together in terms of control dependence.
In PE, If-conversion and control predicates are not merely compiling artifacts but
their effects appear explicitly in parallelized machine code taking the form of
Predicated Operations using Predicate Registers. For this purpose we have
reexamined both the If-conversion technique of PDG as well as the existing method
of the Cydrome compiler. A new result is obtained consisting of two parts, improved
semantics ofPE and improved algorithms for their use. Our method together with the
new semantics cures a deficiency in the existing method of producing incorrect code
for certain flow graphs. In addition, the new approach is superior with respect to the
requisite number of predicate operations and their placement as well as to the
algorithmic complexity itself.
The problem being studied can be phrased as follows. Basic blocks (simply blocks or
nodes) of a graph are to be associated with predicates and operations that define
predicates in use are to be added appropriately. We want to minimize both the
number of predicates in use and the of defining operations necessary. That is, there
are two parts to our problem:

• How to assign predicates to blocks.
• How to place defining operations for predicates in use.

We are thus led to capture solutions in terms of two functions, R and K, such that R
prescribes assignment naming for each block the associated predicate and K
prescribes placement directing for each predicate in use where and how it must be

1

defined. They are inherently different problems. Assignment is purely graph
theoretic in character, whereas placement depends, in addition, on (1) semantics of
predicate operations and (2) style of execution as elaborated later.
We start by introducing relevant notations and concepts including the semantics of
PE. We then give algorithms for determining Rand K. This is followedby discussions.

2 Basic Notions
We assume readers are familiar with PDG work[3] and certain basic concepts,
postdominator relation, control dependence, and the like. For the sake ofbreivty we
do not repeat them here. As usual a control flow graph is a directed graph augmented
with special nodes, Start and Stop. Every node is reachable from Start and can reach
Stop.
A node (or a basic block) x is a sequence of straight line code where flow enters only
from the top and leaves at the bottom in two different manner:

if (tx) goto y else goto z, Or
goto y

In the conditional case node x has two successors. The edge x~ y is labeled true and
x ~ z, false. The associated branching condition tx determines (during execution)
which edge is taken. For the unconditional edge no label is required. Formally, an
edges is thus either a triple or a pair:

(x, y, label), Or
(x, y)

where label is true or false.
For technical reasons in computing control dependences as discussed subsequently
we sometimes pretend that there are edges,

(Start, Head, true), and
(Start, Stop, false)

where the (unique) true successor of Start is named Head.

2.1 Semantics of Predicate Operations
We assume the architecture provides a set of predicate registers, each one bit in
length, and two defining operations:

Py =stuff(tx) & Px' and (1)
Py = stuffbar(tx) & Px (2)

where Px is a source predicate register, Py is a target predicate register, and tx
represents the result of evaluating the branching condition of block x,

2

(3)

(4)

(5)

(6)

The semantics of stuffoperation is using self-evident notation (in an axiomatic style):

if (Px.old) py.new =tx.old
else Py.new = py.old
tx·new = tx·old
px·new =Px·old

Similarly for stuflbar:
if (Px.old) Py.new = -, tx.old
else py.new = py.old
tx·new = tx·old
px.new = Px·old

Clearly these are merely predicated copy operations (albeit, from data to predicate
register file and one involving complement) and their definitions are consistent with
the notion of predicated operation in general described next.
The purpose of a predicate is to enable/disable (or nullify) an operation to which it is
attached. Consider an operation predicated with a predicate p:

tn= op(tj,...tj) & P

The semantics is:
if (p.old) tn'new = op(tj.old,...,tj.old)
else tn.new = tn.old

leaving out trivial statements specifying no change. In particular, the meaning of a
predicated operation is the same as No Operation, ifthe associated predicate is false. 1

Unpredicated operation is to be understood as operation predicated with constant
true:

2.2 Style of Predicated Execution
We turn now to the style of execution, or the underlying computing model specifying
how predicated execution is to be used as reflected in the parallelized code. It will turn
out that the placement problem (function K) depends on this choice of style. To
facilitate our discussion, consider the graph shown in Fig. 1. In the figure
assignments of predicates to blocks are shown using a short hand:

Bx(tx) &Py

1. Their effect on scheduleis, of course, not that of No Operation. In ModuloScheduling as applied in overlapping
iterationsof a loop,operations of the loopbody are scheduled takingall predicatesto be true.Contrastthis withTrace
Scheduling, in which,wheneverthere is a choice one edge is selectedto be true. In effect at compiletime assertions
aboutpredicatesare made,all truein one styleand oneeachin theother.Performance in eitherapproach is thus highly
dependent on the likelihood of theseassertions duringexecution.

3

denoting that (1) block Bx is associated with branching condition tx and (2) every
operations of Bx (including predicate defining operations, ifany) are predicated with
predicate Py. For example, Ba(ta) & P5' states that predicate register P5 is assigned to
block Ba with branching condition ta.

