
~"'HEWLETT
.:~ PACKARD

Criteria for Comparing Object-Oriented
Development Methods

Patrick Arnold, Stephanie Bodoff, Derek Coleman
Helena Gilcrist, Fiona Hayes
Information Management Laboratory
HP Laboratories Bristol
HPL-91-51
June, 1991

object-oriented
methods,
comparison

Recently there has been a profusion of object-oriented
analysis and design methods coming from a variety of
backgrounds. The aim of this paper is to aid the
objective comparison of methods. A set of criteria for
making explicit the differences and similarities
between methods is proposed. The criteria are
presented as a set of questions together with some
preceding commentary. There are four main categories
of criteria: Concepts, Models, Process and Pragmatics.
Concepts deals with what makes a development method
object-oriented. The criteria for models consider what
abstract system descriptions a method requires and the
notations it proposes to capture those descriptions. The
process criteria focus on mechanisms for developing the
models. The pragmatic criteria concentrate on non­
technical features.

This paper should be of interest to potential users of
object-oriented methods as well as to the developers and
advocates of these methods.

© Copyright Hewlett-Packard Company 1991
Internal Accession Date Only

1 Introduction

Experience of the industrial use of object-oriented technology indicates that a dis­
ciplined software process is the essential factor determining success [4]. Key com­
ponents of a software process are systematic analysis and design techniques. The
first efforts at employing such techniques for object-oriented software development
attempted to use traditional methods such as SA/SD ([5] [12]). However it rapidly
became apparent that object-oriented methods were necessary because methods
based on the functional decomposition of a system clash with the object-oriented
approach.

Recently there has been a profusion of object-oriented analysis and design methods
coming from a variety of backgrounds. Some, such as HOOD [61 and Buhr's [2]
are targetted at the ADA community. Booch's [1] method is similar but has been
extended to make it more truly object-oriented. Entity-Relationship Modelling
[3] is the basis of methods like Rumbaugh's et al. [8], whereas the responsibility­
driven method of Wirfs-Brock et al. [10], stems from an operational view of object
interaction.

The emergence of these methods naturally raises the question as to which one is
the best. It is not the goal of this paper to tackle this problem. We defer tackling
this task since it is only with the benefit of extensive and metricated practical
experience that such a question can be answered.

The aim of this paper is to aid the objective comparison of methods by proposing
a set of criteria. We hope the criteria will aid in answering questions like "What is
the difference between method X and method Y?" , "Are method X and method
Y complementary?", " Could they be used together?". The criteria are tentative.
We arrived at them from our accumulated software engineering experience and as a
result of studying a number of the new methods. We were also influenced by other
method surveys ([11], [7]). We have devoted enough time and energy on the criteria
to know that they can only be considered as a first shot at the task. However we
believe that they are worth consideration and are a step in the right direction.

The criteria are presented as a set of questions together with some preceding com­
mentary. The aim of each commentary is to clarify the associated question(s) and
to indicate some technical terms that may be useful in framing the answer. We
do not provide definitions, except in the case of terms that may be ambiguous or
unfamiliar to members of the object-oriented community.

The document is structured according to the four main categories of criteria: Con­
cepts, Models, Process and Pragmatics. The concepts section addresses the ques­
tion of what makes a development method object-oriented. The core of all software
development methods, namely the models advocated and the process for developing
those models, are examined in subsequent sections. Finally, the pragmatics section
considers non-technical features of methods such as availability of resources. We
also offer some directions for future research and conclusions.

Note In this document, evaluation criteria are indicated by use of italics.

1

2 Concepts

In order to be considered object-oriented a method should support the expression of
those concepts which assume the most prominent role in object-oriented software
systems. These concepts are mostly derived from object-oriented programming
languages. As with object-oriented languages [9], there is no universally agreed
upon set of features (apart from objects) that a method should support. This
section introduces criteria for describing the semantics of the object model and
thus provides a framework for evaluating the extent to which a method is object­
oriented.

2.1 Objects and Classes

The fundamental concept that must be supported by an object-oriented method is
the object. An object encapsulates its internal state (or attributes) and provides
an interface (a set of operations) for manipulating the state. The way information
hiding interacts with the type system to provide objects differentiates Ada based
methods from those coming from the object-oriented world.

