1 Introduction

Experience of the industrial use of object-oriented technology indicates that a dis-
cipﬁned software process is the essential factor determining success [4]. Key com-
ponents of a software process are systematic analysis and design niques. The
first efforts at employing such techniques for object-oriented software development
attempted to use traditional methods such as SA/SD ({6] [11]). However it rapidly
became apparent that object-oriented methods were necessary because methods

based on the functional decomposition of a system clash with the object-oriented
approach.

Recently there has been a profusion of object-oriented analysis and design methods
coming from a variety of backgrounds. Some, such as HOOD [?‘]] and Buhr's [2]
are targetted at the ADA community. B’oo(:h’s£} method is similar but has been
extended to make it more truly object-oriented. Entity-Relationship Modelling
[3] is the basis of methods like Rumbaugh’s et al. [8], whereas the responsibility-
driven method of Wirfs-Brock et al. [10], stems from an operational view of object
interaction.

The question that naturally arises for the practitioner is which is the appropriate
method for the type of development they are engaged in. This paper evaluates the
aforementioned methods by scoring them against a set of criteria. It is not the
goal of the paper to answer the question “Which one is the best?”, but rather to
show the dif?erences between methods and to allow conclusions be drawn as to their
applicability.

The criteria are presented as a set of questions together with some preceding com-
mentary. The aim of the commentary is to clarify the associated question(s) and to
indicate some technical terms that may be useful in framing the answer. We do not
provide definitions, except in the case of terms that may be ambiguous or unfamil-
1ar to members of the oﬁject-orienied community. We then consider how the five
selected methods address these issues. The results are summarised in tabular form,
the presence or absence of a black dot (e) indicating whether a method supports
or possesses a given feature. In rare cases, a question mark is used to indicate
that no evaluation can be made due to lack of evidence. A brief explanation of

the reasoning behind the most interesting points of comparison accompanies each
table. :

The document is structured according to the four main categories of criteria: Con-
cepts, Models, Process and Pragmatics. The conceptis section addresses the ques-
tion of what makes a development method object-oriented. The core of all software
development methods, namely the models advocated and the process for developing
those models, are examined in subsequent sections. Finally, tﬁe pragmatics section
considers non-technical features of methods such as availability of resources. We
also offer some directions for future research and conclusions.

Note In this document, evaluation criteria are indicated by use of italics.

Internal Accession Date Only

2 Concepts

In order to be considered object-oriented a method should support the expression of
those con c;yts which assume the most prominent role in object-oriented software
systems. These concepts are mostly derived from object-oriented programmin
languages. As with object-oriented languages [9], there is no universally agre
upon set of features (apart from objects) that a method should support. This
section introduces criteria for describing the semantics of the object mode] and
thus préwides a framework for evaluating the extent to which a method is object-
oriented.

2.1 Objects and Classes

The fundamental concept that must be supported by an object-oriented method is
the object. An object encapsulates its internal state {or attributes) and provides
an interface (a set of operations) for manipulating the state. The way information
hiding interacts with the type system to provide objects differentiates Ada based
methods from those coming from the object-oriented world.

In class-based methods the information hiding module, called a class, has an asso-
ciated type. A class is a template which describes the attributes and interface of a
set of objects. Object instances are produced by defining class variables.

Package-based methods separate the type system from modules by providing un-
tvped modules for encapsulating data. I a module exports a private data type
then each variable of the type produces an object instance; otherwise the module
corresponds to a single object.

Both package-based and class-based methods can employ generic modules. A
generic mocfule or class is a parameterised template that can be instantiated to
give a simple module or class. According to the method, the parameters can be
types, classes or operations.

A metaclass is a template whose instance is a class object. A class object has
attributes that contain information common to an estire set of objects of one class
and an operation to create new instances of that class.

- Is the method class-based or package-based?
Does it support generic modules and/or melaclasses?

Evaluation:

Both Rumbaugh and Wirfs-Brock were developed for object-oriented
software and fully support classes. In contrast, HOOD and Bubr are
package based. The main focus of Booch's method is class based, al-
though it does provide a notion of packages.

Booch provides generic classes and modules, as well as meta-classes.
In Rumbaugh, class maintained information can be indicated on class
icons.

Booch *) .)

Buhr k ® ®
BOOD - »
&Rumbwg}x " » ®
| Wirts-Brock | ®

Figure 1: Objects and Classes

2.2 Inheritance

Inheritance is a relationship between classes in which the features of one class, called
a subclass, are defined in terms of one or more superclasses. This facility permits
the incremental development of designs and implementations. In single inheritance
each subclass is allowed just one immediate superclass, whereas multiple inheritance
permits more than one immediate superclass.

A design method can support sublype inheritance in which the subclass behaves
like its syperclass for all the operations of the superclass. It may also support unrc-
stricted inheritance which permits the subclass to change the signature or behaviour
of operations.

Some methods allow the definition of abstract clesses which cannot have instances
and exist solely to partially define the properties of its subclasses.

What type of inheritance does the method support?
Evaluation:

All the class-based methods support single and multiple inheritance.
In addition, Rumbaugh supports a number of specific properties such
as whether subclasses have overlapping features. Wirfs-Brock devotes
considerable attention to the design of inheritance hierarchies. In both
methods, abstract classes are discussed extensively.

Wirfs-Brock and Rumbaugh recommend subtype inheritance. Booch
explicitly distinguishes subtype inheritance from derived type inheri-
tance.

2.3 Visibility

An object uses another object to perform a service by invoking an operation in the
used object’s interface. This is called the client/server relationship between objects
and is fundamental because work in object-oriented systems is accomplished by
collections of interacting objects. In order for a client to be able to use a server, the

3

Booch

Buhr

ROOD |

Rumbaugh . ® . o
Wirfs-Brock . o ® ' ®

Figure 2: Inheritance

server has to be visible to the client. Methods differ in the degree to which object
visibilities can be expressed.

The aggregetion relationship holds when one object is a component of another

otixje}ct. Components have the same lifetime as the whole and are visible to the
whole.

Objects can use objects other than their components. A method may make no
restrictions and assume static global visibility, Scoping allows visibility to be re-
stricted statically. Visibility may be dynamic, for example a server object can
become visible to a client by parameter passing.

What visibility relationships does the method support?
Evaluation:

The aggregation relationship is precisely defined in HOOD and it is the
basis of design. Rumbaugh has an extensive notation to differentiate
the various types of aggregation. Booch supports aggregation implicitly.
Wirfs-Brock only mentions aggregation in passing.