P2=t1 PS=-1t1
P6=t1

B3(t3)&PS

P3=t3
P6=t3

Figure 1. A control flow graph with predicate code. Predicates P7 and P1 are
constant true,

Placement of defining operations are also shown in the figure abbreviated as
Py=tx

4

for stuff operation (1), and similarly....,tx for the stuftbar operation (2). Note that the
source predicate of a defining operation is implicitly that of the block where the
operation is placed. Blocks show only predicate operations in the figure. Other
operations ofnodes are irrelevant in our discussion.
Effects offlow edges are entirely captured by predicates and their defining operations.
Having eliminated control flow in this manner, we next want to choose blocks and
merge them into a single block for the purpose of scheduling. In the style of interest,
viz., Modulo Scheduling as applied in overlapping iterations of an innermost natural
loop, all blocks (ofa loop body) are chosen. Suppose in our example blocks are merged
in the order,

B1B3B2B4BsB6B7 (7)
The result represents a single block of straight line code. We shall refer to this as a
reduced node. Remember that the body of an innermost natural loop is, by definition,
acyclic and as usual, an acyclic graph is linearizes by topological sorting on control
flow edges. In general, this embedding of partial order into a linear one is not unique.
Other linear orders are possible and clearly it is desirable that the placement (K) be
invariant under this embedding. As discussed later this feature is present in our
approach, whereas it is precluded in the old approach due to a different semantics of
the defining operations used.
With respect to such reduced code (7) the properties of PE we must have are:

• (PI) An operation is predicated with Px iff its block is associated with predicate

Px·

• (P2) Block x associated with predicate Px is enabled iff at(x) A Px.

• (P3) All predicates must be defined before their use.
The notation at(x), like the control predicate of Lamport[6], denotes that, when true,
control (PC) is at the beginning of block x. We also use after(x) in the same vein with
the understanding that after(x) =at(Y), where y immediately follows x with respect to
the topological order. The word "enabled" is used above with the meaning of "not
nullified."
Properties listed appear obvious. Their implications, however, are not so trivial. Take
a path from Start to Stop in our graph. If the underlying execution model allows
branching as in the ordinary case, then clearly we need not impose any property on
the nodes not in this path. On the other hand, in our style of execution, only one
graph-theoretic path, and hence, one execution path exists, viz.,

Start --. (reduced code) --. Stop
involving all blocks ofthe original graph. That is, every execution involves all blocks.
Hence, due to (P3), we must have all predicates defined in every execution including
those that must be false. This is a stronger requirement on K than in any other style
involving nodes fewer than all. In particular, K that would be suitable for control

5

flow model allowing explicit branching operations, does not satisfy (P3) and must be
modified as discussed later.
To pursue the implications in detail, we simulate a (sequential) execution of the
reduced code and consider its behavior as a sequence of states reflecting how
predicates change. Semantics of predicates are fully captured by considering all such
behaviors. As an example, take the reduced code (7) and consider its behavior for a
case, tl=false and t3=true. We start from Bl deliberately ignoring the reset operation,
P4=false, present in Start. The result is shown in Table 1.

Table 1. A Behavior of Reclucec:l Code

Px after(8x) P2 P3 P4 P5 P6 Remark

T 81 F X X T F t1 = F
P5 83 F T X T T t3 = T
P2 82
P4 84 P4 = Xat(84)I
P3 85
P6 86
T 87

The table headings are, from left to right, predicate, block, and state (immediately
after the execution of each block) showing only of predicates in use. Blocks are
executed in the order of the reduced code (7). Entry "X" under predicates indicates
"unknown". Missing entries under predicates denote "no change." This occurs either
because the predicated associated with a block at hand is false or because the block
does not contain defining operations affecting predicates under examination.
In the behavior shown we eventually have P4 undefined at B4. The code will or will
not produce a correct result depending on the unknown value OfP4. This clearly shows
that the reset operation, P4 = false, in Start is necessary.

Given a graph the number of (simple) paths from Start to Stop is finite and so is the
number of different (generalized) topological orders. Hence one can in principle verify
a result by examining a finite number of such behaviors.I But this is superfluous,
since our algorithm is proven correct.

1. 40 in our example

6

3 Our Formalism
In order to uncover the essential aspects ofour problem quickly, we take as given and
start from the control dependence function CD of PDG[3]. Let N be the set of nodes
and C a set of control dependencies. We have a function

CD : N ~ 2C

such that for any node x EN CD(x) is the set of its control dependencies. In our
notation each control dependence c E C is denoted as ±y with +y (or simply, y)
standing for the true edge leaving block y and -y for the false edge. Thus

CD(x) == {±y E C: x is control dependenton + y} (8)
The semantics ofCD(x) is such that block x is enabled iffthere exits y E CD(x)and the
true (false) edge leaving y is an execution edge. The branching condition tyof block y
decides during execution whether or not true (false) edge is an execution edge.
In PE we capture entirely the effect of conditional branching by (1) appropriately
placing in y the predicate defining operations

p =ty' or p =-,ty (9)
(shown in abbreviated form) and (2) assigning predicates appropriately to blocks.
Having done this all edges in the flow graph can be removed leading to the reduced
code consisting essentially of one block, which is executed as a straight line code with
the properties (P1) through (P3) stated earlier.