In class-based methods the information hiding module, called a class, has an asso­
ciated type. A class is a template which describes the attributes and interface of a
set of objects. Object instances are produced by defining class variables.

Package-based methods separate the type system from modules by providing un­
typed modules for encapsulating data. IT a module exports a private data type
then each variable of the type produces an object instance; otherwise the module
corresponds to a single object.

Both package-based and class-based methods can employ generic modules. A
generic module or class is a parameterised template that can be instantiated to
give a simple module or class. According to the method, the parameters can be
types, classes or operations.

A metaclass is a template whose instance is a class object. A class object has
attributes that contain information common to an entire set of objects of one class
and an operation to create new instances of that class.

Is the method class-based or package-based?
Does it support generic modules and/or metaclasses?

2.2 Inheritance

Inheritance is a relationship between classes in which the features of one class, called
a subclass, are defined in terms of one or more superclasses. This facility permits
the incremental development of designs and implementations. In single inheritance
each subclass is allowed just one immediate superclass, whereas multiple inheritance
permits more than one immediate superclass.

2

A design method can support subtype inheritance in which the subclass behaves
like its superclass for all the operations of the superclass. It may also support unre­
stricted inheritance which permits the subclass to change the signature or behaviour
of operations. .

Some methods allow the definition of abstract classes which cannot have instances
and exist solely to partially define the properties of its subclasses.

What type of inheritance does the method support?

2.3 Visibility

An object uses another object to perform a service by invoking an operation in the
used object's interface. This is called the client/server relationship between objects
and is fundamental because work in object-oriented systems is accomplished by
collections of interacting objects. In order for a client to be able to use a server, the
server has to be visible to the client. Methods differ in the degree to which object
visibilities can be expressed.

The aggregation relationship holds when one object is a component of another
object. Components have the same lifetime as the whole and are visible to the
whole.

Objects can use objects other than their components. A method may make no
restrictions and assume static global visibility. Scoping allows visibility to be re­
stricted statically. Visibility may be dynamic, for example a server object can
become visible to a client by parameter passing.

What visibility relationships does the method support?

2.4 Lifetimes

A method may be restricted to dealing with static systems of objects in which
all objects have the same lifetime as the system. If this is not the case then the
method must contain some facility for dynamically creating objects, for example by
instantiating a class. It is also desirable to be able to specify object destruction.
These two operations allow fully general systems to be modelled.

Does the method support object creation and destruction?

Not all objects are transient. There are a number of reasons why mechanisms to
maintain objects that live indefinitely are necessary. Some objects may simply
outlive one (or all) the executions of a program. In long lived object systems, some
objects may have to be written to storage for reasons of resource management.
To provide for these circumstances, a method may contain a facility for indicating
object persistence.

3

Does the method support object persistence'?

2.5 Concurrency

Because the real world is concurrent, concurrent objects are often used in the anal­
ysis stage to model it. Objects mesh nicely with concurrency since their logical
autonomy makes them a natural unit for concurrent execution. However, concur­
rent sharing is more complex than sequential sharing, requiring mutual exclusion
and temporal atomicity. The interfaces, internal structure and communication pro­
tocols of concurrent objects are more complex.

Normally objects are passive, because they are inactive until an operation is invoked
by a client. In contrast active objects have their own thread of control and may be
executing when the client attempts to send a message [i.e, invoke an operation).
An active object is internally concurrent if it has more than one thread of control.
Methods should support ways (e.g. monitors) for guaranteeing mutually exclusive
access to shared data in concurrent systems.

What models of concurrency does the method support'l

2.6 Communication

Objects constitute a loosely coupled model of computation, in which communi­
cation provides both information flow and synchronisation. The usual model of
communication is that only two objects are involved in anyone communication
with the sender having to know the receiver's identity but not vice-versa. The
information flow however, may be uni- or bi-directional.

Synchronous communication requires the sender to suspend execution until the re­
ceiver accepts the message, whereas asynchronous communication allows the sender
to continue. Further qualifications of synchronous communication are balking (abort
if receiver not ready) or timeout (abort if receiver not ready after some specified
period). Communication is reliable if the sent message is guaranteed to remain
available until the receiver is ready to accept it.