Most methods assume global scoping exgigt HOOD, which supports

name space partitioning, and Booch, which provides mechanisms for
expressing and restricting the visibility of names.

Method Aggregation | Global Scope

ch
Buhr
HOOD H
Rumbaugh
Wirfs- Brock

L4
»
® *
®
L]

Figure 3: Visibility

2.4 Lifetimes

A method may be restricted to dealing with static systems of objects in which
all objects have the same lifetime as the system. I this is not the case then the
method must contain some facility for dynamically creating objects, for example by
instantiating a class. It is also desirable to be able to specify object desfruction.
These two operations allow fully general systems to be modelled.

Does the method support ebject creation and destruction?

Not all objects are transient. There are a number of reasons why mechanisms to
maintain objects that live indefinitely are necessary. Some objects may simply
outlive one {or all) the executions of a program. In long lived object systems, some
objects may have to be written to storage for reasons of resource management.
To provide for these circumstances, a meat.%od may contain a facility for indicating
object persistence.

Docts the method support object persistence?

Eveluation:

Wirfs-Brock implicitly assumes that objects can be created and de-
stroyed.

Method

Booch

Buhr] L

HOOD L

Rumbaugh . . »
Wirfe-Brock

Figure 4: Lifetimes
2.5 Concurrency

Because the real world is concurrent, concurrent objects are often used in the anal-
ysis stage to model it. Objects mesh nicely with concurrency since their logical
autonomy makes them a natural unit for concurrent execution. However, concur-
rent sharing is more complex than sequential sharing, requiring mutual exclusion
and temporal atomicity. The interfaces, internal structure and communication pro-
tocols of concurrent objects are more complex. :

Normally objects are passive, because they are inactive until an operation is invoked
by a client. In contrast active objects have their own thread of control and may be

5

executing when the client attempts to send a message (i.e. invoke an operation).
An active object is infernally concurrent if it has more than one thread of control.
Methods should support ways (e.g. monitors) for guaranteeing mutually exclusive
access to shared data in concurrent systems.

What models of concurrency does the method support?
Evaluation:

Buhr's method supports the design of concurrent real-time systems.
The design of object interfaces, synchronisation and mutual exclusion
is dealt with extensively. HOOD also supports concurrency although
no mention is made of mutual exclusion. The Booch method supports
passive and active objects, which are explicitly labelled as such.

Internal concurrency in Buhr and HOOD is provided by recursive de-
composition of objects. The composition of state machines in state-
charts supports internal concurrency in Rumbaugh's method.

Method Passive | Active | Internally Concurrent | Mutual Exclusion |
Booch] ®

Buhr L » L] []

BOOD ®] ®

Rumbaugh .] . .
Wirfs-Brock]

Figure 5: Concurrency

2.6 Communication

Objects constitute a loosely coupled model of computation, in which communi-
cation provides both information flow and synchronisation. The usual model of
communication is that only two objects are involved in any one communication
with the sender having to know the receiver’s identity but not vice-versa. The
information flow however, may be uni- or bi-directional.

Synchronous communication requires the sender to suspend execution until the re-
ceiver accepts the message, whereas asynchronous communication allows the sender
to continue. Further qualifications of synchronous communication are balking (abort
if receiver not ready) or timeout (abort if receiver not ready after some specified
period). Communication is reliable if the sent message is guaranteed to remain
available until the receiver is ready to accept it.

At the analysis stage methods often use an event model in which the communication
is instantaneous and atomic. For design, development methods often use more
complex communication primitives like those provided by implementations, e.g.

6

the procedure call for sequential systems and the rendezvous and remote procedure
call for concurrent or distributed object systems.

Mutual messaging between objects is important because of its use in model-view-
controller type designs. This category of object communication includes recursion.
where an object sends a message to itself and callbacks, where a server sends a
message to a client during the evaluation of a message from a client.

What models of communication does the method support?
Evaluation:

HOOD provides a rich set of communication primitives which are imple-
mented by procedure calls and rendezvous. In Rumbaugh’s and Buhr's
methods, the event is used during early design and it is refined to a
procedure call or rendezvous for implementation. The Booch method
supports most of the interesting types of communication, including syn-
chronous. asynchronous, balking and timeout and procedure call for
implementation.

HOOD explicitly describes circumstances under which mutual messag-
ing is permitted. Rumbaugh supports recursive messaging.

Synchronons | Asyachronous | Event | Proceduze | Rendeavous | Mutnal Messaging |
Booch . N N . '
Buhr H]] * ® |]
HOOD || e ° . . * °
Rumbaugh . L L] * ®
Wir{s-Brock H)

Figure 6: Communication

3 Models

A development method proceeds by developing abstract descriptions, or models, of
the system under analysis or design. Eacﬁ model is ex in some notation.
In assessing a method it is necessary to consider the models it constructs and the
notations that it uses. The prime requirement is that the set of models should form
a complete and consistent description.

3.1 Kinds of Models

Three kinds of models can be produced. A physicel model is concrete and concerned
with the actual structure of the software system and typically deals with such things

as code modules and processors. Logical models capture the key abstractions of the
system. Logical models can be separated into static models which emphasise the
structure of a system and dynamic models which deal with temporal and functional
behaviour. Another distinguishing feature is whether a model pertains to the system
or an individual componeni. A component can be atomic, i.e an individual class or
package. or a subsysfem. In cases where more than one model captures the same
information there should be rules for checking consistency between the models.

Wha; models does the method preseribe and what notation is used for
each?

Are there any aspects of a system that are omitted or any that are covered
by more than one model?

Evaluation:

All the methods considered use directed :ghs to represent the usage
and inheritance structure of a system. Wirfs-Brock uses separate dia-
grams, whilst Booch and Rumbaugh combine the information in a single
diagram.

HOOD uses state machines and/or pseudo-code to define system be-
haviour. Rumbaugh presents a data-flow diagram to define the func-
tional behaviour of a system in response to an event. Booch uses ob-
ject diagrams to show the interactions between the objects involved in
responding to system events. Booch also uses timing diagrams, to il-
lusirate example scenarios associated with system events. Rumbaugh
advocates a textual representation of timing diagrams, event traces,
for this purpose. Buhr relies solely on the use of timimg diagrams to
illustrate system-level behaviour.

The Wirfs-Brock method does not build models of dynamic system be-
haviour. Instead the Class-Responsibility-Collaboration (CRC) cards
constructed for the system are used for scenario walkthroughs. The col-
laboration links on the CRC cards duplicate the usage structure shown
by collaboration graphs.