Our problem, when formally stated, is to compute two functions, R and K:
R: N ~ P
K : P ~ range(CD)

such that R solves the assignment problem and K the definition problem. For each
node x in N a unique predicate p=R(x) is assigned. Predicate defining operations are
inserted into nodes according to K. For example, when K(p)={+y, -z}, we place p=ty in
node y (to be enabled/disabled with its own predicate Py)and p= -,~ in node z. Having
done this for given R and K, we can remove all edges in the graph leading to the
reduced code, which is unique upto topological sorting.
Aside from computing CD in the manner of PDG, the parts, new due to PE, of our
algorithm, Algorithm RK, are (1) decomposition of CD into functions R and K and (2)
augmenting K so that (P3) is satisfied. Rigorous arguments for its correctness are
given elsewhere[8l and consists of two parts: One part that depends only on graph
properties is straightforward. The remaining part that deals, in addition, with
definition and use of predicates in PE is somewhat arduous! (specially in comparison
with the simplicity of Algorithm RK). It involves formally capturing the essential
(semantic) aspects of both control dependence and predicated execution (PE). This
must be the case, since one (PE) entirely replaces the other (control dependence). The

1.This is no surprise: fonn is easy to deal with,meaning is not.

7

notion of control dependence is entirely absent in our reduced code consisting
essentially of one node. We address in turn the decomposition problem, purely graph
theoretic, and the underlying meaning allowing the way we use R and K in PEe To
facilitate discussion we will cite results from [8] without reproducing proof.

3.1 Decomposition of CD into R and K
The problem ofobtaining R and K from CD is viewed best as a problem of partitioning
N under a certain equivalence relation. We say that two nodes x and y in N are
equivalent to each other if they have the same control dependence,

x:::: y iff CD(x)=CD(y) (10)

It is obvious that the relation « defined thus is an equivalence relation on N. Let N be
partitioned into equivalence classes P with respect to this relation. Let R be the
function that maps each node x in N to the class p in P to which it belongs. This is
denoted p = R(x). Let K be the function that maps each class p to CD(x), denoted
K(p)=CD(x), where x is a representative of class p. It is clear that R and K are well
defined and unique upto renaming of classes in P.
By virtue of being a partition we have the desired properties:

• Every node x belongs to one and only one class p=R(x).
• Nodes with identical set K(p) of control dependencies belong to the same class p

We now summarize certain useful properties of R and K.

Lemma!
K is isomorphism.

This lemma shows that K merely names each distinct member ofrange(CD). Since K
is an isomorphism, its inverse exits and we can take R to be

R = K-1• CD (11)

That is, for each node x R gives the name of the class the node x belongs. We now have
the following result, which the decomposition step ofAlgorithm RK relies on.

Lemma 2
p =R(x) iff K(p) =CD(x)

The nodes, Start and Stop, cannot be control dependent on any edge, since by design
the former has no predecessors and the latter postdominates every node (being the
root of the postdominator tree). There is, thus, one predicate p such that K(p) is
empty. We take this predicate to be a constant true.
The role ofthe fictitious edge, (Start, Stop, false), is to guarantee that all nodes other
than Start and Stop be control dependent on at least one edge. That is, all nodes
except Start and Stop are associated with predicates p such that K(p) is not empty.
Consider Head, the unique true successor node of Start. If there is no incoming edge
to Head other than (Start, Head, true), then Head can only be control dependent on

8

+Start. Thus, Head and any other nodes equivalent to it are assigned the predicate p
such that there is only one definition for it, K(p)={Start}. IfK(p) is a singleton, then
once p is set it remains set forever. We thus conclude that there are constant
predicates identified as in the following Lemma.

Lemma 3 Constant Predicates
p == true if K(p) =<1>, or

p == true if K(p) ={Start}

The decomposition of CD into R and K is purely graph-theoretic, since the process
does not rely on any particular semantics of predicated execution (PE). We now turn
to the meaning of R and K by describing how they are used in PE in place of graph
edges (CD).

8.2 R and K as used in PE
Our aim here is to briefly sketch essential aspects of arguments showing that R and
K can be used as in PE totally eliminating all branching operations. That is, the
predicated and reduced code (consisting essentially of one node apart from technical
Start and Stop and unique upto topological sorting) behaves in semantics the same as
the original flow graph with conditional branching. In so doing we introduce certain
notions that are useful for subsequent discussions.
Since we use K(p) to insert into nodes predicate defining operations for p, we must
insure that for any such node we never have to insert more than one definition per
given p. This is a direct consequence of the following lemma.

Lemma 4
A node cannot be control dependent on both true and false edge of another
node.

The process ofinserting defining operations using Kis thus well-founded. We can also
use the notation, + y eK(p), meaning only one edge is involved. We next want to ask,
when predicates defined in this manner are used with the properties (P1) through
(P3), whether the effect of control dependence has been equivalently captured. For
example, once a predicate p is set true by executing the p defining operation at node
y for use at node x, we must show that there cannot be another definition of p setting
it false in a node present between y and x with respect to the reduced code. Our
arguments must not only involve nodes in a path from y to x in the original flowgraph
but also those not in any path from y to x but occurring between y and x due to
topological sorting.

Let p=R(x) and +Y e K(p). Assume Py A ty A after(y) is true. That is, the node y with
the defining operation for p is enabled setting p to true. We say that a node z is p
interfering (with respect to +y and x), iff

1. x is control dependent on an edge of z, and

9

2. z occurs between y and x with respect to a topological order, y < z < x.

