
WI'" HEWLETT
a:~ PACKARD

An Overview of HP-SL

Stephen Bear
Information Management Laboratory
HP Laboratories Bristol
HPL-91-31
March, 1991

formal;
rigorous;
specification;
industry

The Software Engineering Department of HP Labs is
developing and applying a small but powerful
specification language, HP-SL. This report provides an
overview of the language, its supporting tools and the
way in which it is being applied.

(c) Copyright Hewlett-Packard Company 1991

Internal Accession Date Only

1 Introduction

The Software Engineering Department of HP Labs in Bristol is working to apply, extend and
transfer the use of formal methods in an industrial environment.

Two programmes of work are underway to achieve these goals. One programme is develop
ing an industrial specification language, HP-SL. The other programme is establishing and
supporting the use of formal specification on real product developments.

This short paper reports some of our experience. Section 2 is the main part of the report; it
provides an informal overview of the specification language HP-SL. Section 3 describes the
tools developed to support HP-SL. Section 4 sketches our approach to transferring formal
specification into HP.

1.1 Specification for Industry

Industrial training in formal specification must address two issues simultaneously.

• The idea of specifying a system by giving mathematical definitions.

• The details of a language in which to express such definitions.

Training at the start of a project is a visible cost, so it is important to be able to present these
ideas quickly and efficiently. An industrial specification language must reduce the 'language
overhead' as much as possible. However, the language must not be overly restricted. It
must be flexible enough and powerful enough to define varied products in a natural way. In
particular the language should not impose a single idiom.

HP-SL has been designed to address these concerns. It is a small and regular language. Two
concepts are fundamental: abstract types and underspecified total functions. Building upon
this foundation, the language provides the usual specification concepts. It is also flexible.
Definitions may be given in assertional, pre-post or explicit styles. These different approaches
are integrated in a uniform framework, so a single function may be specified in any mixture
of the styles.

Polymorphic functions and 'new' type constructors may be defined. This makes it possible
to effectively extend the language and to create new idioms. A very successful example,
'History Specification' is described in [3].

A complete definition of HP-SL is beyond the scope of this paper, but a more detailed
description of the language may be found in [5]

1

2 An Overview of HP-SL

The objective of this section is to give an overview of the HP-SL language and the specifica
tion style that it supports. We assume that the reader is familiar with other model oriented
specification languages, such as VDM [1].

An HP-SL specification consists of a collection of definitions-definitions of types, values
of types, functions or relations over the types, and assertions about types or values. The
definitions may be interspersed with narrative text.

2.1 Basics

Predefined Types

HP-SL provides a number of pre-defined types including Bool, Char and Real. Values of
these types may be defined explicitly or implicitly.

val ten : Real ~ 10
val delta : Real sat delta > 0 /\ delta < 0.05
val number : Real

These definitions introduce three named values: ten is an explicitly defined value of type Real;
delta is an underspecified value of type Real which satisfies the constraint delta > 0 /\ delta ~ 0.0
number is an underspecified value of type Real which is not constrained.

Predefined Type Constructors

HP-SL provides a number of pre-defined type constructors. These include the set and se
quence type constructors Set, Seq, the map and function type constructors ~, ~ and the
tuple type constructor x. Later, we will see how new type constructors may be defined.

val realset : Set Real ~ { 1, 2, 3, 4 }
val realseq : Seq Real ~ ~ 1, 2, 3, 4 >
val realmap : Real ~ Real A [1· 1-+ 1, 2 1-+ 4, 3 1-+ 9]
val real/un : Real. ~ Real ~ (..\ x : Real . x*x)
val .realpair : R~al x Real ~ (1, 2)

2

This fragment of HP-SL defines values of a number of types: realsei is the set of real numbers
1,2,3 and 4. realseq is the sequence of real numbers 1,2,3,4. realmap is the map of the real
numbers 1,2,3 to their squares. realfun is the function of the. real numbers to their squares.
Finally realpair is the pair of real numbers (1, 2).