Wirfs-Brock bas special notations for capturing subsystem structure,
whereas the other methods allow system level notations to be applied re-
cursively. The individual CRC cards and contract specifications contain
patural language descrigtions of component behaviour in Wirfs-Brock’s
method. The other methods use extended state machines and /or pseudo-
code 10 capture the dynamic behaviour of atomic components.

Rumbaugh and Booch have explicit notations for showing the allocation
of classes to modules and active objects to processors. In Buhr and Hood
the package is a physical module.

The reader is referred to the summaries in the appendix for the details of each
potation.

Logical

Method System Component Physical
Static Dynamic Static
Booch Class Diagram, | Timing Diagram Class Diagram State m/c Module Diagram.
Object Diagram Process Diagram
Buhr Structure Chart | Timing Diagram Structure Chart State m /e, Structure Chart
peeudo-code
HOOD Obj Defn Skeleton State m/c, Obj Defn Skeleton State m/c, Ada
' psendo-code ' peendo-code
Rumbaugh ER Diagram DF Diagram, ER Diagiam State mfc Systéem Arch
Event Trace
Wirfs-Brock }| Hierarchy Graph. Subsystem Card, CRC card,
Collab Graph Collab Graph Contract Spec

Figure 7: Models

3.2 Notation

This section is concerned with the properties of notations used to capture models.
We consider their expressive power, whether their syntax and semantics are well-

defined and how wel] they scale-up. The evaluation for this section appears at the
end of section 3.2.3.

3.2.1 Expressivity

The main issue for a notation is filness for purpose. Notations can be pitched at
different levels of abstraction: they can use abstract or conerete data types and can
be declarative or operational. If a notation cannot directly represent the essential
concepts of the model, then the user has to encode this representation explicitly in
the terms of the notation. This leads to more complex and less easily understood
descriptions. These kinds of problem also afflict potations that are too verbose.

Are the method’s notations appropriately expressive?

3.2.2 Syntax and Semantics

Not only should the notation be sufficiently expressive but it should also be well-
defined. The syntar of a notation is a set of rules which describe the primitive
comggnents of a notation and the legal combinations of those symbols. Notations
can be textual or diagrammatic. There are well-known techniques, such as BNF, for
formally defining textual syntax. Techniques for defining the syntax of diagrams
are less well-established, however there should be a clear definition of the icons and
their Jegal combinations. A defined syntax is a requirement for effective use and
also for automated tool support.

Is there a syntar definition or does the syntar have to be deduced from
examples?

The semantics of a notation is a set of rules which gives the meanings of the syn-
tactic primitives and their combinations. In general, semantic definitions are more
complex than syntactic definitions. A well-defined semantics eliminates ambiguity
and is a pre-requisite for advanced tool support such as code generation or simula-
tion. More importantly, a semantics is necessary for allowing analysis and design
models to be examined and evaluated during development. There should be rules
for reasoning about models and for transforming one model into another.

Is there a semantic definilion or does the semantics have to be deduced
from examples?

Docs the semantics have a formal foundation?

Is there a logic for reasoning about or transforming models?

3.2.3 Scalability

Scalability is concerned with whether a notation can be used effectively on large
systems. Notations need a mechanism for partitioning descriptions into smaller and
more manageable modules and composing the whole from those modules. It should
also provide some means of controlling the visibility of names across modules, in
much the same way as programming languages provide mechanisms for controlling
the scope of names.

Does the notation provide a partitioning mechanism? ,
Are there rules for composing the meaning of a system from the meaning
of its modules?

Is there an ezplicit mechanism for defining the scope of names?

Evaluation:

The notations used in all the methods are informal, expressive and tend
to be verbose; this is particularly true of Booch’s method.

Booch, Rumbaugh and Wirfs-Brock provide short guides to their nota-
tions. HOOD has a reference manual in which textual syntax is defined
using in BNF. Buhr does not provide a reference guide to his diagram-
matic notation. '

All the methods rely on informal examples to explain semantics. How-
ever HOOD has design transformation rules and Buhr includes some
rules for handling synchronisation. Optimisation rules are included in
Rumbaugh. :

HOOD has a comprehensive set of rules covering scoping and object
visibility. Booch has scaling mechanisms for some types of diagrams
and also the scope of names can be indicated. Rumbaugh uses Harel’s
notation(5] for reducing the complexity of state machines.

10

Method Expressivity | Syntax | Semantics | Reasoning & Transformation l Partitioning | Scoping
¢ Booch * L 3 L} L] ®

Buhr 1] .

HOOD L] ® [] [L L d

Rumbaugh L [J] L 4

Wirfs-Brock * L ® »

Figure 8: Notation

4 Process

We use the term process to characterise the steps that make up a method. A process
has two main roles: to drive the development to an appropriate implementation and
to assist progress tracking through the definition of milestones and deliverables.

First we look at the context of the software development in which a method is
useful and what part of the lifecycle it covers. We then discuss the properties of a
process including pragmatic issues such as flexibility and heuristics.

4.1 Development Context

Software development occurs in many different contexts. Most development meth-
ods are aimed at greenfield developments where there is no previous history of
software development and the only environment is that provided by for example an
operating system.

Adding functionality and reengineering mtuires a provision for the capture of func-
tionality and the extraction of suitable abstractions of an existing system before
the design can be modified to include the new functionality.

Does the process provide support for adding functionality to ezxisting
systems and reengineering?

A further kind of development context is that of design with reuse. A process
which supports reuse requires a look ahead approach such that the common, useful
and hence reusable components can be identified. Once candidates for reuse are
identified one can search a library to see if reusable components already exist.

Does the process address the issue of design WITH reuse?

Reusable components and designs have to be developed, they are not just a by
roduct of using objects. A process needs to explicitly provide activities which are
intended to identify reuseability and support the development of reusable compo-
nents and designs. Typically the development of a reusable component will be a

11

design exercise in its own right, as a reusable component must not only satisfy the
immediate needs of the current development but must take a broader view of the
requirements for reuse.

Does the process address the issue of design FOR reuse?
Evaluation:

All the methods emphasise greenfield development. The coverage of
reuse and reengineering is weak.

HOOD has notations for describing the environment and system context
for reengineering and guidance on incorporating library ogjects but not
on developing them. The other methods offer heuristics for developing
reusable components. The Booch method addresses design with reuse
by providing a notation for indicating the use of libraries.

L
HOOD ® ® b
Rumbaugh . .
Wirfs-Brock ® *

Figure 9: Development Context

4.2 Coverage of Lifecycle

In this section we identify some of the activities which constitute a software de-
velopment process. Many methods cover different parts of the lifecycle, not just
analysis or design. Therefore it is more useful to describe 2 method in terms of
the development activities it supports. These activities can be combined in various
ways to make up a particular process model, for example the spiral model.

