
1 Introduction

Experience .of the industrial use of object-oriented technology indicates that. a dis­
ciplined softwareproces.s is the essential factor determining success f4]. Key. com­
ponents of a software process are systexna.tk analysis and design teih.niques. The
first efforts at employing such techni~forohject-orientedsoftwaredevelopment
attempted to use traditional methods sud! as SA/SD ({6] Ill)). However it rapidly
became apparent that object-oriented. methods were necessary because methode
based on the functional decomposition of a system clash with the object-oriented
approach.

Recently there has been a profusion of object-oriented analysis and design methods
coming..from a variet.yrof ba~kf'."o1.l.n.d.•• 5, .. S~.••••• , s...~th &s.HO.OD [71 and Bohr's [2]
are targettedat the ADA communitr.looch's II] method is simifar but has been
extended to make it more tfull' obSed-qtlentei. Entity-Relationship Modelling
[3} is the hasis oflllet1)ods UkeJlumba~ghfs et &1. [8], whereas the responsibility­
driven method of "\Tids-Broclt et aJ.. (11)}, stems·from an operational view of object
interaction.

The question that naturally arises for thepraditioner is which is the appropriate
method for the type Qf develQPm:~tt4ey are en.gaged in. This paper evaluates the
aforementioned methods by scoring t~em ~~nst a ~t of criteri~. It is not the
goal of the paper to answer the qUesh<;)Il i/o\\! h,ich one 1S the best? , but rather to
show the differences between methods and to a.lJowconclusions bedrawn as to their
applicability.

The criteria are presented as a set of qu~tions together with some preceding com­
mentary. The aim of the commentaryistQdMify the associated question(s) and to
indicate some technical teflllS~~at m:a~ be usefuJin framing the answer. We do not
provide definitions t excep~ in~ U$e. "Oftenns ,hat may be ambi~uQusor uIdamil­
Jar to members of the obJect~onentedcptJ1muntty. We then conSIder how the five
selected methods address these i$sues. The results are summarised in tabular form,
the presence or absence of a~la.ek d9t(.) ind.ieatill, whether a method supports
Or possesses a given fea..ture. l.n taR ~, 8. qUElStlon mark is used to indicate
that no evaluation can be made due tQlack of evidence. A brief explanation of
the reasoning behind the most interesting points of comparison accompanies each
table.

The document is structured acCOtdi~ tQtbe four main categories of criteria: Con­
cepts, Models, Process a.ndPragmatt<:s. The concepts section addresses the ques­
tion of what makes a development method object-oriented. The core of itJl software
development methods, namely the models advocated aad the process for developing
those modelS, are exa,rnined in .subsequent sections. Finally, the pragmatics section
considers non-technical featuresof' methods such as availability of resources. W'e
also offer some directions for future research and conclusions.

Note In this document, evaluation criteria are indicated by use of italics.

1

Internal Accession Date Only

2 Concepts

In order to be considered object-oriented a method should support the expression of
thoseconc~ts. which as.s.ume.. the InO.<5t p. rominen.....tM.•.in....••.• Qbject..-.orie.nted.software.
s}.•sterns.... Thae.. co.• ··ncepts are m()$tly cleri~ .ffom..obj.e<:t-or.ten...•.. ··.·.ted pro&rarnnu.. ·ng
languages. As with object-oriented l~ua.ges [91.t - isao universally a.greed
u.pon set of features (apart from objectds) t~t a ·04.. should support. This
section introduces criteria for d.aibing thesema.nt~of t.Ae object model and
thus provides a framework for evaluating the ext.tto whiCh a method is object­
oriented.

2.1 Objects and Classes

The fundamental concept that mu.st be supported b)t,...ob~t ..ori.ted method is
the object. A.n object ea.cap8ul~t~ its in~~ ..••.a.tt'Ut.) andpro\'ide~
an interface (a set of operations) for ma,JliJ.>uJat~. tewa)· information
hiding interacts with the type system. to provide~Ierentia.tes Ada based
methods from those coming from theobjed-orien wor d.

In class-based methods the information hidi mo4ule,~~ ~. class., has an asso­
<dated t~·pe. A class is a template which d .. .mbutesand interface of a
set of objects. Object instane;es are producedhyclassvariables.

Packagf-bqsed methods separate the type systemfromr.nodltleshy providing un­
typed modules for encapsulating data. If a module exports a private data type
then each variable of the type produces an object instance; otherwise the module
corresponds to a single object.

Both package-based and dass~based r.nethods tAn .pk>y'~tH~ric modules. A
generic .IJ,lod1..l1e 01 <;lass is a paraDJetetlsed ~late that ..('.fUl be instantiated to
give a simple module or class. A.coordingto the rnethod,the parameters can be
t)'Pes; cla.sses or operations.

A ffletaclass is a template whose instance isa "uso6jed, A class object has
attributtl$ that contain information collUJ1On •.~••tift .etofobj~$of one class
and an operation to create new instanCElS .fJf that· dlss.

. 1$ the method classpbase4 or P.dc1ct1f~p6t1JJedf

Does 1tsu.pporl generic modUles "",4/9r me~ulus~f

Evaluation:

Both Rumbaugb and Wirfs-Brock weMde~forobject-oriented
froftware and fully support classes. In'''rast, HOOD and Buhr are
package based. The main focus of Dooch'sJ1'letbod is class based, al­
tboughit does provide a notion of packages.
Booch provides generic classes and modules; as well as meta-classes.
~n Rumbaugh, class maintained information can be indicated on class
Icons.

2

Method p~ Clus Ooenc :Metadw

Beeeh • • • •
BuhT • •
BOOD • •
Rumbaugh • •
Wins.Brock •

Figure 1: Objecisud Classes

2.2 Inheritance

lnberiianee is a relationship between cl.ses ~n which the features of one class, called
a subclass, are defined in terms of one or more supertl4Sses. This facility permits
the incremental development of designs IliI)d imple1'Xleniations. In single inheritllnn
each subclass is allowed just one immedi"tesup~tcl~, whereas multiplt inheritance
permits more tban one immediate supetel....

A design method can support sub~W€ ip,heritance.in wbich tbe subclass behaves
like its superrlass for all the operations 01 the $uperdass. It may also support tlTl N;.

siricted inheritance which permits thesubelass to change the signature or behaviour
of operations.

Some methods allow the definition of abstract classes which cannot have instances
and exist solely to partially define the properties of its subclasses.

finat type of inheritancedof:s themethodsupportf

All the class·basedmethods8t;tppoft single and multiple inheritance.
In addition, Rumb&~h&u:p~a.D\tf:I1~.of~cpr.ertiessuch
as whether subclasses h.&ve 0 Ppinl.f~t.ures. Wirfs·B}'ock devotes
considerable attention to the of ilUletitanee hieratcbies. In both
methods, abstract classes ate dlS(\uased_~ly.

Wirf~·Brod,<; and Rumba\tJthrecomm~d .u.J)t~e inherit.ance. Beoeh
explicitly distinguishes SUbtype inheritance nom derived type inheri­
tance.

2.3 Visibility

An object uses aaother object topetform ..~ sernce by invoking an operation in the
used object's interface. This is called the cllent/sertlerrelationship between objects
and is fundamental because work in object-oriented systems is accomplished by
collections of interacting objects. In order for a client to be able to use a server, the

3

Metnod SfllaIe '-hdtlp)e Sul;ltype Ullrestrkted Abstract Class

Boo!:'b • • • • •
Buhr

HOOD
Rumb&uab • • • •
Wii'f$..Broa • • • •

Figure 2: lnherita.nce

server has to be visible to the client. Methods differ in the degree to which object
visibilitiescan beexpl'essed.

The flg9r.€gat. iP.n.....r.el.•tipnshiP holds when one object is a component. ofanotheT
object " CompontmfS have the same lifetime as the whole and are visible to the
whole.

Objects can use objects other tbantbe.ir COmp()nents. A method mayrnake no
restrictions and M$Utne~t(Ltic global visibility., Sroping allows visibility to be N­

strided stcdti!;allll' Visibilit~· may be dyn(Lmic, for example a server object can
become visible> to a client b~' parameter passing.

111tat visibility rtlationships does the method support'?