Synonym Types

It is often convenient to give a name to an existing type or a type expression. In HP-SL this
is done by a synonym type definition.

syntype RealPair I:::. Real x Real

This definition introduces a new name RealPair for the type denoted by the expression
Real x Real. The definition does not introduce a distinct type. A value of type RealPair
may be used wherever a value of type Real x Real could be used, and vice-versa.

Subtypes

Sometimes it is useful to define those elements of a type which satisfy some property. Such
a collection is called a subtype. The property satisfied by elements of the subtype is called
the invariant.

In HP-SL a subtype is defined by a type expression with an invariant clause. A subtype is
often named by a synonym type definition.

syntype Positive ~ Real inv r . r > 0

This fragment of HP-SL defines a subtype of type Real which consists of all real num
bers which are strictly greater than zero. The subtype is defined by the type expression
Real inv r . r > o. The invariant clause is introduced by the language word inv which is
followed by a pattern r and then the invariant predicate r > o.
HP-SL provides a number of predefined subtypes, including Int, NatO and Natl.

2.2 Functions

Functions may be defined using a typed lamda calculus.

3

val realsqr : Real -4 Real t:. (A x : Real . x*x)

realsqr is a function oftype Real -4 Real defined by the lambda expression A x : Real . x*x.

As a derived form, HP-SL provides a syntax which is closer to that used in programming
languages, and is more familiar to engineers.

fn realsqr : Real -4 Real is
realsqr(x) ~ x*x

These two definitions of realsqr are equivalent.

Strictly, HP-SL functions have precisely one argument-multiple arguments are combined
by the tuple type constructor. However, function application is by juxtaposition, so the
resulting syntax is simple and looks natural.

fn realmultiply : Real x Real -4 Real is
realmultiply(e, y) ~ x*y

val six ~ realmultiply(2, 3)

HP-SL functions are higher-order. Functions may accept other functions as arguments. In
particular, functions may be defined in a 'curried' form.

fn realmultiply : Real -4

realmultiply(x)(y) t:.

Real -4 Real is
x*y

Curried functions may be partially applied.

4

val double: Real ~ Real ~ realmultiply(2)

double is a function of one real which doubles its argument.

Implicit Definitions

Implicit definitions are frequently more convenient than explicit definitions. HP-SL implicit
definitions are conventional-a post-condition is given to define the relationship between the
value returned by a function and the values of its arguments.

fn prime_factors : Natl ~ Seq Natl is
prime_factors(n)
return s

post
product(s) = n A
(V P E elems(s) . is.prime (p))

This is equivalent to defining a value of the function type which satisfies the post condi
tion.

val prime.factors : Natl ~ Seq Natl sat
(V n : Natl

let val s ~ prime.factorsi n) in
product(s) = n A
(V P E elems(s) . is_prime(p))

endlet
)

Partial Functions

Functions are not always well-defined for every value in the domain type, for example stan
dard real division is not well-defined for divisor O.

In HP-SL all functions are total functions, but a pre-condition may be used to explicitly

5

indicate where a definition applies. For example, a divide function could be defined as
follows

fn divide : Real -+- Real -+- Real is
divide (divisor)(numerator)

pre divisor =f: 0
return quotient

post quotient * divisor - numerator

The pre-condition in this definition does not restrict the domain of the function, it indicates
where the definition constrains the function. It is equivalent to

fn divide : Real -+- Real -+- Real is
divide(divisor)(numerator)
return quotient

post
divisor =f: 0 => quotient * divisor - numerator

The application of a function to a value which does not satisfy the pre-condition is a valid
expression. The following definition

val divide_by-zero : Real -+- Real ~ divide 0

is valid. The function divide_by_zero is some function of type Real -+- Real but it is not
constrained by the abo~e definition of divide.