The term design is applied very loosez by authors of methods, so that many meth-
ods which claim to be design metho include aspects of analysis and imple-
mentation. For our purposes we will use the following definitions:

Analysis The purpose of analysis is to construct the logical model of the sys-
temn and its environment. At this stage there is an emphasis on describing
properties rather than the mechanisms which implement them.

Design In the design phase the system to be built is differentiated from its environ-
ment. The logical models produced during analysis are successively refined
and made more concrete, and a physical model is produced. The emphasis is
on the realisation of the properties as a software structure.

12

Implementation Implementation encodes the physical and logical models in a
particular programming language. At this point in the process all of the
structure and behaviour of a system will have been defined, and the emphasis
is on providing an encoding of the design using the primitives of a particular
language.

Which of these activities does the process support?
Evaluation:

Wirfs-Brock’s and Rumbaugh’s methods are appropriate for analysis, -
providing mechanisms and notations respectively to explore the conse-
quences of decisions.

The Booch, HOOD and Buhr methods are strong in design. The former
provides annotations in the design diagrams which can be used to cap-
ture some implementation decisions. The latter two discuss extensively
how to transform abstract models to concrete implementations.

In Rumbaugh. implementation is discussed in detail. In addition, atten-
tion is paid to performance, storage considerations and the allocation
of components of the systemn to processors.

Method Avalysis | Design | Implementation
Booch L [

Buhr H] ®
HOOD)]
Rumbaugh H] ® o

Wirfs- Brock l] *

Figure 10: Coverage of Lifecycle

4.3 Process Properties

A process should be repeatable and flexible so that it can be reused and adapted
to meet local requirements. Each process step must be defined in terms of its in-
puts and outputs, or in some other way. Since one step may produce an input for
another step, there are usually constraints on the order in wlgrc% the steps can be
tackled. However a process definition should not force unnecessary sequentialisa-
tion. Wherever possible it should allow steps to be overlapped in time, in order
to exploit potential parallelism in the development. Simil-agf deliverables should
not be tied to particular notations because this makes it difficult to substitute
alternative approaches for particular activities.

Are the process steps well-defined?
Is the process flerible?

13

The adaptability of a process can be improved by the inclusion of guidelines, or
heuristics. These provide a means of identifying common situations and tackling
them in a previously used way. They should help to identify when it is appropriate
to perform a particular activity and how to begin the activity.

Are there heuristics?

The reasoning behind the decisions embodied in an implementation is invaluable
during software maintenance. It is important therefore to be able to trace the
connection between requirements and implementation. Traceability is aided if the
deliverable from one step is explicitly refined or developed during some subsequent
step. Naming conventions can also help by indicating relationships between models.

Is it possiblc to locate the origin of design decisions made during the
development?

A process should provide mechanisms to verify that an implementation meets its
requirements. Verification involves demonstrating that at each phase the models are
consistent with each other and with those from the previous phase. This requires
steps which show consistency by inspections, testing or proof.

Does the process provide for verification?

A process should also include steps for validating whether & development meets the
customer’s needs. This can be done through the construction of executable models.
e.g. through simulation or the use of prototypes, or by using notations which allow
the properties of models to be deduced.

Does the process provide for validation?
Evaluation:

Bubr presents the underlying philosophy of his design process and presents
two variants. The spiral process W by Booch is loosely defined.
It is described as a set of steps which although they are presented in a

particular order, can actually be applied in a number of different ways.
Wirfs-Brock’s and Rumbaugh’s methods provide many useful heuristics
to guide the development process.

Most methods work by successive refinement of the classes and objects
so it is therefore possible to trace the evolution of a design. HOOD em-
phasises traceability and verification of designs at the expense of flexi-
bility. It mandates the verification and documentation of intermediate

14

designs before proceeding to further stages. The many complicated
relationships between the different diagrams used in Booch’s method
could impede verification of design steps. In contrast. the relationships
between the diagrams in Rumbaugh are explicitly discussed.

Rumbaugh and Wirfs-Brock emcghasis‘e the use of scenario walkthroughs
to validate the models. Booch recommends prototyping to validate

design.
|| Method Well-defined | Flexibility | Heuristice | Traceability | Verification | Validation
Booch [3 ® . .
Buhs] *) .
BHOOD L 4 [] -
Rumbaugh . ® » > d
Wirfs-Brock) L . * *

Figure 11: Process Properties

5 Pragmatics

There are many pragmatic concerns that influence a methods uptake in the software
engineering community. These concerns can be divided into two categories: those
having to do with the human-method interaction and those pertaining to the utility
of a method in a particular application domain. Within these two categories further
distinctions can be made between those properties that are intrinsic to the method
itself and others that are external and possibly even transient in nature. The
evaluation for this section appears at the end.

5.1 Resources

A concern when considering which method to adopt are the variety of resources
available to support its introduction and use. A course is often an appropriate
vehicle for the first introduction. A textbook may be sufficient for more experienced
developers and can serve as a reference document. Otber discriminants for a method
include whether it is supported by more than one consultancy firm or CASE vendor.
Similarly the existence of user groups, workshops and conference tutorials tend to
suggest that a method is in widespread usage.

What resources are available to support the method?

No matter how straightforward a method is, almost all projects beyond a certain
size will require some form of tool support to assist the development of analysis
and design models. CASE tools can be distinguished by whether they provide
syntactic or type checking. Semantic processing is also desirable; simulation, code
generation and proof tools fall into this category. In general the existence of CASE
tools encourages the development of defacto standards for the method.

15

Are there CASE tools available to support the method?

5.2 Accessibility

Users are also concerned with how difficult it is to learn to use the method and once
learned, how usable it is. The background required of the user must be taken into
account. A distinguishing characteristic of methods is the level of mathematical
sophistication required to use its notations.

What background is necessary for someone learning the method?

5.3 Applicability

A method that is targeted at a particular implementation language is likely to have
limited applicability, since it may not fit well with languages that have a differemt
underlving semantic model.

Is the method targeted al a specific language?

Methods may be restricted to certain application domains. Rumbaugh et al [S}1 give
the following list as a starting point for what areas a method might reasonably be
expected to address:

Batch - A data transformation executed once on an entire input set.

Continuous transformation - A data transformation performed continuously as
inputs change.

Interactive interface - A system dominated by external interactions.
Dynamic simulation - A system that simulates evolving real world objects.
Real-time system - A system dominated by strict timing constraints.