Evolvation :

The aggregation relationship is precisely defined in HOOD and it is the
basis of design. Rumbaugh has an extensive notation to differentiate
the various types of aggregation. Boom supports aggregation implicitlj".
Wirls-Brock only mentions aggregation in passing.

Most me.thod.' assume. global lcoping ex....cept HOOD, which supp.... arts
name $pliee pa.,ttitioni.., aad Hooch l which providesllJ.edlanismsfor
e:xpressiagand,rest:ridiiGgtbe visibiiity of names.

M(!th:Qd Agf'eg&tiQu G1Qh:"'~ ..~.~ U
~~~

~eb • • • •
Wr • •
BOO!) • • •
Rumbaugb • •
WirU-Brock •

Figure 3: Visibility

4



2.4 Lifetimes

A method may be restricted to dealing with statk systems of objects in which
all objects have the same lifetime as the system, If this is not the case then the
method must contain some {ad1ity {or dynamically tmztiag objects, for example b:r
instantiating a class, It is also desirable to be able to specify object destruction,
These two operations allow fully general systems to be modelled,

Does the method support object cnlQtion and destrttction f

Not all objects are trans.ient.There area number of "l$Sons why mechanisms to
maintain objects that live indefinitely arenecesliary.s<>me ohje<'ts rna.)' simply
outlive one (or all) the execut·ions of a program. Inion, lived object systems. some
objects ma~' hMie to be written to storage for reasons of resouf<:e management.
To provide for these circumstances, a method may contain a fadlity for indicating
object persistence.

Dots the method support object peTsistfTlCf?

El'oluaflon:

\\'ids-Brock implicitly assumes thatobje<'ts ean be created and de­
stroyed.

Method Creation Destruction Pet.t.en~

Booch • • •
Buhr • •
HOOD •
Ru~pa!llb • • •
Wi.BJ9(;~

Figure 4; Ufetimes

2.5 Concurrency

Because the real world is coacurrent,oon(Urren~ ohjecta are often .used in the anal­
ysis stage to model it. Objec.ts meshaicely with coneurJ'el).c)' $inct' their logical
autonomy makes them a natural UDit for COJ:lcurrent execution. However, concur­
rent sharing is more complex than sequential sharing, requiting mutual exclusion
and temporal atomicity. The interfaces, internal structure and communication pro­
tocols of concurrent objects Are more complex.

Normally objects art' pessive, because they are inactiveuntil an operation is invoked
by a client. In contrast active objects have their own thread of control and may be

5



executing when the client attempts to send a message (i.e. invoke an operation).
An active object is inio"nQ,[lll COTlCUN'(n.t if it has more then one thread of control.
Methods should support ways (e..g. monitors) for guara.nt.eeing mutually exclusive
access to shared data in concurrent systems.

~~'haf models of conCUrT'!ncy dO€s the mdhod supporlY

Evaluaiion:

Buhr's method supports the desipof concurrent real-time systems.
The design of object int~rf.¢•., JynditOJ:ilJaiion and mutual exclusion
is dealt with extensively. BOOD uppor~co~eutt ...cy although
no mention is made .ofmBtual exausi(,)a The Booq. method$upports
passive and active objects,whiGh -.·ex.p!icit.ly labelled.M such.
Internal concurrency in Buht and II'OOD is provided by recursive 'de-­
composition of objects. Theeomposition of state machines in state­
charts supports internal concurrency in Rumbaugh's method.

Method Paol\'E Active btttlfllJlly CQIlC\lJlcnl Mutual Exclusion

Beech • •
Buhr

:=
• • • •

HOOD • • •
Rumbaugh • • • •
Wrm.·Broc:k •

Figure 5: Concurrency

2.6 Communication.

Objects constitute a loosely <»upled1U~delorcoxnputation,in which communi­
cat ion provides both in~tion fI()w ..~ ~eh1"Onisa.tion. The usual model of
communication is that only two objects •.mwlved in anyone communication
with the sender having to know th~~ver's identity but not vice-versa.. The
information flow however, may beuni- <>r'bi..dll'ectional.

Synchronous communication requires the sender to sl18pend 83Cecution until the re­
ceiver accepts the. mes.• sage..,...wher.••.••••. ea8.. G$pc.. h,.,nofl$. conmtU... nie&.:tion allows the sender
to continue. Further qualifiC4tticms of$~cll~ouscomm\U1icati(,)n are IHJlktng (abort
if receiver not reaody) or timeout f~ if recdver not~y ·after 8O~.ecified
period). COIDmBnication.is "'....ie i{tae.-nt message ispv~ to ·remain
available until the receiver is ready to accept it.

At the analysis stage methods often UselliIl Qent mooelin which the communication
is instantaneous and atomic. For design, development methods often use more
complex communication primitives like those provided by implementations, e.g.

6



the procedure callfor sequential systems and the roenduvou8 and remoteproct:durt
callfor concurrent or distributed object systems.

Mut ual messaging between objects is important because of its use in model-view­
controller t)"P~ d_igns. This category of objectoommunicationindudes recursion.
""here an object sends a :message to itself and C4111xu:k$~ where a server sends a
message to a client during the evaluation of a message froro adient.

»1.01 modds of communicahon d.oes the method support'?

El1aluofio'fl :

HOOD provides a rich set of communication primitives which are imple­
mented by procedure cans and rendezvous. In Rumbaugh'sand Buhr's
methods, the event is used durie! eJ.rly desi$n and it is refined to a
procedure call or rendezvous {or iIllpl~ntahon. The BooclJ method
supports m.•. ost. of the int$'estingtyp_.of eemm......•. uni~tion, ine.luding.syn­
chronous, asynchronous, balking and timeout and pro('e<!ure call for
implementation.

HOOD explicitly describes circumstan~ under whicll ~utual messag­
ing is permitted. Rumbaugh suppods reC\U'sivemeS$aging.

Method Synchr.onous A$Y1l010I\QW! Eve.n.t PtQC~'ltre .uQ.v~~ lth\ual Messa.ging

Booeh • • • •
Buhr • • • • •
HOOD I • • • • • •
~llml>allg), • • • • •
Wuu.-Br.pck • I

Figure 6: Couununication

3 Models

A. developmen.. t metho.d. proceeds by .yelOPial.···•.ab.~t.ract.des... ·.C!iPtioIlS,.• or models, of
the system under analysis or design. Ea.chB\olW is.~ in some notation.
In assessing a method it is necessary to oonsiderthe modelsitooD$tructs and the
nota,tions that it uses. The pnIne requirement isth~t the set of models should form
a complete and consistent description.

3.1 Kinds of Models

Three kinds of models can be produced. .Aphysical model is concrete and concerned
with the actual structure of the software system and typically deals with such things

7



as code modules and processors. Logical modele capture the key abstractions of the
system. Logical models can be fiepa.ra~.into st4ticmodels which emphasise the
structure 01 a system and dynamic models whid1 deal with temporal and functional
behaviour. Another distinguishing feature iswhether a model pertains to the system
or an indiyidualcofflponent. A ccnnpouent can be a.tomic, i.e an individual class or
package. or a 8ub~lIstem. In eases whete .1'llOt'e than one m.()del captures the same
information there should be rules for d1eckmg coMistency between the models.

What modtls does the method pre$cn~t f.Jnd what notation is used for
each?
A 7'( there any aspects ofa 811stttm that f.JTt omitted or any that aT( cot'ETtd
by mort than one modelf

E11oluation:

An the methods CQn$id~ed useditected Il'a.phs to. represent the usage
and inheritance structure of a system. WiriB..Brock uses separate dia­
grams, whilst Boocnand Itumbwlh combine the information in a single
diagram.

HOOD uses state machines andLor psel1dcrcode to denne system be­
haviour. Rumbaugh presents a ut.tlow diagram to define the func­
tional behaviour of a system in _,oD$(do an event. Booch uses ob­
ject diagrams to show the interactions between the objects involved in
responding to system events. Boocbalso uses timing diAlfams, to il­
lustrate exa~ple scenari06associa~wi1,hsys~ events. Rumbaugh
advocates a textual representa.tionol t~tningdiAgrams, eVElnt traces,
for this purpose. Bunt relies80lelyon the use of timimg diagrams to
illustrate srstem-level behaviour.

The 'Witfs-Brock metbodQoesIlf>tl>uildmodels of dynamic system be-­
haviour. Instead th..e Clus-:bs.·•.~...••.•......•.. lb...I.l.\l.-CO.....l.••lal>o.•.. tation (C.ftC) cards
constructed for the 51& . U&ed.forll~n.o walkthroughs. The col-
laboration links on the cards duplicate the usage structure shown
by collaboration graphs.

Wids-Brock has spec.ialnot"ti01l$ for ~turi1l! subsystem structure,