2.3 Incremental Definitions

When dealing with large systems it is convenient to be able to present specifications 'bit
by bit'. In HP-SL, values may be defined by a series of definitions. Consider the following
trivial example

6

val zero : Real
assert non_positive ~ zero :s; 0
assert non_negative ~ zero > 0

This fragment of HP-SL consists of three definitions. The first definition introduces zero an
unconstrained value of type Real.

The next definition is an 'assertion' called non_positive. An assertion is not a statement of
some property which can be proved from other definitions. It is a definition which imposes
a constraint on the specification. In this case it constrains the value zero to be less than or
equal to o. The second assertion, non_negative further constrains the value to be greater
than or equal to o. The overall effect is to define a value which satisfies both constraints.

Above we gave a definition of the function divide which constrained the function for non-zero
divisors. We can give an assertion which ensures that division by zero always returns the
value o.

assert zero.dioisors ~ (V x :Real . divide (0)(x) - 0)

An alternative approach is to give multiple definitions. The following further definition of
divide constrains the function for zero divisors. It has the same effect as the assertion-it
ensures that division by zero returns the value o.

fn divide : Real -+ Real -+ Real is
divide (divisor)(numerator)

pre divisor = 0
~ 0

2.4 Abstract Types

Defining New Types

In HP-SL, a 'new' type is introduced by an type definition. This should be contrasted with
a synonym type definition which just introduces a new name for an existing type.

7

type Person
type Contents

The type Person and the type Contents are new types which are distinct from all other
types.

Such types are called abstract types because they have no 'internal structure', other than
that implied by functions operating on the type. IT there are no functions which operate on
Person and Contents we know nothing more about them. This is equivalent to stating that
properties and attributes of the type are irrelevant to the specification.

Abstract Types and Explicit Assertions

We can impose some structure on an abstract type by defining functions, and explicitly
constraining the functions by assertions. We will explain this by presenting an example in
detail. Afterwards, we will discuss some shorthand which makes such definitions much easier
to write.

type Message

fn message: Person x Set Person x Contents -+ Message
fn sender: Message -+. Person
fn recipients : Message -+ Set Person
fn contents : Message -+ Contents

These definitions introduce a new abstract type, called Message, and four unconstrained
functions: one which constructs values of type Message and three which 'project' into other
types. We can constrain these functions by giving an assertion.

assert messaqe.projectors ~

('V (p:Person, sp:Set Person, c:Contents) .
sender(inessage(p,sp,c)) = p 1\
recipients(message(p,sp,c)) = sp 1\
contents(message(p,sp,c)) = c)

8

The assertion ensures that, for any value of type Message constructed by the message func
tion, the projector functions return the appropriate components.

A consequence of this assertion is that there is no 'confusion' between values constructed by
message. Two values message (Pl,SPl,Cl) and message (P2,Sp2,C2) of type Message are equal
if and only if Pl = P2 and SPl = SP2 and ci = C2.

We may also want to say that all values of type Message can be constructed by the con
structor function. This is ensured by the following definition.

assert no_funk_message ~

(V m:Message . (3 (p:Person, sp:Set Person, c:Contents) .
message(p,sp,c) = m))

This example shows that an abstract type may be defined by giving underspecified functions
and then constraining the functions by assertions. This is a powerful approach, but it is
too complex for routine industrial use. In the next section we will look at some 'shorthand'
derived syntax which provides easy ways to give common definitions.

Record Types

The abstract type Message was defined by giving a constructor function, projectors, and ex-
plicit assertions which ensured that the type was isomorphic to Person x Set Person x Contents.
One way to think of such a definition is as a 'tagged record' type. This is a very common
kind of definition, and HP-SL provides a convenient short syntax.

type Message ~

[message Co

(sender : Person,
recipients : Set Person,
contents : Contents) D

This definition of the type Message is equivalent to that given in the previous section. The
constructor function, projector functions and the assertions are derived systematically from
the syntax.