At the analysis stage methods often use an event model in which the communication
is instantaneous and atomic. For design, development methods often use more
complex communication primitives like those provided by implementations, e.g.
the procedure call for sequential systems and the rendezvous and remote procedure
call for concurrent or distributed object systems.

Mutual messaging between objects is important because of its use in model-view­
controller type designs. This category of object communication includes recursion,
where an object sends a message to itself and callbacks, where a server sends a
message to a client during the evaluation of a message from a client.

What models of communication does the method support 'I

4

3 Models

A development method proceeds by developing abstract descriptions, or models, of
the system under analysis or design. Each model is expressed in some notation.
In assessing a method it is necessary to consider the models it constructs and the
notations that it uses. The prime requirement is that the set of models should form
a complete and consistent description.

3.1 Kinds of Models

Three kinds of models can be produced. A physical model is concrete and concerned
with the actual structure of the software system and typically deals with such things
as code modules and processors. Logical models capture the key abstractions of the
system. Logical models can be separated into static models which emphasise the
structure of a system and dynamic models which deal with temporal and functional
behaviour. Another distinguishing feature is whether a model pertains to the system
or an individual component. A component can be atomic, i.e an individual class or
package, or a subsystem. In cases where more than one model captures the same
information there should be rules for checking consistency between the models.

What models does the method prescribe and what notation is used for
eachQ
Are there any aspects of a system that are omitted or any that are covered
by more than one modelQ

3.2 Notation

This section is concerned with the properties of notations used to capture models.
We consider their expressive power, whether their syntax and semantics are well­
defined and how well they scale-up.

3.2.1 Expressivity

The main issue for a notation is fitness for purpose. Notations can be pitched at
different levels of abstraction: they can use abstract or concrete data types and can
be declarative or operational. If a notation cannot directly represent the essential
concepts of the model, then the user has to encode this representation explicitly in
the terms of the notation. This leads to more complex and less easily understood
descriptions. These kinds of problem also afflict notations that are too verbose.

Are the method's notations appropriately expressive?

3.2.2 Syntax and Semantics

Not only should the notation be sufficiently expressive but it should also be well­
defined. The syntax of a notation is a set of rules which describe the primitive

5

components of a notation and the legal combinations of those symbols. Notations
can be textual or diagrammatic. There are well-known techniques, such as BNF, for
formally defining textual syntax. Techniques for defining the syntax of diagrams
are less well-established, however there should be a clear definition of the icons and
their legal combinations. A defined syntax is a requirement for effective use and
also for automated tool support.

Is there a syntax definition or does the syntax have to be deduced from
examples 'I

The semantics of a notation is a set of rules which gives the meanings of the syn­
tactic primitives and their combinations. In general, semantic definitions are more
complex than syntactic definitions. A well-defined semantics eliminates ambiguity
and is a pre-requisite for advanced tool support such as code generation or simula­
tion. More importantly, a semantics is necessary for allowing analysis and design
models to be examined and evaluated during development. There should be rules
for reasoning about models and for transforming one model into another.

Is there a semantic definition or does the semantics have to be deduced
from examples 'I
Does the semantics have a formal foundation?
Is there a logic for reasoning about or transforming models?

3.2.3 Scalability

Scalability is concerned with whether a notation can be used effectively on large
systems. Notations need a mechanism for partitioning descriptions into smaller and
more manageable modules and composing the whole from those modules. It should
also provide some means of controlling the visibility of names across modules, in
much the same way as programming languages provide mechanisms for controlling
the scope of names.

Does the notation provide a partitioning mechanism?
Are there rules for composing the meaning of a system from the meaning
of its modules?
Is there an explicit mechanism for defining the scope of names?

4 Process

We use the term process to characterise the steps that make up a method. A process
has two main roles: to drive the development to an appropriate implementation and
to assist progress tracking through the definition of milestones and deliverables.

First we look at the context of the software development in which a method is
useful and what part of the lifecycle it covers. We then discuss the properties of a
process including pragmatic issues such as flexibility and heuristics.