whereas the other.m~dsallow.Yf'temIevelllotationsJo be applied re­
cursively. The mmvid'Qal CRCc:u'ds and eontr~$pec.ifica.tions contain
natural language d . tions of CO behaviour in Wirfs-Brock's
method. The other _ ute . _dlines and/or pseudo-
code to capture the 'c :Y'io11t'.r. atomic cGJnponents.
Rumbaugh and JIooeh h"ve explicitn()tat!ons tor showing the allocation
of classes to modules and active objects toprocesSQl's. In Buhr and Hood
the package is a physical module.

The reader is referred to the summariee in the appendix for the details of each
notet ion.

8



Logical
Method System Component Physka.! i

Statk Dyna.mic Static D,IlAlllic I
Booch CJ.. Diagram, Timing Di-.am Clasa Di.un State m/c Module Diagram, IObject Diagram Precess Diagram

Bubt Structure Chart Timing Diatram Structure Cll"rt Stalot m/c, St'ructUfe Chart. I
...do.-CQde

HOOD Obj f)efJI SkeletOll S,,,te ..Ie.. Obj Defn SkeJef.OJl State _Ie, Ada

pseudo-code J*Odo-code I

Rumbaugh Ell DiqrNn Df Di-,..m, tR DiagtAm St. rille System Arch !

Event Trace

WuL...-Brock Hierarchy Gra.ph, Suh.system Card. Clte ¢ud.

Co&b Graph Oc>U.b Graph Ooll~ract Spec

Figure 7: Models

3.2 Notation

This section is concerned with the properties of notations used to capture models,
\¥e c()nsidet their expressivt> power,\\'hether theit'Ytiltax atild BeJiJlatiltics are well­
defined and how well they scale-up. The evaluation for this section I.p~rs at the
end of section 3.2,3.

3.2.1 Expressivity

The main iss~e for a notation is fitness !orpurpo$f. Notations can be pitched at
different levels of abstraction: they can use abstract or cot1t:rt:te data t)'PE'S and can
beafclaratitlt: or operational. If a notation cannot directly represent the essential
concepts of the model, then the user has to encode this representat.~ntxplicitlj' in
the terms of the notation. This leads to more complex and less easily understood
descriptions. These kinds of problem also afBict notations tb.tue tao verbosE..

3.2.2 Syntax and Semantics

Not only sll0u1d the notation be sufficiently expressive but itlhewGalso be well­
defined. The syntu of it notation is a set of rules whieb describe the. primitive
components of a ll?tation an~ the legal combinations of th~selymbols. Notations
can he te:dualord,a.grammatlc. There a.re well-known te<:hnJques, sueb as BNF, for
formally defining textual syntax. Tt!eb:niques foft definin& the Iptax. of dia.grams
are less well-established, however there should be a clear definition of the icons and
their legal combinations. A defined syntax is arequircnent for effective use and
also for automated tool support.

9



Is therr a syntax definition or tloes tht synt~x h~tJt 10k deduced from
f'!xampltsf

The semantics of.a notation is a set of rules .hidllives the meaninfjs of the syn­
tactic primitives and their combinations. m.~a,l,~tic deftnitJons ue more
complex tha.n syntactic definitions. A well-defined ~uties eliminates ambiguity
and is a. pre-requisite for advanced tQOI8up~.uch.C'Dde&meta.Hon or simula­
tion. More importa.ntly! a semantics is necessary foraliQwing analysis and design
models to be examined and evaluated during. developmtnt. Th«eshould be rules
for rtasoning about models and for tran'8Jorming~ model into .another.

Is there a semantic definitionor~ the semanticSMf1t to kde4uced
from exampltS?
Does the semantics hatt€; ~ formal found~ti(jn'
Is ther« a logic for reasoning about or transforming models?

3.2.3 Scalability

Scalability is concerned with whether a notation can be used effectively on Iarge
syst ems. Notations need a mechanism for partitioningdescriptioJls intosmaUer and
more ma:r:ageable modules and c.omR'!Sing t.he.••.w.h?l.e fr.om those modules. It sho.u!d
also. prOVide SOme means of contrDlltng the VUfWf.t.tr. .1 'Aa·mes across modules, In
much the same way as programming languapsprovide nwchanisms for controlling
the scope of names.

Dots the notation prot1idf a partitioning meChanism?
Are tFt f tt rule!' for composing thE metmiTig oJ a system from the meani11g
of its modules?
Is therE an explicit mechanism for d.ejild"'gthe Bcep£. oJ names?

Evaluation:

The notations used in alIt.h.emetlIo.d.s. .i'.f~, expressivea,nd tend
to be verbose; this is particula.rly true of Booch'. method.

Booch,R~mbaugh a.nc:l.Wirfa-Jllr~.P~~ ~hort~des to their.. note­
tions. HOOD has a reference numualin wJ:deb t_ua.lsyntax is defined
using in BNF. Buhr does not provide .. ref~~ guide to his diagram·
matic notation.
All the methods rely on informal examples to explain semantics. Bow­
ever HOOD has design transfwmation rules and BlIhr includes some
rules for handling synchronisation. Optimisation ntles are included in
Rumbatlgh. .
HOOD has a eomprehensive set of rulesooveriD;g scoping and object
visibility. Hooch has ICAling meehani$msfor lOme types of di~rams
and also the scope of names can be.mdieated.Rumba.ughtlSeB Barel's
notation(5] for reducing the complexity of .tatemad:tines.

10



Mf't:bod Etprtuivity $Ylltu 6emaJItic. R~&ll()lling It 'Iiusiouna.tiofl Paniti.oning Seoping

I Hooch • • • • •
Buhr • •
HOOD • • • • • •
Rumbaugh • • • •
Wirfr.-Brock • • • •

FigureS: Notation

4 Process

\\'e use the termpr«:en to cb.ar~ierl$e the steps that make up a method. A process
has two main roles: to4thJ'etbede\-elop~t to an appropriate implementation and
to assist progress tra¢ldng tbl'()1.1gb the definition of milestones and deliverables.

First we look at the context ef the software development in which a methodis
useful and what part Qfth~li~¢le it CQvers. We then discuss the properties of a
process including pragmaticis$ues such as flexibility and heuristics.

4.1 Development Context

Software development occurs in :many different contexts. .Mest development rneth­
ods are aimed at greenfield developments where there i5no previous history of
soft ware development and the enly elwb'onment is that provided by for example an
operating system.

Adding functionality and reengineen'49 requires a provision fer the ~ptureof func­
tionality and thE"extradiQn of suitable abstractions of an existing s~'stem before
the design canoe modified to include the new functionality.

Does tneprooess protJide support for adding functionality to easting
sysfems and ~gineeriagf

A further kind ef dev~~nt.coDt@til that of desip with reuse. A process
which supports~l'«I~ a.1Qc>kMeadapproach such that tile common, useful
and hence reusable components c.an be identified. Once ca.ndidatesfof reuse are
identified one can search a library to see if reusable components already exist.

Reusable components &Dei desl._ ~ve to be developed, they are not justa by
product of u~ing~bjects. A}f!otesS needs to explicitly pfO'ride activities which are
Intended to ldentifyreusea.l;>lbty udsupport tile development of reusable compo­
nents and designs. Typically t.be develepment of a reusable component will be a

11



design exercise in its own right, as a reusable component must not only satisfy t he
im.mediate needs of the current development hut must takt a breader view of the
requirements for reuse.

Does thE process addnss the issue 01 design FOR ft'U$f r

Evaluation:

All the methods emphasise greenfield development. The coverage of
reuse and reengineering is weak.

HOOD has notations for describing the eD.vironment alld$¥stem eentext
for Tee.ngi..n.een..·n.g.....aad gll.i.d.&D.C.. eon. inoo.rpo.... ·.rat...in...s.. ·.. l.ibrary objects but.not
on developing them. The other met~d$.oiferl1eurist.:iador developing
reusable components. The ~method add... d_ign with reuse
hy providing a notation for indicating the use of libraries.

Metllod Gf1!ltIlne1d ~ ..... wiih leU$e For Ileue...........~.
&ocn • • •
Buhr • •
HOOD • • •
Rumbaugh • •
Witf.&.Brock • •

Figure 9: Development Context

4.2 Coverage of Lifecycle

In this section we identify some of the atti\1itJes which constitute a software de-
vel..o.p..m·.•...e.nt process. MaD)' methods cover. differeD.t.•.. P.. 88.Jfts of the lifec.ycle, not just
analy;sis or design. Therefore it is more ueful tocie8eribe .& method in terms of
the development activities it supports. These activities eat1 be combined in various
w~ys to make upa particular process model, ,for exam:p1.e the spira.! model.

The term des.·.ign is applied Vel.•. yloose1y'by ..ut.~()l'$ ...o.f..•.znet...•..·.h.QdS1 1O. tba.• t many meth­