The details of the type are contained within special brackets [...]. The name of the
constructor function message is followed by a delimiter Co. This is followed by the names and

9

type of the 'components'. These names allow us to derive the signatures of the constructor
and projector functions.

fn message : Person x Set Person x Contents -+ Message
fn sender : Message -+ Person
fn recipients : Message -+ Set Person
fn contents : Message -+ Contents

A number of other functions are also derived. These include an 'is' function.

fn is.messaqe : Message -+ Bool is
is.messaqe (m) ~

(3 (p:Person, sp:Set Person, c:Contents) . message(p,sp,c) - m)

The projectors assertion and the no junk assertion may also be derived systematically. The
no junk assertion may be stated in terms of the is function.

assert no_junk_message ~

(V m:Message . is.messaqe (m))

So the 'record type' syntax is a shorthand for the full definition of the abstract type, the
constructor and projectors, and the assertions. We will call the derived functions and asser
tions, 'default' functions and assertions. They may be used just as if they had been defined
explicitly.

Multiple Constructors

It is straightforward to extend this approach to allow more than one constructor. Syntacti
cally, constructors are just separated by a vertical bar I.

10

type RealTree ~
[leaf l> leaf_value : Real]
[node l>

(left : RealTree ,
right : RealTree)]

This definition defines a type of tree where values are stored at the leaves.

A number of default functions and assertions are derived from the definition. Firstly, there
are two constructors

fn leaf : Real ~ RealTree
fn node : RealTree x RealTree ~ RealTree

and their associated projectors.

fn leaf_value : RealTree ~ Real
fn left : RealTree ~ RealTree
fn right : RealTree ~ RealTree

The default projector and no junk assertions are derived. The projector assertions apply
to each constructor separately. The no junk assertion applies jointly-it ensures that all
values of type RealTree are constructed by either leaf or node. It may be stated using the
default is functions.

assert no_junk_realtree ~ (V t : RealTree . is_leaf(t) V is_node(t))

Two further default assertions are derived: no confusion and induction.

If a type has multiple constructors, the projector assertions are not enough to ensure that
there is no confusion. We need to ensure that the values constructed by different constructors
are distinct. This is achieved by the no confusion assertion.

11

assert no.confusion.realtree ~

(V t:RealTree . .., (is_leaf(t) A is_node(t)))

Together with the projector assertions, this ensures that values of RealTree are equal if and
only if they are constructed by the same constructor and the corresponding constructor
arguments-components-are equal.

If a type is 'recursive'-that is, if a constructor function includes the type in its domain
then the no junk assertion is not enough to ensure that we can reason about all values of
the type. This is achieved by the induction assertion.

assert induction.realtree ~

(V p : RealTree -+ Bool
(V x:Real . p(leaf(x))) A
(V (tj :RealTree, tz:RealTree) . p(td A p(tz) =} p(node(tv tz)))
=}

(V t :RealTree . p(t))
)

Constant constructors

Often, we wish to give constants as well as constructor functions. This is done by allowing
the constructors to be named constants.

type RealStack ~

[empty] I
[push t>

(pop : RealStack,
top: Real)]

The type RealStack has two constructors: the constant empty and the function
push : RealStack x Real -+ ReaIStack.·

The constant empty does not have any projectors. The constructor push has two projectors:

12

pop and top.

Together with the default derived assertions, this is essentially equivalent to the usual initial
algebra definition of a stack abstract datatype.

Enumerated Types

Sometimes, we want to define a type by enumerating its values. In HP-SL we simply give
the constructor constants.

type Colour ~ [red) I [green) I [blue)

The type Colour consists of precisely the constants red, green and blue. The default no
junk assertion ensures that there are no other values, and the default no confusion assertion
ensures that they are distinct values.

2.5 Relations

Specifying relationships between values is a fundamental specification technique. The basic
approach is to define relationships by Boolean valued functions. For example, consider

fn less.ihan : Int x Int --+ Bool is
less.ihan (x,y) b. X < y

The values x and yare related, if and only if the expression lees.ihan (x ,y) is true.