Transaction manager - A system concerned with storing and updating data, often
including concurrent access from different physical locations.
Distributed system - A system subject to communication latency.

For what application areas is the method suitable?

16

Evaluation:

Currently, there is no HOOD textbook available although courses are
readily available from many European CASE vendors. We do not know
the current availability of courses for the other methods.

Wirfs-Brock is the most accessible method as it is based on common
sense and there is not much overhead to learning it. Buhr's quirky
vocabulary may provide a learning barrier to some.

The Booch methed is la-ngnage independent, although use of a partic-
ular target language will determine which of the features can be used.
Rumbaugh discusses implementation in object and non object-oriented
languages in detail. Buhr's method discusses implementation in Ada
and is particularly suited to use in the real-time domain.

Since Wirfs-Brock's method does not deal explicitly with object creation
and deletion, it provides no notation for expressing storage management
during design.

Both Booch and Rumbaugh present case studies from a variety of do-
main areas. Rumbaugh also provides a discussion of the application of
the method to the areas enumerated above. Buhr is aimed at real-time
but is generally applicable.

ﬂ Method J___ng_ars«] Book i Tool l Accessibility] Language Domains
Boach ?] » . independent .
Bukhr ? *] . Ada real-time
HOOD . ® . Ada .
Rumbaugh ? . . - independent Y
Wirfs-Brock ? . ? * auto storage mgt]

Figure 12: Resources and Applicability

6 Conclusion

We have presented a set of criteria for systematically comparing methods and have
applied them to five object-oriented analysis and design methods. From the evalu-
ations we conclude:

The Booch method fully supports object-oriented concepts. The notation used
is scalable for large developments, although it is somewhat verbose. The
method is weak on process and concentrates on design and implementation.

The Buhr method is package based and omits inheritance. Its notations and
vocabulary are comprehensive, but quirky. Its process is well-defined and
flexible. Buhr is focussed on the design and implementation of real-time
systems.

17

The HOOD method is package based and omits inheritance. The notations are
well-defined. The process provides a rigorous and transformational approach
to design. The level of definition makes it suitable for large team develop-
ments.

The Rumbaugh method fully supports object-oriented concepts. The notations
it uses are concise and are borrowed from SA/SD and Harel. The process is
well-defined and covers analysis, design and implementation.

The Wirfs-Brock method fully supports object-oriented concepts. The process
is exploratory and informal and 1s thus suited for the individual developer,
rather than the large teamn. The method is appropriate for analysis or high-
end design.

The evaluations have hiﬁhlighted similarities and differences and this may suggest
ways of combining methods to deal with particular classes of applications. For
instance, attempting to synthesise the Wirls-Brock and Buhr methods might be a
suitable starting point for producing a method for the analysis, design and imple-
mentation of object-oriented real-time systems.

Our evaluations have convinced us that the criteria we have used are workable,
though not without flaws. In particular, the process properties criteria have proved
to difficult to apply in an objective manner. We would %ke to encourage others to
use and improve the criteria by applying them to other methods and we are keen
to receive feedback on any such efforts.

18

7 References

[1] G. Booch. Object-Oriented Design with Applications. Benjamin Cummings,
Redwood City, CA (USA), 1991.

[2] R.J.A. Buhr. Practical Visual Techniques in System Design: with Applications
to Ada. Prentice Hall, Englewood Cliffs, NJ (USA), 1991.

[3] P. Chen. The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systiems, pages 9-36, March 1976.

[4] D. Coleman and F, Hafes‘ Lessons from Hewlett-Packard’s experience of using
object-oriented technology. In TOOLS 4, pages 327-333, Paris, 1991.

[5] Harel D. Statecharts: A visual formalism for complex systems. Science of
Compuler Programming. 8:231-274, 1987.

[6) T. DeMarco. Structured Analysis and System Specification. Yourdon Press.
New York, NY (USA), 1979.

[7] HOOD Technical Group. HOOD reference manual, October 1990.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ (USA).
1991.

[9] P. Wegner. Concepts and paradigms of object-oriented programming. OOPS
Messenger, 1{1):7-87, August 1990.

[10] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Soft-
ware. Prentice Hall, Englewood Cliffs, NJ (USA), 1990.

[11] E.N. Yourdon and L.L. Constantine. Structured Design. Prentice Hall, Engle-
wood Cliffs, NJ (USA), 1979.

19

A Booch

A.1 Concepts

Objects and Classes In Booch’s method an object is something which has iden-
tity, state and behaviour, A class is a template for a set of objects which share
a common structure and behaviour, A generic class is a template for other
classes. Booch's method also provides for meta-classes. Note that there is a
single icon for all these classes and generic or meta-classes are distinguished
by the relationships they participate in.

Inheritance Booch supports the inheritance relationship. He separates the notion
of subtype inheritance, which simply places constraints on the supertype, from
derived inheritance which introduces a new type.

Visibility Booch provides a general use relationship which is specialised into use
in interface and use in implementation. Use in interface means that used
objects are accessible as parameters whereas use in implementation means
that the use of the objects is entirely hidden in the using class. It is also
possible to indicate whether objects which interact are visible by one being
a component of the other, or being passed as a parameter or being in lexical
scope.

Lifetimes Objects which are persistent can be indicated in the template either
for an instance or, if all instances are to be persistent, in the class. Creation
and destruction of objects can be captured as part of the dynamic model in
a timing diagram.

Concurrency Objects which can have their own thread of control can be labelled
as active in the diagrams. The method does not address the issue of internal
object concurrency.

Communication There are five types of message passing:

simp(lie For is]equential systems where the message passing is based on proce-
ure call.

synchronous The sender will wait, possibly indefinitely, for the receiver to
accept the message.

balking The sender will abandon the operation if the receiver is not imme-
diately ready to accept the message.

timeout The sender will abandon the operation after a specified amount of
time if the receiver isn't ready to accept the message.

asynchronous The sender will send the message and continue regardless of
the state of the receiver.

20

A.2 Notation

Beoch uses six basic diagrams made up of a small set of icons. Many of these icons
can have additional annotations for capturing more detailed design information.
This rmakes the potation very detailed.

Class Diagram (CD) A class diagram shows the existence of classes and the
relationships between them. Class diagrams can be organised into chunks
called class categories, which can make complicated class »diﬁrams simple to
understand. The class diagram is part of the logical design of a system.

Object Diagram (OD) An object diagram shows the existence of objects in
a system and the relationships (i.e. message passing) between them. The
mechanism by which one object can pass messages to another can be denoted.
These include component, parameter or lexical scope. It is part of the logical
design of a system.