odswhi<:h claim to be design methodsUlo ia~"'~tOf&nalysis&Dd imple­
me,ntation. For our purposes we wiBuse the feB_. GelDiti9ns:

Analysis The purpose of analysis is to construct the logical model of the sys­
tem and its enviro:nment. At this &taae there is an emphasis on describing
properties rather th~n the mechanisms which implement them.

Design In the design phase the system to be built is differentiated from its environ·
ment. The logical models produoed d-mg .....l¥sis -.re successively refined
and made more coDcrete,and aphyti¢al~elis :produced. The emphasis is
on the realisation of the propeX'tleS .... BOftw-.re.truq.ure.

12



Implementation hnplementatioIl encodes the physical and logical models ina
particular progr~nunin.g u..nguage. At this point in the process all of the
struct ure and beh.svicur of a s)'stem will have been defined, and the emphasis
is on providing an encoding of the design using the primitives of a particular
language.

14-hieh ofthest 4ctivi.tifS does the proCf$$ support f

Evaluatio»:

V\'irfs-Brock's and Rumbaugh's methods are appropriate fOf a.nal~~sis,

providingmechanisms and notations respectivel)' to explore the cense­
quenees of decisions.
The Booeh, HOOD and Bnhr methods are strongin design. The former
provides annotations in the design diagrams which can be used to cap­
ture some implementa;tion deciJion.. s. T.lhe latter tW9. dist;U.ss. ex.tensively
how to transform abstract models to concrete implementations.
In Rumbaugh, impletnentationis discu$$ed in d~tai]. In addition, atten­
tion is paid to perform.ance, stot~e con$ideratioIls and theallo(:ation
of components of the system to processors.

~ Analysis ] Daign IImplementation ~

Boocll • •
B111tr • •
HOOD • •
Rumbaugh • • •
Wir!~Dr()Ck • •

~ Method

Figure 10: Covel"age of Lifecycle

4.3 Process Properties

A process snouldbe repeatahle~dflexihleso tho.t it can be 1'e¥se<.i And aclapted
to meet loealrequirements. Each pmcessstepJDUst be~iJl. tenns of its in-
puts andoui.Puts,.or in some.•er....w.&..:Y'. Since... one I....• may..•JttO.• duce an input for
aIlotherstep1 there are usually mn&traiDtson the orG. in"hleb the steps can be
tac.kled.However aprQceB$ <lefipj~ion should not force UIUleee.tWl'.BequentiaHsa­
tion. V\'herever possihl~ it should .now steps\<> be ovet'l6pped in time, in order
to explo.it potential par.allelism i.n. the devel..op~t. SimilatlycleliV'erables should
not be tied topatticular notations beQ.use this makes it ditlicult to substitute
alternative approaches for pwticulw activities.

Art the process steps well-defined?
Is the process ftexibli '?

13



The adaptability of a process can be improved b}' the inclusion of guidelines, or
hturisW:s. These provide a meanS of identifying common situations and tackling
them in a previously used way. They should help to identilv when it is appropriate
to perform a particular adivity and how to begin the acti.vity.

Are thert hwri8tics?

The reasoning behind the decisions embodied in an implementation is invaluable
during software maintenance. It is important therefore to be able to trace the
connection between requirements and implementation. Traceability is aided if the
deliverable from one step is explicitly refined or developed during some subsequent
step. Naming conventions can also belp by indicating r~lationshipsbetween models.

1$ it possib/[ to locate the origin of design dectswn.smadf during the
dft1tlopmenf?

A process should provide medlanisms to fJtril1l thl.t an itn~lementation meets its
requirements. Verification involves demonstr.tinr; tb.•t .at tdiphase the models art'
consisten. 'f,Hh each other and with those from· the ~()U$phMe. This requires
steps which show consistency by iJJ,$pectlons, testimg or proof.

DOE s the process provide jor I'erifica.tion f

A precess should also include steps {or t1alitlati,,,g whether a development meets the
customer's needs. This can be done~hrp~gh t.he C()llJttu(t~pn of executable models,
e.g. through simulation or the useof prototyPes, or by tl&i~g notations which allow
the properties of models to be deduced.

DOf;stht: proces.s pr(wide for vGlidation'l

Evalua.tion:

Bubr presents the under1yiD.gpJ:tilo~hsyc>fh."'.p~$...nd presents
two variants.. The spiralpro¢eS$ •...~ 0,.~ •• loeIelydefined.
It is. des...cribed.. as a set of steps wlJi<ialthot1lh tbey -rted in a
particular order, can &dually be applied in a.umBer c>f' ·..ent ways.

Wins-Brocli 's and Rumbaugh'smetbods provide many usef1.1lheuristics
to guide the development process,
Most methods work by successivere&aemeat of the¢.luses anJ;i objects
so it is therefore possible to trace the evolution of a m.jgn. HOOD em­
phasises traceability and verHieation of designs at the expense cf flexl­
bility. It mandates the verification &Dd documentation of intermediate

14



designs before proceeding to further stages. The many complicated
relationships between the different diagrams used in Booch's method
could impede verification of design steps. In contrast. the relat.ionships
between the diagrams in Rumba.ugh are explicitly discussed.

Rumbaugh 1U)d Wins-.Broc,... etnPhasi&e.>.the use of.scenario w.-alkthroughs
to validate the models. Doom recommends prototyping to validate
design.

Method W~lI-defined Flexibility llelUUti¢s 'IT"ell.bUity Verificat.ion VAlid6tion

Beech • • • •
Buhr • • • •
HOOD • • •
Rumbaugh • • • • • •
Wirl"'·Btock • •• • • •

FigurE! 1l: Proce$s Properties

5 Pragmatics

There are many pragmatic concerns that influence a methods uptake in the software
eng~neering co;nmunity. The.. se.•. con~n$.·.(:&1l.···•••. pe divi.ded in.to two.~ategories; t~<.>se
having to do WIth the human-meth()d mwactlon and those pertatntng to the ubhty
of a method in a particular application domain. Within these two categories further
distinctions can be made between those properties that are intrinsic to the method
itself and others that are ~t~al apd possibly even transient in nature. The
evaluation for this section appears at the end.

5.1 Resources

A concern when considering which method to ad()pt are the variety of resources
available to support ., itsmUOQllctiol;1 ~4use. A eeurse is oft.en an appropriate
vehicle for theilI'st introdl.lction_ A tex:tb(K)k J'Q&Y be sufticientfaf more experienced
developers and can ""easamference4~t_Other discriminants far a method
include whether it is support~ byDlOte tIlan one wnsultancy firm or CASE vendor.
Similarly theexisten·ee of u_gro.••·••.•• l).J)$, .'-"ops ADd conferenee tutorials tend to
suggest that a method i& in~p~ ••e.

"'hat teeoorcee are available to support the method?

No matter how straightforward a method is, almost all projects beyond a certain
size will requir.e some fonn ()f tool support to assist the development of analysis
and design models. CASE tools can be distinguished by whether they provide
s)-ntactic or type checking. Semantic processing is also desirable; simulation, code
generation and proof tools fall into this category. In general the existence of CASE
tools encourages the development of defa.etostandards for the method.

15



Art Hurt CASE tools atJailable to support the method?

5.2 Accessibility

Usen are also ccaeeened wi~h how difficult it is to learn to use the method and once
learned, how usable it is. The batkground required of the user must be taken into
account. A distinguishing characteristic of methods is the level of mathematical
sophistication required to use its notations.

5.3 Apptic.ability

A method that is targeted at a particular implementation language is likely to haw
limited applicability, since it may not fit well with languages that have a different
underlying semantic model.

Ie fht method targetfd at a specific languagf?

Methods rna;y be restricted to certain appliCAtion domains. aUlnb~ugh et aJ [81 gh-e
the following list as a stiLTting point for what areas a method might r~nabl~' be
expected to address:

Bat ell· A data transformation executed once on an entire input set.

Continuous transformation ~ A data transformation performed continuously as
inputs change.

Interactive interface - A system dominated 1)y external interactions.

Dynamic simulation.. A system that sirnulates evolving real world objects.

Real-time system ~ A IYstem domina.ted. by&trict timiag ooa!Jtraints.

Transactlon mana.ger ~ A systemoon~ ·'Wt... ·thsto....d updating data, often