In model oriented specification, such definitions are very common. HP-SL provides a derived
syntax which emphasises the fact that we are interested in the relationship rather than the
value returned by the function. For example the function lees.than may be written as follows.

reIn less_than : Int x Int is
less.iium (x,y) ~ x < y

13

2.6 State and Operations

A typical model oriented specification of a system provides definitions of system state and
operations which can update that state.

In HP-SL the system state is modelled by a type; operations on the system state are modelled
by functions or relations.

HP-SL does not distinguish the system state typ~it is defined and referenced in exactly
the same way as other types. Its special role in the specification is explained by the narrative
text and not by the syntax. One consequence of this approach is that there is no 'frame
condition'-if an operation leaves part of the state unchanged, then the definition must say
so.

To illustrate this style we give a specification of a trivial spell-checker system. The system
maintains a dictionary of known words and has two operations. The first checks whether or
not a given word is in the dictionary; the second will add a given word to the dictionary.

The dictionary contains words. We do not need to know anything about the properties of
words, so they are modelled by an abstract type, Word.

type Word

The system dictionary is a collection of words, modelled as a set of words.

syntype Dictionary ~ Set Word

The checkword operation takes a single word and checks whether or not it is in the dictionary.
If it is in the dictionary, it returns the value true; if not, it returns the value false. In either
case, the system dictionary is not changed. We will model this operation as a function.

fn checkword : Word x Dictionary -+ Bool is
checkword (word, sys_dictionary") 6. word E sys_dictionary

In this definition, the word to be checked is word and the system dictionary is sys_dictionary.
Since this is a function, the system dictionary is not changed.

14

The addword operation takes a single word and adds it to the dictionary. We model this
operation by a relation.

reIn addword : Dictionary x Word x Dictionary is
addword (sys_dictionary, word, sys_dictionaryJ)

~ sys_dictionaryJ = sys_dictionary U {word}

In this definition, the initial value of the system dictionary is sys_dictionary, the word to
be added is word and the final value of the system dictionary is sys_dictionaryJ. The choice
of names for the formal parameters of the relation are, of course, quite arbitrary. Current
use of HP-SL follows the convention that the name of the initial value of system state is
undecorated, and the final value is decorated by a prime.

2.7 Polymorphism

Polymorphic Functions

In HP-SL, it is possible to give polymorphic definitions. For example, the following defines
a polymorphic function which returns the last element of a sequence. (The operator elem
turns the sequence into a function).

fn 0 T D last-element : Seq T -+ T is
last-element(s)

pre len s =F 0
~ (elem s)(len s)

The special brackets 0 Dat the start of the definition introduce a type variable, T, which
represents any type.

A polymorphic definition may be thought of as a finite representation of an infinite family
of definitions-one for each binding of the type variable to a type. The above polymorphic
definition introduces, amongst others, the functions

. fn last-element : Seq Real -+ Real
fn last-element : Seq Bool -+ Bool

15

fn last.element : Seq (Real x Real) -+ Real x Real

Type Constructors

Polymorphism also allows us to give new type constructors. For example we can define a
general Tree type constructor.

type Q T D Tree ~

[leaf l> leaf_value : T]
[node l>

(left : Tree T,
right : Tree T)]

This introduces an abstract type constructor, and associated polymorphic default functions
and assertions.

A new type constructor may be used in exactly the same way as a pre-defined type construc
tor. In the following example, notice that there is no distinction between the pre-defined
constructor Set and the new type constructor Tree.

fn a T D leafvalues : Tree T -+ Set T is
leafvalues(tree) ~

if isJeaf(tree) then {leaf_value (tree)}
else leafvalues(left(tree)) U leafvalues(right(tree))
endif

The function leafvalues collects the set of values associated with the leaves of a tree.

We can also define synonym type constructors,

syntype a T D Bag ~ T ~ Natl

and give associated functions explicitly.

16

fn 0 T D counLelement : T x Bag T ~ NatO is
count.element (elem, bag) li.

if elem E dom bag then lookup bag(elem) else 0 endif

3 Tools to support HP-SL

The HP-SL toolset supports a style of literate specification by allowing the production of
documents containing both formal specification and narrative text. Specifications written
in HP-SL can be easily incorporated into documents written using the U-TEX document
preparation system.