6

4.1 Development Context

Software development occurs in many different contexts. Most development meth­
ods are aimed at greenfield developments where there is no previous history of
software development and the only environment is that provided by for example an
operating system.

Adding functionality and reengineering requires a provision for the capture of func­
tionality and the extraction of suitable abstractions of an existing system before
the design can be modified to include the new functionality.

Does the process provide support for adding functionality to existing
systems and reengineering?

A further kind of development context is that of design with reuse. A process
which supports reuse requires a look ahead approach such that the common, useful
and hence reusable components can be identified. Once candidates for reuse are
identified one can search a library to see if reusable components already exist.

Does the process address the issue of design WITH re1JSe~

Reusable components and designs have to be developed, they are not just a by
product of using objects. A process needs to explicitly provide activities which are
intended to identify reuseability and support the development of reusable compo­
nents and designs. Typically the development of a reusable component will be a
design exercise in its own right, as a reusable component must not only satisfy the
immediate needs of the current development but must take a broader view of the
requirements for reuse.

Does the process address the issue of design FOR reuse?

4.2 Coverage of Lifecycle

In this section we identify some of the activities which constitute a software de­
velopment process. Many methods cover different parts of the lifecycle, not just
analysis or design. Therefore it is more useful to describe a method in terms of
the development activities it supports. These activities can be combined in various
ways to make up a particular process model, for example the spiral model.

The term design is applied very loosely by authors of methods, so that many meth­
ods which claim to be design methods also include aspects of analysis and imple­
mentation. For our purposes we will use the following definitions:

Analysis The purpose of analysis is to construct the logical model of the sys­
tem and its environment. At this stage there is an emphasis on describing
properties rather than the mechanisms which implement them.

7

Design In the design phase the system to be built is differentiated from its environ­
ment. The logical models produced during analysis are successively refined
and made more concrete, and a physical model is produced. The emphasis is
on the realisation of the properties as a software structure.

Implementation Implementation encodes the physical and logical models in a
particular programming language. At this point in the process all of the
structure and behaviour of a system will have been defined, and the emphasis
is on providing an encoding of the design using the primitives of a particular
language.

Which of these activities does the process support?

....-

4.3 Process Properties

A process should be repeatable and flexible so that it can be reused and adapted
to meet local requirements. Each process step must be defined in terms of its in­
puts and outputs, or in some other way. Since one step may produce an input for
another step, there are usually constraints on the order in which the steps can be
tackled. However a process definition should not force unnecessary sequentialisa­
tion. Wherever possible it should allow steps to be overlapped in time, in order
to exploit potential parallelism in the development. Similarly deliverables should
not be tied to particular notations because this makes it difficult to substitute
alternative approaches for particular activities.

Are the process steps well-defined?
Is the process flexible?

The adaptability of a process can be improved by the inclusion of guidelines, or
heuristics. These provide a means of identifying common situations and tackling
them in a previously used way. They should help to identify when it is appropriate
to perform a particular activity and how to begin the activity.

Are there heuristics?

The reasoning behind the decisions embodied in an implementation is invaluable
during software maintenance. It is important therefore to be able to trace the
connection between requirements and implementation. Traceability is aided if the
deliverable from one step is explicitly refined or developed during some subsequent
step. Naming conventions can also help by indicating relationships between models.

Is it possible to locate the origin of design decisions made during the
development?

8

A process should provide mechanisms to verify that an implementation meets its
requirements. Verification involves demonstrating that at each phase the models are
consistent with each other and with those from the previous phase. This requires
steps which show consistency by inspections, testing or proof.

Does the process provide for verification f(

A process should also include steps for validating whether a development meets the
customer's needs. This can be done through the construction of executable models,
e.g. through simulation or the use of prototypes, or by using notations which allow
the properties of models to be deduced.

Does the process provide for validation f(

5 Pragmatics

There are many pragmatic concerns that influence a methods uptake in the software
engineering community. These concerns can be divided into two categories: those
having to do with the human-method interaction and those pertaining to the utility
of a method in a particular application domain. Within these two categories further
distinctions can be made between those properties that are intrinsic to the method
itself and others that are external and possibly even transient in nature.