including concurrent access from dif~ntPhcYlli¢8.l loea.tions.

Distributed system - A system subject to communiea.tion latency_

For what 4pplication areas is the method suit4ble f

16



Enoluation:

Currently, there is no HOOD textbook available although courses are
readily available from many EUrQpeu1 CASE vendors. We do not knov.·
the current availability 0.£ courses for the other methods.
\\'irfs·Br9ck is the mQst a<,.&tble method as it is based on common
sense and there isno1. muchp~"'eadto lewningit. Buhr's quirky
vocabulary ma~' provide a leat_i_,urrier to some.
Tbe Hooch method is lanpaaeia~4_t,a1though use orapartic­
ular target language will determine which of the features ClJIhe used.
Rumbaugh discusses iItlplem@.tation in object and non object-oriented
languages in detail. Buhr"s tnetllod .di$cus8es implementation in Ada
and is particularly suited to U$e i.thet~,.;time domain.
Since \\'ids-Brock 's~thodd~notdeil] explicitly with object creation
and deletion, it provides no notation for expressing storage management
during design.

Both Booeh and Rumbaughpr~ent e.e studies from a vwiet)' of de­
main areas. Rumbaugh also provmes a discu$sion of the .pplication of
the met hod to the areas eI1umerated above. Buhr is aimed at real..time
but is generally applicable.

MeJh<;d Col.ttSC Book Tool Acc.-ibility Lu£uagt' Domains

Beech ? • • • iadependenl •
! Buhr ,., • • • Ada te-.!-timt'

HOOD • • • Ada •
Rumbaugh ? • • • independent •
Wirfs-Brock ? • ? • auto 5tOtll.lt'mg1 •

Figure 1.2: Resources and Applicability

6 Conclusion

We have presented a set of criteria t'orsystematica.J.ly compwing methods and have
applied them to flve object-oriented a.na.lysisand design methods. From theevalu­
atiens we conclude:

The Booch method fully supports object-oriented concepts. The notation used
is scalable for large developments, although it is somewhat verbose. The
method is weak on process and con¢entrates on design and implementation.

The Buhr method is package based and omits inheritance. Its notations and
vocabulary arc comprehensive, but quirk)'. Its process is wen-defined and
flexible. Buhr is focussed on the design and implementation of real-time
systems.

17



The HOOD method is package based and omits inheritance. The notations are
well-defined. The process provides a rigorous and transformation.al approach
to design" The level of definition makes it suitable for large team develop­
ments.

The Rumbaugh method fully supports object-ori~tedconcepts. The notations
it uses are concise and are oorrowed from SA/SD and Harel. The process is
well-defined ami covers analysis, design and implementation.

The Wirf's..Brockmethod fully supports object-oriented concepts. The process
is exploratory and informal and is thus suited for the indh>idual developer,
rather thant.he largetea.rn. The method is appropriate for analysis or high­
end design.

The evaluations ha;vehitdighted similarities and ditferences a.nd this may suggest
ways of Cl:>mbining rnet()ds to deal with pa.r~icular classes of applications. For
instance, attemptin, to. s~'nthe~ise the Witfs~Brockand Buhr metbods might. be a
suitable starting pomt for producing a method for theanal~'5is, design and imple­
mentation of object-oriented real-time systems.

Our evaluations have convinced us that the criteria we have used are workable.
thou.gh not without flaw.s, In particular, the process properties criteria ha..'e p.roved.·
to difficult to ap.pl)' in an objective manner. We would like to eacoura~e others to
use and improve.the crite.tia.. by ap.plying them to other methods and we are keen
to receive feedback on an)" such efforts.

18



7 References
[1] G. Hooch. Objeci.Oriented Dfsign 'With Applications. Benja.min Cummings,

Redwood City, CA (USA), 1991.

[2] R.J·.A. Duhr. Practical Visual Techniques in System Desiqn:tliith Applications
to Ada. Prentice Hall, Englewood Cliffs, NJ (USA), 1991.

13] P. Chen. Tbe entity·relationsbip model - toward a llnUiedview of data. Ac.,.,
Transactions on Database Sysl.tms, pages 9-36, Marth 1976.

[41 D. Colell1a.naAd F. Hayes. Lessons from Hewlett-Packard's experience of using
object-oriented tE'cllnology. In TOOLS 4, pages 327-333, Paris, 1991.

[51 Harel D. Statecharts: A visual formalism for complex $Ysterns. Scitnce o]
ComputeT Programming. 8:231-274, 1987.

[6) T. DeMarco. Structured Analysis dnd S1/81em SpeCification. Yourdon Press.
New York, NY (USA), 1979.

[7]1:I00D Technical Group. HOOD reference manual, O<.:tober 1990.

[8] J. Rumba\.lgh. M. Blaha,Vl. Premerlani, F. Eddy, and "'.Lorensen. Object­
Oriented Modeling and D£sign. Prentice Hall, Englewood Cliffs, NJ (rSA).
19tH,

[9] P, \\'egne1'. Concepts and paradigms of object-oriented programming. OOPS
AhsSfTlgtr, 1(1):7-87, August 1990.

[10) It Wirts·Brock, B. \Vilkerson, and L. Wiener. Designing Object-Oriented Soft.
t/JQrt:. Prentice Hall, Englewood Cliffs, NJ (USA), l~O.

(11) E.N. YOllroon and Lot. Constantine. Structured Design. Prentice Hall, Engle­
wood Cliffs, NJ (USA), 1979.

19



A Booch

A.1 Concepts
Objects and Classes In Beoeh's method an object is sometlUJ;\g which has iden­

tity, state and behavio\1r. A d-.st is .. templAte for a set or objects which share
a common structure and behaviour. A generic class is a template for other
classes. Booch'8 method e.IJo providf$ for meta-classes. Note that there is a
single icon for All thelH' de.sse$,.4Ieneric or meta-dusesare distinguished
by the relationships they participate in.

Inheritance ~ch~upport.s t~e i~it..uc~"~ionslli'p.He separates the notion
of subtype mhentance, whIch $t~ply j)laces cOnstramts on the 5upertype, from
derived inheritance whichint~ a ntw type.

Visib.ilit.y Booch provides.a $etleraJ Use r!lationshi~ w~ith .isspecia1ised into use
in interfece and uSe in lnlplementatlQn.. USe}JiI mterface means that used
objects are accessible as parameters where~ use in imPlementation means
that the use of the objects isentirel)' hidden in the using class. It is also
possible to indicate whether objects which intl'fact are wsible by one being
a componentof the other, or being passed as a parameter or being in lexicel
scope,

Lifetimes Objects which are persistent can be indicated in the template either
for an instance or, if all instanc(lS are to be persistent,.in the class, Creation
and destruction of objects tan be ~ptt1red u part Qf the dynamic: model in
a timing diagram.

Concurrency. Objects which can have their own thread of control can be labelled
as actZtlf in the diagrams. The method does not address the issue of internal
object concurrency.

Communication There are five types of message passing:

simple For sequential systems where the message passing is based on proce­
dure call.

synchronous. The sender will wait, possibly indefinitely, for the receiver to
accept the message.

balking The sender will abandon the operation if the receiver is not imme­
diately ready to accept the l.1leSsage.

timeout The seader will a.bandon the opera.tion after a specified amount of
time if the receiver isn't ready to accept the message.

asynchronous The sender will send the message and continue regardless of
the state of the receiver.

20



A.2 Notation

Booth uses six basic diagrams made up of a small set of icons. Many of these icons
can have additional anDotatiollsfor ea,pturing more detailed design information.
This makes the notation very detailed.

Class Diagram (CD) A class di~am shows the existence of clU$f'S and the
relationships between them. Class diagrams can be organised into chunks
called dass.•.·.·e8., -:h.ic.·h. cAtt· make co~li~ed.~.•.diap.·.ams simple to
understand.~laBsd1~am 15 part of the logtcaJ deI.pof a system.

Object Diacram (OD) An object dia.gJ'&mshows the existence of objects in
a system and therelatienships (I.e. messagepassi~g) between them. The
mechanism by which o.ne object can PASS messages to another can be denoted .
These indu.de COtt'lponent, parameter or lexical scope, It is pan olthelogical
design of a system.

State Ttansi~io!lD.·ia~altl.<.lTD) The state tr~nsjtiondi&gram.•• snows the st ate
space pf aclass,the~ts that cause transltJOnS from one state to anot her
and tht> actions triggered as a result of state changes. It i$part-mthe dynamic
model.

Timing Diagram (TD) Timing diagrams are used to sh.ow th.ed)'namics of mes­
sage passing in. an object diagram. There are three notations suggested ~.or