And similarly for the symmetric counterpart with -y E K(p) and -,ty.lfx is not control
dependent on z (Condition (1) false), then + z cannot be a member ofK(p). Hence z
cannot contain p-defining operation. If x is control dependent on an edge of z then
certainly there is a path from z to x and we must have z < x, The condition y < z is
simply that no ancestor of z including z is a descendant of y. We can now cite a
theorem that is fundamental to the way we use R and K in PE.

TheoremPE
Let p = R(x) and +Y E K(p). If Py1\ ty 1\ after(y) then every p-interfering node
z, if any, for given +Y and x, is disabled. That is, Pz 1\ at(z) is false where pz
= R(z). Similarly for the symmetric counterpart, -y E K(p)

This theorem guerantees that a predicate p=R(x) for x, once set true at one of the
nodes whose edges x is control dependent on remains true at x because every p
interfering nodes present are disabled. This is exactly the meaning of control
dependence: once +Y is an execution edge, x must eventually execute. Also it is now
obvious that it is a serious flaw in the semantics of defining operations when they
cannot be disabled as in the old semantics described later.

S.S Augment K
The function K as the naming isomorphism for CD described earlier is complete with
respect to the usual control flow model of execution explicitly allowing branching
operations. However, it is incomplete for use in PE due to (P3). Every defining
operation obtained using K that simply names CD is of the form (9). Therefore, the
defining operations involving literal false, like

P4= F

in Start of Fig. 1, would be missing. The presence of such operations is a direct
consequence ofProperty (P3). In PE every execution involves all nodes of the original
flow graph, since all of them are combined into a single node of the reduced graph.
Therefore, the only way we can reproduce the semantic effect of a particular control
flow path in the original graph leaving out other blocks is to guarantee that the
predicates associated with excluded blocks are false before they are executed.
In other words there cannot be a predicate p such that there is a path in the original
graph from Start to Stop not defining it. These, ifany, must be reset initially. In order
to formalize this problem. Consider the flow graph without the fictitious edge,
(Start,Stop,false) that was introduced for the purpose of computing CD. Let A(x) be
the set of predicates p such that there is path from x to Stop without defining
operations for p. That is,

A(x) == {p E P': 3 path(x,Stop) such that K(p) n path(x,Stop) = cI>} (14)

10

where K is the naming isomorphism of Cl), P'is the set of predicates in use excluding
constants of Lemma 3. The set A(Start) consists precisely of predicates that must be
reset before any execution. We thus augment K by inserting -Start (denoting a reset
operation) into each set K(p) for p e A(Start). With the understanding that such reset
operations are to be moved subsequently to Head when appropriate.
How does one compute A(Start)? One simple but approximate scheme is based on
observing that predicates satisfying certain conditions are not members of A. For
example, any non-constant predicate p satisfying

K(p) f1 {±X e E: x pdom Head) -::I: cI>

is not a member of A. This condition is particularly convenient, since the
postdominator relation, pdom, is already available. Unfortunately the condition is
not strong enough to lead to exact A. In general A is overestimated implying presence
of useless reset operations. As an illustration, in the example we are considering
application of the above condition yields {3, 4} as an estimate ofA.1 It includes a reset
operation, Pa=F, which is useless, since Pa, being defined in every path from Start to
Stop, is not a member of A. Instead of seeking ways of strengthening the condition
stated above, we turn to a different approach leading to an exact calculation of A at
the expense of solving dataflow equations. The method used in our algorithm is
arrived at by noting the problem at hand is a variant of the well known definition-use
(du-)chaining problem[ll provided we take the following modified view.

• Let all operations of a block Bx be abstracted to a point x. A point x has (upwards
exposed) use of the predicate assigned to Bx and can define several predicates as
given by K(p).

• Pretend that the block Stop uses all (non-constant) predicates.
With this understanding the problem at hand becomes a simplified variant of du
chaining problem as formalized by the following theorem.

TheoremDU
For each block b eN, except Stop, of the original flow graph (without the
fictitious edge from Start to Stop) take

Use(b) = {p e P': p = R(b)}
Def(b) = {p e P': + b e K(p)}

And for Stop
Use(Stop) = P'

1. This is clear from K(P) of table 2 and knowing pdom(l)={ 1,7,9}.

11

Algorithm RK: Given a rooted graph, (N, E, Start), compute Rand K.

Postdominator relation is used in Step 1. Algorithm DU is used in Step3

1. Compute CD: Map
Introduce a fictitious edge, [Start, Stop, false], in E.
Let 'v' x eN

pdom(x) = {yeN: y postdominates x}
ipdom(x) = the immediate postdominator of x

for [x, y, label] e E such that y ~ pdom(x)
Lub := ipdom(x);
if -, label then x := -x; end if;
t:= y;
while (t ¢ Lub)

CD(t) := CD(t) u {x};
t := ipdom(t);
end while;

end for;
Remove the fictitious edge, [Start, Stop, false], as required in Step 3.