The toolset provides syntax and incremental typechecking, via an interface built upon
the GNU Emacs editor [4]. A document is prepared in, or read into, a normal Emacs
buffer. Commands bound to Emacs key-sequences invoke the parser and, optionally, the
type checker. The parser and type checker work upon an item or region, which contain
one or more HP-SL definitions. Definitions may be parsed in isolation; the type checker
maintains an 'environment' of type information.

Incremental checking provides fast response and encourages developers to check their work
as they write it. Any errors message from the parser or type checker are displayed in a
separate Emacs window. Commands are available to move the editor cursor to the point at
which each error is detected.

A specification document is formatted by a filter which replaces HP-SL Ascii syntax with
appropriate U-TEX commands, and then invokes the normal U-TEX to DVI translator. The.
resulting document may be printed, or previewed at a workstation.

The toolset also provides a network-transparent database which allows several different doc
uments, perhaps written by several members of a project, to share the same pieces of HP-SL
specification. Items in the database are under version control and a document may refer
to a particular version of an item, or to the 'latest' version, simplifying the task of keeping
several separate but related documents in step during the design process.

4 Technology Transfer

A major objective of the Software Engineering Department is to demonstrate that the ap
propriate use of formal specification results in faster development of better quality software.
We are working with a series of projects which can be used internally as examples and case
studies.

17

Our current partners include two medical products, a CAD system and a pure software
system. These are real product developments, not investigations or feasibility studies.

We have established a technology transfer model which helps to ensure that, even in the
short term, the process of learning and using the technology is a net benefit.

The most important aspect is that we provide project centred training and support. We do
not give general courses in the hope that some people might tryout the ideas. We establish a
close contact with a project team and work with them throughout the product development.

The process begins by identifying a suitable project. The criteria which we apply include
the following.

• The project should be a mainstream product development involving new software.

• The project should be scoped, but work on the software must be at an early stage.

• The software team should be reasonably small, and enthusiastic about using a better
development approach

Once a project has been identified, there is an investigation phase, which we use to develop
an understanding of the application area. As a result of the investigation a joint proposal is
made; this explains how formal specifications will be applied to the project and what benefits
are expected. It is important that the management chain supports the collaboration.

The collaboration is launched with a two week visit by two people from HP Labs. The
first week is a training course which covers simple discrete maths and the HP-SL language.
The last day of the course is used to develop a prepared case study. The second week is
a workshop which begins the process of applying HP-SL to the project itself. By the end
of the workshop there is a firm technical strategy, and the project is using the specification
language independently.

After the project launch we stay in contact with the project. We provide support by regular
use of telephone, electronic mail and teleconference links. Further visits, by both sides, take
place as the project proceeds.

All of our collaborations are still in progress, and none has yet reached product release, but
initial results have been very encouraging. The language and the approach are transferable
and help provide a faster, more efficient development process.

5 Acknowledgements

HP-SL is a model oriented specification language in the tradition of VDM, [1] and RAISE
[2]. The concept and the detailed design of HP-SL are due to Patrick Goldsack. Errors and

18

omissions in this presentation are mine.

6 References
[1] Jones C B. Systematic Software Development Using VDM. Prentice-Hall, Second edition,

1990.

[2] Havelund K. and Haxthausen A. RSL Reference Manual. Technical Report
RAISE/CRl/DOC/2/Vl, Computer Resources International, 1990.

[3] Harry P. History Specifications. HPL Technical Memo in Preparation, 1991.

[4] Stallman R. The extensible, customizable, selfdocumenting, display editor. In Interactive
Programming Environments. McGraw-Hill, 1984.

[5] Rush T., Harry P., Ferguson T., and Oliver H. Case studies in HP-SL. Technical Report
HPL-90-137, Hewlett-Packard Laboratories, Bristol, 1990.

19