State Transition Diagram (STD) Thestate transition diagram shows the state
space of a class, the events that cause transitions from one state to another
and the actions triggered as a result of state changes. It is part of the dynamic
model.

Timing Diagram (TD) Timing diagrams are used to show the dynamics of mes-
sage passing in an object diagram. There are three notations suggested for
this: enumerating the arcs of an object diagram, pseudo code and timin
diagrams similar to those used in hardware to indicate the flow of contro
between objects and methods.

Module Diagram (MD) A module diagram shows the allocation of classes and
objects to modules. Module diagrams can be broken up into chunks called
subsystems, which can be used to make complicated module diagrams simpler
to understand. A module diagram is part of the physical design of a system.

Process Diagram (PD) A process diagram is used to capture the allocation of

processes to physical processors. I{ is also part of the physical design of a
system.

Many of the icons used in the diagrams have associated templates which are used to
store non-diagrammatic information about the entity, such as a textual description.

A.3 Process

Booch advocates the use of a spiral development model. The steps performed for
each cycle in the spiral are:

Identifying Classes and Objects This step concentrates on identifying the key

abstractions in the problem domain, and the mechanisms which will imple-
ment the required functionality. The products can be as vague as a list of

2]

classes and methods or a formal as complete class and object diagrams. This
step would make use of techniques such as domain analysis to perform the
identification. :

Identify Semantics of Classes and Objects This step focuses on the classes
and objects identified in the previous step. It involves identifying the protocol
for the classes and objects. The products will be refined versions of the
templates and diagrams from the previous step. Booch suggests trying to
describe the lifetime of an object from creation to destruction, including the
characteristic behaviour.

Identify Relationships between Classes and Ob{:::ﬁ This step is an exten-
sion of the activities of the previous one. Relationships between classes are
identified and the dypamic semantics of the key mechanisms established.
Techniques such as ERC cards are advocated for this step. The product
of this step will be a complete logical design of the system.

Implement Classes and Obgects This step involves making implementation de-
cisions about the logical design, including allocation of classes and objects to
modules, processes to processors etc. Note that implementation is used in a
rather loose way here. Classes at one level of abstraction are implemented by
classes at a lower level, not necessarily by program code. The products are

a refined form of the logical design and some of the physical design of the
system.

22

B Buhr

B.1 Concepts

Objects and Classes The method deals with design for Ada rather than object-
oriented languages. The term that is used is box, which is an abstraction
of an instance of Ada package, i.e. an encapsulated data type. Thus Buhr
is a package-based method and the diagrams used in Buhr denote package
instances rather than classes. Packages can be parameterised corresponding
to generic Ada packages.

Inheritance Inheritance is not dealt with.

Visibility Different kinds of client /server relationships are supported. There is no
notion of scope, but objects can be shown as components of other objects.

Lifetimes Objects can be dynamically created and deleted. Persistence is not
covered.

Concurrency Active and passive objects are covered, including semi-active ob-
jects such as monitors. The active objects have the semantics of Ada tasks.
Emphasis is placed on the design of interfaces and efficient mutual exclusion
and synchronisation structures.

Communication There are two levels of interaction between objects, events which
are abstract and used during preliminary design and visits which are concrete
and used during detailed design.

Events indicate whaf interactions happen without commitment to how they
take place. They abstract away from a model of synchronisation. however
the communication is reliable, no messages get lost. The event model] is as
follows:

e An event is a named, abstract unit of communication between objects
that is independent of the concrete interface details of the objects.

¢ may have data associated with it.

e an event defines an interaction path between two objects, with source
and sink ends.

¢ the temporal aspect of an event defines points on timelines when the
event is sourced and sunk.

e Event sourcing and sinking take place instantaneously but possibly take
some time to transfer between timelines so that sourcing and sinking
times may not be identical.

During detailed design the notion of visit is used. A visit is an abstraction of
method (i.e. procedure) call, Ada rendezvous etc. One object visits another
object in order to obtain a service or wait for some occurrence. Visits are one-
to-one (i.e. when a object is visiting it cannot be visiting elsewhere at the
same time). Visits trigger computation in another object. The visit concept
covers.

23

¢ Method call in which the computation is performed immediately and the
visitor leaves when it is done.

¢ An Ada entry call, which is like a procedure-call except that it requires
the active cooperation-operation of an acceptor to complete.

e Both synchronous and asynchronous communication between objects are
covered. Though asynchronous communication requires implicit buffers.

The same event can be implemented by many different visiting patterns.

B.2 Notation

Diagrammatic notations are used to give abstract models of Ada programs:

Structure Chart (SC) is a static model of a system that shows the intercon-
nection between objects. The deaig;; process successively refines the structure
charts to give more information about interfaces and subsystem structure.

State Transition Diagrams (STD) are used to give a dynamic model of ob-
jects at the abstract structure chart level. Buhr suggests the use of Harel's
Statechart machines but does not use them in the book. The transitions are
events and actions are informally specified in natural language or a MCL (a
high level pseudo-code).

Concrete Structure Chart (CSC) is an output of the design process which
shows the names, data flows, and mutual exclusion requirements associated
with the interfaces of each object are shown. The internal details of each
atomic object are shown by MéL pseudo-code. Concrete structure charts are
a kind of graphical Ada.

Abstract Controller Machine (ACM) is a state machine together with map-
pings between events and concrete visits that can be used to model dynamic
object behaviour at the concrete structure chart level.

Timeline Diagrams (TD) which show sequences of event flows between com-
ponents are used to model the dynamic behaviour of a system. Their concrete
analogue, visit scenarios, are used at the concrete structure chart level,

B.3 Process

The method covers the design and implementation of greenfield developments.
Analysis is not covered at all. Some consideration is given to the design of reusable

Ada packages.

~ Buhr advocates an overall design strategy which proceeds jointly in the temporal
and structural domains, paying attention first to external aspects of each, and then
to internal ones, while deferring details of functionality (in other words leaving it
in stub form). Design is performed in two stages:

24

Preliminary Design

Partition system under design into subsystems (possibly recursively), informally
allocate functionality items to each, and explore the nature of the interactions that
need to take place among the subsystems to do the functionality, while deferring
details of both functionality and interfaces.

Deferring interface details is important because the underlying nature of the inter-

actions needs to be explored first, to ensure that inappropriate overheads are not
built in at the interface level.

Recursive decom%osition can proceed by informally doing preliminary design through
all levels OR by beginuing with a detailed design at somie deeply nested level and
then moving up to preliminary design at higher levels and then Lad. down again.