this: enumerating the arcs of an object diagram, pseudo code and timing
diagrams similar to those used ill hardware to indicate the flow ofcont 1'01
between obje<:tsand methods.

Module Diagram (MD) A module diagram shows the allocation of d~ss~s and
objects to modules. Module diagrams can be broken up into chunks called
subsystems, which can.be.used to make complicated module diagrams simpler
to understand, A module diagram is part of the physical design of a system.

Process Diagram (PD) A process diagram is used to capture the allo<:atiollof
processes to physical processors. It is also part of the physical design of a
system.

Many of th~ icons.used. in.. the di~rams have u~ci~ted templates whieh are ,,!1le9 to
store non-dlagramm.atlc 111formabon about the entIty, such ¥ a textual description.

A.3 Process

Booch advccates the use of a spiral development modeL The steps performed for
each cycle in the spiral are:

Identif}'ing Classes and Objects This step concentrat.es on identif~'ing the key
abstractions in the problem domain, and the mechanisms which will imple­
merit the req~ir~ functionality. The products can he as vague as a list of

21



classes and methods or a formal as complete c.lass. and ob.jed diagrams, This.'
step would make use of techniques such as domain analysis to perform the
identification.

Identi.fy Semantics of Classes and Objects This step focuses on the classes
and.objects identified in the previous step. It inv.olves i«kmtifying the prot.ocol
for the classes and objects. The products will be refined versions of the
templates and diag.rarns from the previous st~p. Boochsuggests trying to
describe the lifetime of an object from ¢teation to destruction, including the
characteristic behaviour.

Identify...• · Ilela.. *.Ion.shi.ps ..be..•.. t.. Jl'fee... n c.·.J•.•e.'..• a...•4....0....•·.•.•.... Pi.<·ee.•..cc...•.....1*'.. T.h.is step is an exten­
sion of the activit,ies of tile pr~vious one. Re1",t_hi~ .between classes are
identified and. the drnamic.. seman..•.• .ti.c.s of. the. k~..••... tIleC.han.. ·. 1.8ms established.
Techniques such as CRCcardsare advocated .,. thiss~p. The product
of this step will be a complete locical design ofthe!iy$tem.

Implement CI~sesaud Objects Th~$step invo)v.tnaLking implementation de­
cisions about the logical design, including a1locationof classes and objects to
modules, processes to processors etc. Note thAt implementation is used in a
rather looseway hEfte. Clanesat .~level Qf ..~~_jo1';l are implementfd by
classes at a lowerlevel,not ~Mily .1>-y progratn<»de. The products are
a refined formo! the logical desiln and somee>f thffphysical design of the
system.

22



B Buhr

B.1 Concepts

Objects and CIa.es The rnethoddeaJs with design for Ada rather than object­
oriented langua,ges. The term that is used is boz, which is an abstraction
of an instance of Ada package,. i.e. an ene&psulated data type. Thus Buhr
is a package-based method _, the diagrams used in Buhr denote pa.ckage
instances rather than cl-.sses. Pa.cb.ges e&n be par.J;'Xleterised corresponding
to generic Ada packages.

Inheritance Inheritance is not dealt with.

Visibility Different kinds ofclient/server relationships are supported. There is no
notion of scope; but objects can be shown as components of other objects.

Lifetimes Objects can be dynamically created and deleted. Persistence is not
covered.

Concurrency Active andpatsiveobJectsare covered, including semi~a<:tive ob­
jects. sl,1ch as monjt()rs.The~ve objects havt> tht>semantks of Ada tasks,
Emphasis is placed on the design of interfaces and efficient mutual exclusion
and synchronisation structures.

Communication There are two levels of interaction between objects; events which
are abstract and used dunnr; prelimin8.l1' design and visits which are concrete
and used during detailed deaign.
Events indic.a.t.ewh«t interact~ns hB.pp~n withQut conu:njt·ment to bou: they
take place. They abstract Away from a model of syn~rQnisatiQn; however
the communication is reliAble, no messages get lost. The event model is as
follows:

• An event js A Il••d, ~"tr~t ~it of communication hetween objects
that is independent of the tOJ).C1'ete interface details of the objects.

• may ha.ve data associa.ted. with it.

• an event defines I:nmtMl;(;tk>n path between two objects, with source
and sink ends.

• the temporal aspect of ~ event defines points on timeliaes when the
event is souteea and Stink.

• Event $Ourcing and linking take place instantaneously but p08sib1)' take
some time to trusfer betWeen timelines so that sourcing and sinking
times may not be identical.

During detail~ design the notioll of visit is used. A visit is &r1 abstraction of
method (i.e. 'Procedure)ceill, Ada tend~vousetc. One object 0si1.$ I:nother
object in order to obtain a setrit.e <>t .....it for $Orne occurreace. Visits are one­
to-one (Le. when a objed: is Yitit~ it cannot be visiting elsewhere at the
same time). Visits trilleJ' computation in another object. The vilit concept
covers:

23



• Method call in which the computation is performed immediately and the
visitor leaves when it is done.

• An Ada entry call, which is like a procedure-call except that it requires
the active cooperation-operation of an acceptor to complete.

• Both synchronousand G$ynchronous communicatiol1. betWeen objects are
covered. Thougbasynchronous c&mmuaication l'tlquh-. impli¢it buffers.

The same event can 'be implemented by many diferent visiting paUerns.

B.2 Notation

Diagrammatic notations are used to give abstract models of Ada programs:

Structure Chart (SC) is a static model of a system that shpws the intercon­
nection between objects. The design l'roce8ssuccessively refines tllestructUTe

charts to give more information about interfaces and subsystem structure.

State Tran&ition J)i.,raln& (STD) are 'Used to livt! a dY11ann~ mod~lof ob­
jects at the abstract structure chart level. Bubr ~s~heu~Qfflarel"s
Statechari $achines but does n.ot use them in the bOOk. The transitions are
events and actions are informallJ specified in .natura1~u.e or a MeL (a
high level pseudo-code).

Concrete Struc:ture Cbart (CSC) is an output of the desip process which
shows the names, data flows, and mutual exclusion ~uirements associated
wHh the il1terfaces ()f each object are shown. The internal details of each
atomic object ..re shown by MeL pseudo-(:ode. C<ntcteteatructure charts are
a kind ofgraphical Ada.

Abstract Controller Machine (ACM) is a. state machine together with map'
pings betWeen events. and concrete visits that can be. ~~t() model dynamic
object. behaviour a.t the concrete structure chart level.

Timeline Di_S1"ams (TD) which .how sequences of event fto'ws between com­
ponents are used .to DjOdel the dynamic liehaviourof as)'stem•.Their concrete
analogue, visit scenarios, areuaed at the concretestructv:re chart level.

B.S Process

ThE.' method covel'S the design and implemet.ation ofgreenfieJ.d developments.
Analysis is not covered at all. Some consideration is gi\'eD to the design of reusable
Ada packages,

Buhr advocates an overall design ,tte.t~ whichp~s jointly ill the temporal
and structural domains, paying attention firat to.externa.lapectsm each, and then
to internal ones, while.deff1lTing details of ftmctionality (in. other words leaving it
in stub form). Design is performed in two 'tiles:

24



Pr~Uminary D~sign

Partition system under design into subsystems (possibly recursively), informally
allocate functionality items to each, and explore the nature of the interactions that
need to take place among the subsystems to do thefooctionaJity, while deferring
details of both function.aHty and interfaces.

Deferring interface details is important bee-use the underlying Dature of the inter­
actions needs to be explored first, to ensure that inappropriate overheads are Dot
built in at the interface level.

Recursivedecomposi~io~ can ~roeeed b~:infonn~ly·doingpre1iminary design through

:ble~7;::\"~::t· ~e~~~ll~fn::~,hd~r::a~i1i:b:~~:;k= t=lte:S~~:':~a~~~
Detailed Design
The interfaces are first made concrete to meet the needs of preliminary design.
Then the internal details are fixed to achieve the desired temporal and functional
behaviour.

In more detail, the steps of the design process are:

Prefiminery Design