2. Decompose CD into Rand K: Map
p := 1; predicates are named in sequence starting from 1
forx e N

t := CD(x);
if t e K then

R(x) := q such that K(q) = t;
else

K(p) := t;
R(x) := p++;
end if;

end for;

3. Augment K:
Perform Algorithm DU and obtain IN(Start)
for p e IN(Start)

K(p) := K(p) U {-Start};
end for;

end of AI",orithm RK.

Figure 2. Algorithm RK for computing Rand K.

12

Algorithm DU: Given a rooted graph, (N, E, Start), R, and K at the end of
Step 2 of Algorithm RK, compute IN (and OUT) of data flow equations.

V'beN
IN(b) = Use(b) U (OUT(b) - Def(b))
OUT(b) = U IN(s) for s e succ(b)

where Def and Use are computed from K and R respectively.

1. Compute Def and Use
Let P be the set of all predicates in use except constants:

P' = {p e domain (K): K(p) ¢ «!>}
For each block b Use(b) is the upwards exposed use of a predicate,
which in our case is simply the associated predicate R(b).
Pretend Use(Stop) = P'. Let N' = N - {Stop}.

forb e N'
Def(b) := {p e P': b E K(p) v -b E K(p)};
Use(b) := {p E P': p = R(b)};
end for;

Use(Stop) := P';

2. Solve data flow equations stated above for IN and OUT
A simple iterative method is shown below. However, calculations
are better performed in depth first order.

IN := Use; initial estimate
change := true;
while change

change := false;
for bEN'

OUT(b) := «!>;
for s e succ(b)

OUT(b) := OUT(b) U IN(s);
end for;

old := IN(b);
IN(b) := Use(b) U (OUT(b) - Def(b));
if old ¢ IN(b) then change := true; end if;
end for;

end while;
end of Algorithm DU.

Figure 3. Algorithm DU for computing IN(Start)

13

where Rand K are the decomposition ofCD as in Lemma 2 and P' is the set of
predicates leaving out constants of Lemma 3. Let IN be the solution of the
(data flow) equations,

IN{b)= Use(b) U (OUT{b) - Def{b))
OUT(b) = U IN{s) 'Vs E succ{b)

Then the augment set A(Start) we seek is
A{Start) = IN{Start)

We shall not bother proving this theorem. Finally for the sake of completeness we
turn to the problem of computing CD.

3.4 Computing CD
The method used is from the PDG work[3] and is based on the following theorem on
control dependence and postdominator relation.

Theorem CD
Let (x, y, label) be an edge such that y does not postdominate x. The nodes
control dependent on this edge are those and only those of the unique path
starting (excluding the first) from the immediate postdominator of x,
ipdom(x), to y in the postdominator tree.

Viewing the postdominator tree as a join-semilattice with Stop as Top we know that
a unique least upperbound, lub(x,y), exists for any pair x and y. In particular, since y
does not postdominate x, it is not "above" x in the lattice. Hence, there is a unique
nonempty path from lub(x,y) to y in the postdominator tree. The theorem stated
above includes a further simplification due to a lemma in [3] showing that lub(x,y) in
this case is simply the immediate postdominator of x, ipdom(x). This brief argument
suggests that the theorem is not vacuous. An argument for its correctness is found in
[3].

3.5 Algorithm for R and K
Our algorithm for computing R and K is shown in Fig. 2. In expressing algorithms we
employ a language allowing direct manipulations of abstractions like set, tuple, map,
etc., as in SETL[ll]. Additional advantage in specifying algorithms in this form is
that they are easily (literally) translated to SETL and executed. As discussed in text
Algorithm RK consists of three steps. In Step 1, given a rooted control flow graph, (N,
E, Start), we compute the control dependence function CD of (8).Then in Step 2 we
decompose CD into the naming isomorphism K (unique upto renaming of predicates)
and the assignment function R of (9). Finally in Step 3 we augment K to fully satisfy
Property (P3).

14

Briefly, Step 1 is a literal translation of Theorem CD. Step 2 constructs R and K from
CD such that for all nodes Lemma 2 is satisfied. Clearly this is the requirement for
this step. In the example we are considering, at the end of Step2 we obtain the
solutions, R and K, shown in Table 2. Note that K at this point is incomplete and
must be augmented as in Step 3. Observe also that K prescribes certain predicates
to be constant, true. These are identified as in Lemma 3.
From K(p) of Table 2 we see that both Pl and P7 are constants. From R(x) we know
that P7 is associated with Start and Stop, and Pt with blocks 1 and 7. We need not
bother further with such constant predicates.

Table 2. Solutions Rand K at the end of Step 2.

block x 1 2 3 4 5 6 7 8 9

predicate R(x) 1 2 5 4 3 6 1 7 7

predicate p 1 2 3 4 5 6 7

K(p) {8} {1} {-2,3} {2} {-1} {1,3} «I>

As discussed earlier K obtained in Step 2 is incomplete for use in PE and needs to be
augmented as in the last step.
Finally Step 3 relies on Algorithm DU for computing the augment set A(Start)
exactly. Algorithm DU, as shown in Fig. 3, is a straight forward application of
Theorem DU yielding the result IN(Start) that we seek. The latter is used in Step 3
of Algorithm RK to augment K. The result produced is optimal, in particular, with
respect to the number of defining operations, since the set A is calculated exactly
insuring that there are no useless defining operations.