5.1 Resources

A concern when considering which method to adopt are the variety of resources
available to support its introduction and use. A course is often an appropriate
vehiclefor the first introduction. A textbook may be sufficientfor more experienced
developers and can serve as a reference document. Other discriminants for a method
include whether it is supported by more than one consultancy firm or CASE vendor.
Similarly the existence of user groups, workshops and conference tutorials tend to
suggest that a method is in widespread usage.

What resources are available to support the methodf(

No matter how straightforward a method is, almost all projects beyond a certain
size will require some form of tool support to assist the development of analysis
and design models. CASE tools can be distinguished by whether they provide
syntactic or type checking. Semantic processing is also desirable.simulation, code
generation and proof tools fall into this category. In general the existence of CASE
tools encourages the development of defacto standards for the method.

Are there CASE tools available to support the methodf(

9

5.2 Accessibility

Users are also concerned with how difficult it is to learn to use the method and once
learned, how usable it is. The background required of the user must be taken into
account. A distinguishing characteristic of methods is the level of mathematical
sophistication required to use its notations.

What background is necessary for someone learning the method?

5.3 Applicability

A method that is targeted at a particular implementation language is likely to have
limited applicability, since it may not fit well with languages that have a different
underlying semantic model.

Is the method targeted at a specific language?

Methods may be restricted to certain application domains. Rumbaugh et al [8] give
the following list as a starting point for what areas a method might reasonably be
expected to address:

Batch - A data transformation executed once on an entire input set.

Continuous transformation - A data transformation performed continuously as
inputs change.

Interactive interface - A system dominated by external interactions.

Dynamic simulation - A system that simulates evolving real world objects.

Real-time system - A system dominated by strict timing constraints.

Transaction manager - A system concerned with storing and updating data, often
including concurrent access from different physical locations.

Distributed system - A system subject to communication latency.

For what application areas is the method suitable?

10

6 Future Work

In this paper we have presented a set of criteria for comparing methods. We intend
to validate them by using them to compare all the major object-oriented analysis
and design methods. This study will be carried out as preparation for developing
a course on object-oriented development to be used by Hewlett-Packard engineers.
We expect that the systematic nature of our study will allow us to synthesise a
method which offers significant advantages over extant methods.

We would like to encourage others to use and improve our criteria by applying
them to diverse methods. We are keen to receive feedback on any such efforts. We
believe that this paper is a contribution to the systematic study of object-oriented
methods. In the long term it is only by the increased understanding of object­
oriented methods that the user community will get the methods that meet their
requirements. _ .

11

7 References
[1] G. Booch. Object-Oriented Design with Applications. Benjamin Cummings,

Redwood City, CA (USA), 1991.

[2] R.J.A. Buhr. Pructical Visual Techniques in System Design: with Applications
to Ada. Prentice Hall, Englewood Cliffs, NJ (USA), 1991. .

[3] P. Chen. The entity-relationship model- toward a unified view of data. ACM
Transactions on Database Systems, pages 9-36, March 1976.

[4] D. Coleman and F. Hayes. Lessonsfrom Hewlett-Packard's experience of using
object-oriented technology. In TOOLS 4, pages 327-333, Paris, 1991.

[5] T. DeMarco. Structured Analysis and System Specification. Yourdon Press,
New York, NY (USA), 1979.

[6] HOOD Technical Group. HOOD reference manual, October 1990.

[7] P. R.H. Place, W.G. Wood, and Mike Tudball. Survey of formal specifica­
tion techniques for reactive systems. Technical Report CMU/SEI-90-TR-5,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
(USA), May 1990.

[8] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object­
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ (USA),
1991.

[9] P. Wegner. Concepts and paradigms of object-oriented programming. OOPS
Messenger, 1(1):7-87, August 1990.

[10] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Soft­
ware. Prentice Hall, Englewood Cliffs, NJ (USA), 1990.

[11] D. P. Wood and W.G. Wood. Comparative evaluations of four specifica­
tion methods for real-time systems. Technical Report CMUjSEI-89-TR-36,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
(USA), December 1989.

[12] E.N. Yourdon and 1.L. Constantine. Structured Design. Prentice Hall, Engle­
wood Cliffs, NJ (USA), 1979.

12