Detailed Design
The interfaces are first made concrete to meet the needs of preliminary design.

Then the internal details are fixed to achieve the desired temporal and functional
behaviour.

In more detail, the steps of the design process are:

Preliminary Design

1. The first realisation of a design is called an abstract structure chart. It shows
event flows between faceless black box objects. A faceless object has an
interface which is yet to be defined; all that is known is its input and output
event alphabets.

2. Explore temporal behaviour by showing event interactions on timeline dia-
grams. Show different scenarios for how the system behaves. These may be
considered as an abstract form of test-case generation.

3. Where useful. draw Mealy style abstract state machines showizs how machines

behave. It is suggested that the state machines be “discovered” by analysing
the event scenarios.

4. Concurrency Commitment and Placement. The abstract structure chart is
refined to show which objects are active. A box containing a parallelogram
is used to indicate an active object.

5. The recursive decomposition proceeds through all levels until one arrives at
a point where primitive internal machinery (i.e. engines) is required.

Detailed Design

1. The concurrent structure chart is further refined to show how the event flows
have been mapped into visits. Each event flow is mapped onto a “channel”
which shows the mode of communication. That is whether the same object
always initiates the visit and whether the communication is synchronous or
asvnchronous.

25

[v

. Resolve interface mechanisms by showing the data flows for each visit. At this
point the concrete structure chart shows the external details of each object.

3. Visit Scenarios are used to confirm that the expected temporal behaviour will
occur. Threaded visit patterns can be drawn on concrete structure charts.

4. Concrete Structure Charts (internal). At this point decomposition stops.

Pseudo-code or abstract controller machines are used to define the behaviour
of atomic objects,

This design process adopts a structure first approach to design. Buhr also shows
how it is possible adopt a temporal behaviour-first approach.

26

C HOOD

C.1 Concepts

Objects and Classes An object in HOOD is an entity that has internal state and
provided and required operations. A class is a template for objects with type
and data parameters. Classes may be generic.

Inheritance HOOD does not support inheritance in any form. Partially defined
objects like abstract objects are refined during design.

Visibility There are two relationships in HOOD - uses which is the client/server
relationship and includes which is an aggregation relationship used during
design.

Lifetimes Object creation is supported hy class instantiation. Object deletion is
not considered. Neither is object persistence handled.

Concurrency Objects may be active or passive. Active objects can be internally
concurrent with many threads of control. However, HOOD does not have any
mutual exclusion mechanisms.

The virtual node object, representing a node in a distributed system, is used
for distributed systems’ design.

Communication HOOD defines five different asynchronous and synchronous com-
munication primitives:

Highly synchronous the call is to an active object. The client is suspended
until the call returns.

Loosely synchronous the call is to an active object. The client waits until
it receives an acknowledgment from the server.

Asynchronous the client continues without suspension.

Timeouts the client requests the server to respond within a certain time
limit.

Synchronous which is procedure call to passive objects.

Rules for mutual message passing and cyclic calls are defined.

C.2 Notation

Object Definition Skeleton (ODS) which is a template for defining each ob-
ject - its provided and required operations and its internal state.

Object Control Structure (OBCS) This is a description of the synchronisa-
tion between the provided operations and/or asynchronous events for active
objects. The standard notation uses Ada rendezvous semantics although state
machines are also mentioned for this.

27

Operation Control Structure (OPCS) This is a description of the implemen-
tation of each operation for the primitive objects in tg’e system. The excep-
tions, both raised and handled, the pseudo code and the other operations
called in an operation’s implementation are defined.

The features of an Object Definition Skeleton can also be shown graphically. Each
field in the Object Definition Skeleton is defined formally in BN?synta.x. HOOD
aims to allow smooth successive transformations from high-level desifn to imple-
mentation. The semantics are described by example and also in a set of consistency
rules for language constructs.

C.3 Process

HOOD spans high level design through to implementation. The process recom-
mends using structured techniques such as SA/SD or SSADM for analysis although
no support 1s given for transforming the output of analysis to HOOD.

There are two phases in HOOD design: architectural design and detailed design
with implementation. The goal in architectural design is a complete definition
of the system with object definition skeletons for all the objects in the system.

Detailed design is concerned with transforming the HOOD description into the
implementation language i.e. Ada.

The design strategy is top-down and proceeds by object decomposition. A par-
ent object is decomposed into a set of component child objects which compose to
provide the functionality of the parent.

The process of decomposition starts with a root object which is an abstract model
of the system to be designed. Each intermediate object is decomposed recursively
until the bottom level primitive objects are defined.

Each step has four parts:

Define the context of each object define the interface of the parent object,

Produce initial decomposition define potential child objects and explore how
they combine to provide the parent functionality.

Define the child objects’ interfaces complete the provided and required oper-
ations definition for each child respecting the decomposition rules,

Define the child objects’ obgect definition skeleton complete the child ob-
jects’ definition. Define the internal state, the object control structure (for
active objects) etc.

The steps in detailed design are as follows:

o complete all type, data and exception declarations for each operation

28

e refine each operation control structure into (Ada) pseudo code
o produce a design prototype making the active objects into subprograms
® incorporate the library objects needed for the system

¢ generate Ada code for each object

D Rumbaugh

D.1 Concepts

Objects and Classes The method supports objects, classes and metaclasses.

Inheritance The method supports both single and multiple inheritance as well as
a number of properties such as whether subclasses have overlapping features.

Visibility The method provides a rich set of aggregation primitives including re-
cursion.

Lifetimes The method provides minimal support for object creation, destruction
and persistence,

Concurrency The method supports the expression of inter and intra object con-
currency.

Communication The method employs an asynchronous model of communication.

D.2 Notation

The method uses three notations to capture Object, Dynamic and Functional mod-
els of the syvstem:

Enhanced Entity Relationship (EER) which captures the main entities of
the system under development and their static relationships.

Harel Statechart (HSC) which captures the sequences of events, states and
operations that occur between systems of objects.

Data Flow Diagram (DFD) which shows the flow of values from external in-
puts, through operations and internal data stores, to external outputs.

Various structuring mechanisms for the diagrams are possible: object and event
classes can :‘f arranged into a hierarchy, state transition and data flow diagrams
can be nested.

D.3 Process

The methodology is presented as consisting of three phases: analysis, system design
and object design. The input to analysis is a problem statement and the output is
a formal model that captures the objects and their relationships, the dynamic flow
of control and the transformation of data. With the formal model as a guide, the
system is organised into subsystems during system design. During object design,
the analvsis models are refined and optimised.