Parenthetically Algorithm DU shows a simple iterative scheme like that of Aho et
al.[1] for solving the equations of Theorem DU. As is well known the number of
iterations performed, and hence, the time complexity ofthis step, is highly dependent
on the order ofblocks examined (in "for bEN''' loop ofStep 2 ofAlgorithm DU). Since
information is being propagated upwards starting from Stop through all blocks to the
end goal, Start, the preferable order is depth-first. The subject of how to solve such
equations efficiently is outside the scope of this paper, however. We have not bothered
to include such complications in Algorithm DU.
For the example we have been considering Algorithm DU yields

IN(Start)={4}

15

As a result, at the end of Step 3 we obtain the final result, the augmented K, shown
in Table 3.

Table 3. Augmented K.

predicate p 1 2 3 4 5 6 7

K(p) {8} {1} {-2,3} {2,-8} {-1} {1,3} cI>

Note the insertion of reset operation in K(4) when compared with the intermediate
result for K in Table 2.

3.6 Features ofAlgorithm RK
Here we address several features ofour algorithm and a way ofvisualizing the result.:

• Results produced are optimal with respect to number of predicates in use and
that of defining operations.

• The algorithm is general in that any flow graph including cyclicand irreducible
can be tackled.

• The time complexity of the entire algorithm is dominated by that of computing
control dependence. (Step 1 of Algorithm RK performed as in PDG.) It is O(N2).

3.6.1 Number of Predicates and Defining Operations
Since predicates are simply names of the equivalence classes under control
dependence (CD) the number ofpredicates in use is precisely that required. There are
no "redundant" predicates as long as every edge of the graph is potentially an
execution edge. The same is true with respect to defining operations. Since the
augment set A(Start) is computed exactly for a given graph, there are no useless
defining operations. Thus, for a given graph, our algorithm is optimal with respect to
both the number of predicates and of defining operations in use.
As usual in such problems the word, optimal, here has to be understood in a limited
sense. As an illustration consider K(3) of Table 3. Suppose under a global analysis,
say, in the manner of Alpern et al.[2], of the code not shown in Fig. 1 we can prove
~=tl statically. Then we conclude K(3)=K(6) and therefore one predicate may be
eliminated. In fact, in this case the block B4 is unreachable and we should have
processed a different flow graph that takes into account such optimizations.
Note that presence of redundant predicates would unnecessarily increase the number
of predicate registers required. The presence of useless defining operations, on the

16

other hand, would unnecessarily increase output dependence arcs that constrain
scheduling.

8.6.2 Pictorial Representation
The results, R and K, can be visualized by the following pictorial representation.
Consider R of Table 2. For each entry, say, R(5)=3, we associate predicate 3 with
block 5 as

Similarly, for each entry ofTable 3 for the augmented K, say, K(3)={-2,3}, we draw the
labelled arcs as

Completing these steps we obtain the full graph shown in Fig. 4a. This result is to be
compared with the corresponding PDG result (Fig. 4b) from [3]. There are essential
differences, namely (1) absence ofpredicate-to-predicate arcs and (2) presence offalse
arcs from Start in our result. Region-to-region arcs in PDG come about due to
"factoring" (not required in our method) discussed there. Presence of additional arcs
from Start represent reset operations (not required in PDG) in our method. It is
obvious that our predicates are not simply regions nodes ofPDG.

8.6.8 Generality
A close scrutiny ofAlgorithm RK shows that hardly any restriction is required on the
character of the flowgraph. And so does the calculation ofpostdominator relation and
the method of solving du-chaining problem. Hence, it is not surprising that Algorithm
RK can tackle arbitrary flowgraph including cyclicas well as irreducible. We will not
pursue this further here, however, since our primary need for predicated execution is
to overlap iterations (that is, software pipeline) of an innermost natural loop with if
statements. By definition such a loop is associated with a single backedge, a single
entry, and an acyclic body.

17

Figure 4. compare RK (left) wnn PDG (right).

8.6.4 Time Complexity
At the level of abstraction shown in Fig. 1 the time complexity of Algorithm RK is
easily analyzed. Given that the operations like set membership (e and e;), or union
(U) are performed in a way independent of problem size, viz., the number of nodes
(IN) and that of edges (IE), we only have to examine loops. We will use the notation
like IN to mean the cardinality of a set N.
As in PDG [3] introduce a set S

S == {[x,Y,labeij e E: y does not postdominate x}

Edges in S are precisely those examined in "for" loop of Algorithm RK Step 1 so that
the number of iterations of this loop is 18. But #8 < #E < 2 #N. The number of
iterations of the nested "while" loop, on the other hand, cannot exceed the maximum
height of the postdominator tree, which in tum cannot be greater than IN. Hence the

18

time complexity of Step 1 is 0(#N2). Note that the postdominators required in this
step can be obtained in almost linear time, O(N<xCN», using the algorithm ofLengauer
and Tarjan[7] for dominators with all graph edges reversed.
That of Step 2 is clearly determined by the number of iterations of "for" loop, which is
#N. Setting aside the time taken to compute IN(Start) the complexity of Step 3 is
given by the number of iterations of "for" loop, which cannot be greater than the total
number of predicates in use, #P. We already know that #P is precisely the number of
equivalence classes under which N has been partitioned. Hence we have #P < #N.
Examining Algorithm DU in order to set a time bound. Step 1 can be performed in
O(#N) time. Step 2 is somewhat involved. The innermost "for s" loop is not a loop in
the sense that at most two iterations are involved and this number is clearly problem
size independent. Ifwe take the specification literally as a code, then the outermost
"while" loop is bounded above by #N, since every IN(b) can only grow (does not
decrease) and none of it can grow larger than P. Thus Step 2 as given has time
complexity ofO(#N2).