1. The first realisation of a design is called an abstroct structure chart. It shows
event flows between faceless black box objects. A faceless object has an
interface which is yet to be defined; all that is known is its input and output
event alphabets.

2. Explore temporal behaviour by showing event interactions on timeline dia­
grams. Show different scenarios for how the system behaves. These may be
considered as an abstract form of test-ease generation.

3. ~~~:~~~j~f~I's~i~:s~~daih::~lhea::~;:c~~~~In:ahZi~d~::~J~hb;' :~~~i:;
the event scenarios.

4. Concurrency Commitment and Pla.cement. The abstract structure chart is
refined to show which objects are active. A box amtaining a parallelogram
is used to indicate an active object.

5. The recursive decomposition proceeds throuah a.lll~velsuDti1one arrives a.t
a point where primitive internalma.chinery (i.e. engines) is required.

Detailed Design

1. The concurrent structure chart is further refined to show how the event flows
have been mapped into visits. Each event flow is mapped onto a "channel"
which shows the mode of communication. That is whether the same object
always initiates the visit and whether the communication is synchronous or
asynchronous .

25



2. Resolve interface mechanisms by showing the data flows for each visit. At this
point the concrete structure chart shows the external details of each object.

3. \7isif SCf?llari(f)s art' used to confirm that the expected ten1poral behaviour will
occur. Threaded visit P&tterns can be dr&wn on concrete structure charts.

4. C01U:rde Stntduf'f Charts (internal). At this point decomposition stops.
Pseudo-code or abstract oorttroller fU;ch'.es are used to define the behaviour
of atomic objects.

This design process adopts astruct1oll'e 6f$t approach to deiign. Buhr also shows
how it is possible aaopta temporal behaviour·first approach.

26



C HOOD

C.I Concepts
Objects and Classes An object in HOOD is an entity that has internal state and

provided and.·.•• ·· required op.erations. A olass is a templat.e for objects with t;rpe
and data parameters. Cl&Sses m&:l' be generic.

Inheritance HOOD does not supp<Jrt inheritance in any form. Partially defined
objects like abstract objects are refined during design.

Visibility There are two relationships in HOOD - USf8 which is t.he die... nt/server.
relationship and ,ncludes which is an aggregation relationship used during
design.

Lifetimes Object creation is supported by clue; instal'ltiation. Object deletion is
not considered. Neither is object persistence handled.

Concur~ncy Obj~ts may be active or passive. Act.ive objects can beinternall~'

C()DCtll.'rent with many threads Qf control. However, HOOP dOE$ not have any
mutual e~dusi()n mechanisms.

Thet!irluai node object, representing a node in a distributed system, is used
for distributed systems' design.

Communication HOOD define; five different asynchronous and s)'nc.hronous com­
munication primitives:

Highly synchronous the call is to an active object. The client is suspended
until the calltetuTDs.

Loosely .synchronous the <;allis to an active object. The client waits until
it receives an acknowledgment from thes~er.

Asynchronous the client continues without sutpension.
Timeouts the client requests the server to respond within a certain time

limit.

SYJl~hJ~ol)ous which is procedure call to passive objects.

Rules for mutual message passing md C)'die eaUs are defined.

C.2 Notation

Object Definition Skeleton (ODS) which is a template for denningeach ob­
ject - its provided and required operations and its internal state.

Object ControlStrueture <.OBGS) This is a description of the synchronisa­
tion between the provided op«tJ'&tions mdfor asynchronous events for active
objects. The standilrd notation uses Adil rendezvous semantics although state
machines are also mentioned for this.

27



Operation Control Structure (OPCS) This is a descr~tion of the implemen­
tation of each operation for the primitive objects in the system. The excep­
tions, both raised and handled, the pseudo code and the other operatioXls
called in an operation'8 impJel11etltation are defined.

The features of an Obj~t De&1itiQn Skeleton~ alto ile· shown gaphically. Each
field in the Object DefinitiGnSkel_on isdeined fotm&1ly inBNF syntax. HOOD
aims to allow smooth successive transformations from high-level design. toimple­
mentation. The semantics are described by example.ad &lsoin a set of consistency
rules for language constructs.

C.B Process

HOOD spans high level desi through to implementation. The process recom-
mends using structured t eslJucnasSA/SD ot SSA.DMfor analysis although
no support is given for transfi 'ng the output of analysis to HOOD.

There. are two phases in HO()D design: uthitectUl'al de$ign a.nd detailed design
with implementation. The ,oal in architecturaJ desip is a complete definition
of the system with object definition skeletons for alltbeobjects in the system.
Detailed design is co·u~tned Vlith tranttfotmingt.be HOOD description into the
implementation language i.e. Ada.

The design strategy jstop~doWD and proceeds by object decomposition. A par­
ent object is decomposed into a set of component child objects which compose to
provide the functionality of the patent.

The process of decomposition statts with a root object whith is an abstract model
of the system to be d~igned.Each intermediate object is decomposed recursively
until the bottom level primitive objects are defined.

Each step has four parts:

Define the context of eacbobjeet define the interface of thepa.rent object,

Produce initial decomp.ition. dd.n.e pot...•. ·$tial. child objects ud explore how
they eombme toprm-ide.tbe~t functionality.

Define the child obj~ts' in~ees complete the provided and required oper­
ations definition for each chUd rspectingthe decomposition rules,

Define the cbn~.object8'ob,iee.tdeftnition .keleto~ complete the child. ob­
jects' defintbon. Delaetaemtem&1 state, taeobject control structure (for
active objects) etc.

The steps in detailed desigu are as follows:

• complete all type, data and exception declamtions {or each operation

28



• r~fil1e e"choperation control structure into (Ad.l"\lt4G(l~

• 'fodu~e·a designpFot&typemakoing the activeebjeclS into subprograms

• incorporate th\' Hbrar)'objoots needed for t.be system

• '<"t"leti}~'«!' Adac<Jd(' {or eamQi)jeet



D RUlnbaugh

D.1 Concepts

Objects and Classes The method supports objects, classes and metaclasses,

Inheritance The method supports bothaiugle and multiple inheritance as well as
a number of properties such .a$ whethfU" subclasses have overlapping features.

Visibility The method provides a rich set of aggregation primitives including reo
cursion.

Lifetimes The method provides minimal support for object creation, destruction
and persistence.

Concurrency The method supports the exp.ression of inter and intra object eon­
currency.

Communication The metbodemploys an asynchronous model of communication.

D.2 Notation

The method uses three notations to capture Object, Dynamic and Functional mod­
els of the system:

Enhanced Entity Relationship (EER) wh.ich captures the main entities of
the system under development and their static relationships.

Harel Stateehart (HSC) which captures the sequences of events, states and
operations that occur between s~'stems of objects.

Data Flow Diagram (DFD) which shows the flow of values from external in­
puts, through opera:lions and intern&.l data stores, to external outputs.

Various structuring mechaaisms for thedi&Jiams are possible: object and event
classes can be arranged inioa hierarchy, state transition and data Bow diagrams
can be nested.

D.3 Process

The methodology is presented as consisting of thr. phases: ana.lysis l syliltem design
and object design. The iXlput to analysis isa problem statement and the output is
a. formal model that captures the objects and their relationships, the dynamic flow
of control and the transformation of data. With the formal model as a guide l the
system is organised into subsystems during system design. During object design,
the analysis models are refined and optimised.

30



Arialysis

In analysis, models which focus on different aspects of Whal the system is required
to do, are developed as follows:

Object Mod~l From the initial description of the problem, identify objects and