30

Analysis

In analysis. models which focus on different aspects of what the system is required
to do. are developed as follows:

Object Model From the initial description of the problem, identify objects and
classes. Prepare a data dictionary which consists of descriptions of each class.
Identify associations between classes and class attributes, Organise classes

using inheritance. Iterate this process eliminating redundant classes and as-
sociations.

Dynamic Model Write out scenarios of typical interaction sequences. ldentify
events (signals, inputs, decisions, etc. to or from users or external devices)
in each scenario. Show each scenario as an even! trace (ET) - an ordered
list of events between different objects. Show events between a group of
classes in an eveni flow diagram which summarises events between classes
disregarding sequence. Arrange events pertaining to each object in a staf¢
transition diagram.

Functional Model Identify input and output values (parametlers of events be-
tween system and outside world) from problem statement. Construct data
flow diagrams showing how each output value is computed from input values,
Write a deseription of each function. Identify constraints between objects.
Specify optimisation criteria.

Refinement The models are verified and refined iteratively using more detailed
scenarios.

Key class operations are determined from the models as follows:

o Object Model - reading and writing attribute values and association
links.

Events - an event sent to an object corresponds to an operation.
State Diagrams - activities and actions may be operations.

* &

Functions - a function in the data flow diagram corresponds to an oper-
ation on an object.

Real-world behaviour of classes.

System Design

System design involves deciding on the organisation of the system into subsystems
and the allocation of subsystems to hardware and software components.

The steps in constructing the system design are:

o Organise the system inio subsystems.

¢ ldentify concurrency.

31

e Allocate subsystems to to processors and tasks.

¢ Choose an approach for management of data stores (e.g. files stores or
databases) and global resources (e.g. physical units such as processors, space
such as disk space, logical names, and shared resources such as databases).

o Choose the implementation of control: event driven, concurrent systems or
procedure driven.

¢ Handle boundary conditions and set tradeoff priorities.

Common architectural frameworks are discussed, along with the relevance of the
three models. The output of this process is normally a system erchitecture diagram
{SA) which captures the static relationships between the major subsystems.

Object Design

Object design involves further refinement of the initial models to address the re-
quirements of an execution environment.

Classes are carried from analysis into design. As the design phase proceeds, classes
may be added or broken up for efficiency. The class structure may have to be
adjusted to increase inheritance by abstracting common behaviour out of groups
of classes or using delegation where inheritance is semantically invalid. For each
object, the representation must be chosen; choices include using primitive types or
other objects. Object associations must be designed taking into account traversal
direction and multiplicity. Then algorithms to implement operations to optimise
gneasures such as ease of implementation, understandability and performance are
esigned.

32

E Wirfs-Brock

E.1 Concepts

Objects and Classes Both objects and classes are supported with standard def-
initions.

Inheritance The method supports single and multiple inheritance, abstract and
concrete classes.

Visibility The using relationship is supported.

Lifetimes There is no explicit discussion in the method of the lifetime of object
instances. Consequently there is no support for managing dynamic object
creation and deletion. It is implicitly assumed that instances can be created
and destroyed as required.

Object persistence is not supported.

Concurrency No consideration is given to whether objects are active or passive,
and thus no support is provided for concurrency.

Communication Communication between objects is only discussed at an abstract
level and uses the client-server model. No detail is given on whether the
communication is synchronous etc. ‘

E.2 Introduced Terminology

Responsibilities The knowledge an object maintains; the actions an object per-
forms. The first of these is refined into attributes, and the second into method
signatures.

Collaborations Collaborations represent requests from a client to a server in ful-
fillment of a client responsibility.

Contract A set of requests that a client can make of a server. The server is bound
1o respond to these requests. v

E.3 Notation

Class Responsibility Collaboration (CRC) cards are used throughout the
design process to record information relating to classes. On a CRC card,
its super and subclasses are recorded as well as the responsibilities of a class,
toﬁether with collaborator classes. Towards the end of the design process, the
CRC card is developed into a class specification.

33

Subsystem Card (SC) On a subsystem card, a short description of the sub-
system is recorded. Contracts required by clients external to the subsystem
are noled together with the class within the subsystem which supports the
contract. Towards the end of the design process, the SC card is developed
into a subsystem specification.

Hierarchy Graphs (HG) are a standard representation for inheritance hierar-
chies. Single and multiple inheritance can be denoted as well as concrete and
abstract classes.

Venn Diagram (VD) are used as a tool to explore and refine inheritance hi-
erarchies. Each class is viewed as being a set of responsibilities. Common
responsibilities are drawn in the overlapping part of the venn diagram and
independent parts in the non-overlapping parts.

Collaboration Graphs (CG) are a notation used to display and analyse the
paths of communication between classes. In collaboration graphs, classes.
inheritance relationships, contracts and collaborations are represented.

Contract Specifications (CS) are templates in which the details of the con-
tracts are filled out. A contract specification contains the name of the server
and clients which collaborate to fulfill the contract, as well as an informal
description of what the contract does.

E.4 Process

The process is presented as a set of sequential steps, but it is clearly acknowledged
that design is an iterative and incremental activity. The method strongly advocates
‘walkthroughs of scenarios’. These are performed for two reasons. %irstl_y they
entail exploration of the domain area, thus helping understanding. Secondly they
can be used to check that required behaviour of the system has not been omitted.
Walkthroughs can be done at any time during the process.

The assumed input to the process is a natural language requirements specification
and the output is:

» A graph of each class hierarchy

¢ A graph of the paths of collaboration for each subsystem

o A specification of each class !

o A specification of each subsystem

e A specification of the contracts supported by each class and subsystem.

11n this context, specification means certain information recorded about the class, for example its super and
sub-classes, and for each responsibility, a method signature together with a description of the behaviour of the
method

34

The main steps 1n the process are identified as:

Exploratory phase

o ldentifving the classes
The main approach advocated here is noun phrase analysis.

¢ ldentifying the responsibilities
Techniques mentioned to achieve this are: recalling the main purpose of the
classes and verb phrase analysis.

e Identifving the collaborations
Collaborations are found by going through all of the responsibilities and iden-
tifving which objects are needed to fulfill them.

Refining the design

o Building and refining class hierarchies ‘
The class hierarchies are reviewed and improved. Abstract and concrete
classes are identified.

¢ ldentifving the subsystems
Subsysterus are a sets of classes which collaborate closely together to fulfill a
set of responsibilities. Subsystems should form good abstractions of compo-
nents of the system.

¢ Constructing the protocols for each class
In this step, the responsibilities are refined into a sets of protocol signatures.
Then a specification is written for each class, subsystern and contract.

35