However, as mentioned earlier, one can perform "for b" loop in depth first order a la
Tarjan[12] in time linear in #N and effectively avoid the outer "while" loop. In any
case we conclude that the time complexity of entire Algorithm RK is O(#N2).

4 Comparison with Earlier Results
To our knowledge predicated execution in the form we are discussing has been used
for the first time at Cydrome as in the architecture of Cydra 5[10] and a Cydrome
compiler[4]. Although the current work was motivated primarily to understand the
details of this novel approach, it led to a new scheme that cures certain deficiencies
in the old approach subsequently discovered, namely:

• Incorrect results for certain graphs.
• Presence of useless reset operations.

This is achieved by having to (1) redefine semantics of predicate operations and (2)
design a new algorithm. It also turned out that our algorithm is simpler conceptually
and more efficient in time complexity. However, since the old algorithm has not been
published in detail, we will not dwell on algorithmic details of the old approach.

19

4.1 The Old Semantics of Predicate Operations
The semantics of the predicate defining operations (stuff and stuffbar) in Cydra 5
architecture are different from ours of'(S) and (4). For stuffoperation (1) the meaning
is

py.new = tx.old A Px.o1d
tx.new= tx.old (16)
px.new = Px·o1d

Similarly for stuftbar operation (2) the meaning is
py.new =-1 tx.old A Px.old
tx.new= tx.old (17)
px·new = Px·o1d

Notice that in this scheme the target predicate Py is modified regardless of whether
the source predicate Px is true or not. This is counter-intuitive in that two stuff
operations with a common target do not commute even if they are associated with
complementary source predicates. Our approach is more natural in this respect, since
one or the other behaves as No Operation and therefore the (semantically) correct
operation of one operation does not depend on where the other operation is. In other
words in the old scheme it is impossible to disable (or nullify) a stuffoperation. There
are penalties associated with this inability as elaborated below.
Consider the example of the reduced code (7) with our solution shown in Fig. 1. When
examined under the old semantics, (16) and (17), we obtain the behavior for the case
tl=false and t2=true as sketched in Table 4. Clearly the code is broken in semantics,
since P3 is false at B5. The defining instruction P3=~ of block B2 (not enabled in this
behavior) interferes with P3=t3 of the enabled block B3, since the former occurs after
the latter. Since commuting B2 and B3is another possible linearization, is it possible
to correctly solve the placement problem subject to a particular choice of topological
sort? If so, the penalty implied by the old semantics is merely giving up invariance
under topological sorting? The answer appears to be negative as explained
subsequently.

4.2 The Old Algorithm
Setting aside algorithmic complexities one must in the old approach address the
problem of compensating for the inability to disable defining operations, stuff and
stuftbar. As observed earlier, as a defining operation is moved up farther away from
a block using it, it is more likely that there will be interfering defining operations
forcing predicates false in spite of being "disabled." Ifwe compare the two semantics,
old and new, their difference occurs when the source predicate Pxis false forcing the
target predicate to be false, py.new=false.

20

Table 4. A Behavior of Reduced Code under Old Semantics

Px after(8x) P2 P3 P4 Ps P6 Remark

T Start X X F X X
T 81 F X F T F t1 = F

Ps 83 F T F T T t3=T

P2 82 F F F T T

P4 84

P3 85 P3 = F at(8s)I

P6 86
T 87

This has a different sematic effect only when we have Py.old=true, since otherwise Py

stays unchanged (as if disabled). One approach is, thus, reset all predicates false in
the beginning and set Py true in every immediate predecessor of node y.

The approach found is consistent with this observation and is roughly based on the
following strategies: Consider a graph corresponding to the body of an innermost
natural loop, which by definition is acyclic.

1. Establish an order by topological sorting.
2. Examining blocks in the topological order assign predicates putting blocks x and

y such that x dominates y and y postdominates x under a common predicate.
3. For each conditional flowedge (x,y,label) put defining operation Py=stufRtx)&px

in block x, if label is true. Similarly, stuflbar if label is false.
4. For unconditional edge (x,y)put defining operation Py=stufRtrue)&Pxin block x.

5. At Head node reset all predicates in use except those defined at Head.
The actual algorithm used is considerably more complex than suggested above. It is
clear that the number of predicates in use must agree in both methods, old and new,
since this is independent of semantics of defining operations, being purely a graph
theoretic property. The differences arise in the number of defining operations and
their placement, since this depends, in addition, on the semantics of stuff.
For instance, when the example we have been using is processed under the old
algorithm we get the result shown in Fig. 5. (Start and Stop nodes required in the new
algorithm are not used in the old.) In the result shown all reset operations present in
Head node are useless except P4=F. In addition P6=T in block B2 is useless.
Comparing this result with our earlier result shown in Fig. 1 we observe differences
summarized in Table 5 where predicates are counted leaving out constant predicates
of Lemma 3, defining operations (stuffand stuflbar) include those of reset operations,

21

and output dependence arcs counted are only those between predicate defining
operations.