classes. Prepare a data dictionary which consists ef desC1lptl()jlls of ~ach class.
Iden tiCs associations between classes and class a.ttrihutes, Orga.nilw classes
using inheritance. Iterate this process eliminating redundant da..o;ses and. as­
sociations.

Dynamic Model Write out scen4rlQ8 of typkal intera¢ti()jn ~u~ces,Identif'y
events (signals, inputs, decisions, etc. to or from users otextema:l devices)
in each scenario. Show each scenario as an eVf11i trace (ET) .. an ordered
list of events between different objects. Show events between agroup of
classes in an event ft()U~ diagram whicll summarises events between classes
disregarding sequence. Arra.nge events pertain.ing to ea.eh object in a staff
transition diagram.

Functi<>nal Model Identify input and output "alu~(par~tersofevents be­
tween .system and outside w<>dd) {t<>rn ,robkm;l"at~t. Const.ruct data
!iouldio,gram.ssnowing. how each <>ut-put value is <»mpu.ted~m input values.
'Writeadescrifllion of each function. IdC1tif, con&ttaiDtsl.letween objects.
Specifj' <>ptimisation criteria.

Refinemen.t The models are verified and refined iteratively using more detailed
scenarios.

Key class operations are determined fr<>ffi the models as follows:

• Object Model - reading and writing attribute values and association
links.

• Events - an event sent to an obje<:t corre$p<>ndsto an operation.
• State Diagrams - activities and actions mal' be operations.
• Functions - a function in the data flow diagram corresponds to an oper­

ation. on an object.

• Real-world behaviour of classes.

System Design

System design involves deciding on the organisationaf the system into subsystems
and the allocation of IUbsystems to hardware and software components.

The steps in constructing the system design are:

• Organise the system into subsystems.

• Identify concurrency-

31



• Allccate subsystems to to processors and tasks.

• Choose an approach for man~ement of data stores (e.g. files stores or
de1a bases ) and global resources (e.g. Phi'sica) units such as processors, space
such as disk space, logical names, and shared resources such as databases).

• Choose the implementation of contfOl: event driven, concurrent systems or
procedure driven.

• Handle boundary conditions and set tradeoff priorities.

Common architectural frameworks are discus$~, ..long with the relevaace of the
three models. The output of this process is.nortnl.\.Uy a sf/stem architectuf'f: diagram
(SA) which captures the static re1ationshipsvetwettD the major subsystems.

Object Design

Object design involves further refinement of theinitiaJ models to address the re­
quirements of an execution envu-onmenL

Classes are carried from analysis into design. As the design phase proceeds, classes
rna)' be added or btokenupfor eficieat;y, T_e class sttueture may have to be
adjusted to increase iaheritu¢e.by~ta¢tbJ..Q)~n 1Mh.viour out of groups
of classes or using delegation wllen'. iJdl.i*'fAce i$-...n~icaUy inva.lid. For each
object, the representatioD must becll.eDi tAQi_ i..q....~ --m. primitive types or
other objects. Object associations must be d.~nedt.iDginto account traversal
direction and multiplicit),. Then algorithms to smplement operatioD~ to optimise
measures such as ease of iInplementation, understandability and performance are
designed.

32



E \\Tirfs-Brock

E.! Concepts

Objects and Classes Both objects and classes are su,ppoTled with standard def­
initions.

Inheritance The method supports single and multiple inheritance, abstract and
concrete classes.

Visibility The usingrelati()nshi.p is supported.

Lifetimes There isno expticitcJliscuuwn in the method of the lifetime of object
instances. Conseq'lfently there is no support for managing dynamic object
creation and deletion. It is implicitly asst)med that instances can be created
and destroyed as. requi~.
Object persistence is not supported.

Concurrency No considt:rati9B is given to whether objeets are active or passive,
and thus nosu.pport is providH for concurrency.

Communication Communication between objects is only discussed at an abstract
level and uses the client-server model. No detail is given on whether the
communication is synchronous etc,

E.2 Introduced Terminology

Responsibil~tii•. Thekn()WI~~e.·-.obJect maintains; the actions an object per­
forms. The ftrstoftheaeis~n~into attributes, and the seeond into method
signatures.

Collaborations Collaborations represent requests from a client to & server in ful­
fillment of atlitntl'es)'>ODsil>ili:ty.

Contract A set of requests that a client can make of a server. The server is bound
to respond to these requests.

E.3 Notation

Class R~ponsibilityOoll8.b~ratio~JQR.C) . cuds are.used throughout the
design process to record lnfQrrnat.10D relatmg to classes. Ona C'RC card,
its super and sUbe~~~~td~uwen a-sthe r~PQ~bilitj. of a class,
together with coUaborato..r clas$eS. Towards the end of the design proeess, the
CRe·card is develeped into 8. classspeeification.

33



Subsystem Card (SC) On a subsystem card, a short. d($criptior:l of the sub
system is recorded. Contracts required by clients external to the subsystem
are noted together with the class within the subsystem which supports th«
contract. Towards the end of the design process, the Be <;,~rd is developed
into a subsystem specification.

Hierarchy Graphs (RG) are a standard representatiQnfor inheritance hierar­
chies. Single and multiple inheritance can he denoted as well as concrete and
abstract classes.

Venn Diagram (VD) are used as a tool to explore and .refine inheritance hi­
erarchies. Each class is viewed as being a set of resPQusibilities. Common
respon.sibilities are drawn in the overlappin~ part of the venn diagram and
independent parts in the non-overlapping parts.

Collaboration Graphs (CG) are a notation used to displ~y and analyse the
paths of communication between classes. In coUahOtati<)n graphs, classes.
inheritance relationships, contracts and collaborations ate represented.

Contract Specifications (CS) are templates in which the details of the con­
tracts are filled out. A contract specification contains the name of the server
and clients which collaborate to fulfill the contratt, as well as an informal
descnptiQn of what the contract does.

E.4 Process

The proc.ess is presented as a set of sequential steps, but it .i$c.tearl~ a.tkno"'ledged
that design is an iter.ative a.. nd incremental activity, The method.•... stron...81j' ad..voca.. tes
'walkthroughs of scenarios'. These&l'8 performed for two ~s. Firstly they
entail exploratiouof the domain area, t)lus hel~ing understanding. Secondly they
can be used to check that required behaviour of the system has not been omitted.
Walkthroughs can be done at any time during thepro~s.

The assumed input to the process is a naturall~e l*}uirements.specification
and the output is:

• A graph of each class hierarcl1y

• A graph of the paths of collaboration for each subsystem

• A specification of each class 1

• A specification of each subsystem

• A specification of the contracts supported by each d_ and subsystem.

1 In this coatelCl.,apecifieatjon _CIll't.ain~Ion rec:orded abOut the~ fOr.~ its hpU and
aub-clas"'es, and fer eac::h_pon$ibility... method aipatuno 'toIethtlT with .. deacriptlm or lfu- beb..vioUl' ()f tht'
method

34



Thr-ma i fJ ~t (,p: in t!lf' profess are identified as:

Exploratory phase

• Identifying the classes
The main approach advocated here is noun phrase analysis.

• Identifying the responsibilities
Techniques mentioned to achieve this are: recalling the main purpose of the
classes and verb phrase analysis.

• Identifying the collaborations
C:ol!ab.orat.ions a:e found by going through all of the responsibilities and iden
tifving which objects are needed to fulfill them.

Refining the design

• Building and refining class hierarchies
The class hierarchies are reviewed and improved. Abstract and concrete
CI<l.c.SI,'" are identified.

• Ident ifying the subsystems
Subsystems are a sets of classes which collaborate closely together to fulfill a
set of responsibilities. Subsystems should form good abstractions of compo­
nents of the system.

• Constructing the protocols for each class
In this step) the responsibilities are refined 1»toa sets of protocol signatures.
Then a specification is written for each class, subsystem and contract.

35