Table 5. Comparing Predicated Code In Two Methods.

Features New Old

Predicates 5 5
StuffOperations 8 11
Output Dep. Arcs 3 6

The number of dependence arcs is an important measure of parallelism, fewer arcs
leading to more parallel code. Our algorithm produces inherently more prallel codeby
minimizing the number of defining operations thereby reducing arcs.

Parenthetically, counting of the output dependence arcs in the table is conservative,
since the effect of predicates associated with defining operations is not taken into
account. Referring to the new result in Fig. 1 the dependence arc between P3in block
B2 and P3 in block B3 , for example, is not needed, since the predicates, P2 and P5'
associated with respective defining operations satisfy, P2AP5 = false, meaning one or
the other is disabled. Thus, under the new semantics of PE dependence analysis
taking predicates into account one can further reduce arcs by eliminating such
spurious ones. In other words, the old semantics, in which defining operations
cannot be disabled, precludes the benefit of such analysis.
Ifthe elimination ofuseless defining operations is the only gain, then the effect of the
new algorithm is merely an improvement in performance of scheduled code. This is
actually not the case. As discussed earlier the old algorithm, unlike the new, produces
solutions that are dependent on a particular topological sort. What would happen ifa
"symmetric" flow graph with no intrinsic order is tackled?
Consider the flow graph of Fig. 6, which is our earlier example, Fig. 1, with the edge,
(3,7,false), removed and a new edge, (3,4,false), added. (Also blocks 6 and 7 are
combined due to "branch optimization".) The solution produced by the old algorithm
(with respect to a particular order, B1B3B2B4B5B6) is shownin the same figure. Apart
from the useless reset operations (P3=F and P4=F) present at Head this solution
agreew with that of the new algorithm.
It is easy to see that under the old semantics having P2=false (corresponding to the
behavior for tl=false) at B2results in both predicates P4and P5false so that neitherB4
nor B5 can be enabled.

22

Figure 5. The flow graph of Fig. 1 predicated using the old method.

This erroneous behavior cannot be cured by commuting B2 and Ba in the reduced
code. IfB2 is ordered to occur after Ba in the reduced code, then in the behavior for
tl=true having Ps false at Bg leads to the same erroneous condition of having both P4
and Ps false before their use. In fact, once the semantics of predicate defining
operations are taken to be those of the old approach (15) and (16), a correct algorithm

23

P2=t1 PS=-1t1
P3=F P4=F

Figure 6. Another flow graph predicated using the old method.

for PE does not appear feasible, not to speak of discovering the precise conditions on
graph characteristics under which the old algorithm produces incorrect results. The
new algorithm cures this deficiency by choosing the semantics that guarantees code,
including predicate defining operations, of a disabled block to behave as No
Operation.

24

References
[1] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, 1986.

[2] Alpern, B., Wegman, M. N., and Zadeck, F. K Detecting Equality of Variables in
Programs. In Proc. ofthe Fifteenth Annual ACM SIGACT-SIGLPLAN Symp. on
Principles ofProg. Lang. (January 1988) 1-11.

[3] Ferrante, J., Ottenstein, K, and Warren, J. D. The Program Dependence Graph
and Its Use in Optimization. ACM Trans. Program. Lang. Syst. 9,3 (July 1987)
319-349.

[4] Dehnert, J. C., Hsue, P. Y. T., and Bratt, J. P. Overlapped Loop Support in the
Cydra 5. In Proc. ASPLOS III~ Apri11989.

[5] Lam, M., Software Pipelining: An Eft'ective Scheduling Technique for VLIW
Machines. In Proc. of the SIGPLAN '88 Conf. on Prog. Lang. Design and Impl.
(June 1988) 318-328.

[6] Lamport, L. Control Predicates Are Better Than Dummy Variables For
Reasoning About Programs. DEC SRC Report 11 (May 1986),

[7] Lengauer, T., and Tarjan, R. E. A Fast Algorithm for Finding Dominaotrs in
Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (July 1979) 121-141.

[8] Park, J. C.H. Formal Aspects ofPredicated Execution. HPL Technical Report (In
preparation.)

[9] Rau, B. R., and Glaeser, C. D. Some Scheduling Techniques and an Easily
Schedulable Horizontal Architecture for High Performance Scientific Computing.
InProc. ofthe 14th Annual Microprogramming Workshop, October 1982.

[10] Rau, B. R., Yen, D. W. L., Yen, W., and Towle, R. A. The Cydra 5 Departmental
Supercomputer, Design Philosophies, Decisions, and Trade-oft's. IEEE Computer
(January 1989) 12-35.

[11] Schwartz, J. T., et aI. Programming with sets:An Introduction to SETL.
Springer-Verlag, 1986.

[12] TaIjan, R. E. Depth First Search and Linear Graph Algorithms, SIAM J.
Computing 1, 2 (1972) 146-160.

25

