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Abstract

Domain mismatch and schema mismatch are two of the important semantic integra-

tion problems for interoperating heterogeneous databases. This paper structures the

domain mismatch problem, illustrates approaches to its solution, and then extends this

to the schema mismatch problem. Structuring of the problem and solution includes

notions of conceptual territory, spheres, domain groups, localized and integrator func-

tions, and type and function groups. Despite this structuring, the full generality of

the problem still requires a rich language in which to describe the rules for reconciling

discrepancies. Example solutions are illustrated in the Iris Programming Language

(IPL) extension of Iris OSQL.
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1 Introduction

Domain mismatch and schema mismatch are two of the important semantic integration
problems for interoperating heterogeneous databases, as illustrated in [Ke, BL, DH]. Domain
mismatch generally arises when several databases treat some common conceptual territory
in di�erent ways, the simplest example being di�erences in units of measurement. Schema
mismatch is much the same thing at the schema level; an interesting \cross-over" problem
arises when things in the data of one database correspond to things in the schema of another.

In this paper we structure the domain mismatch problem, illustrate approaches to its solu-
tion, and then extend this to the schema mismatch problem. Structuring of the problem and
solution includes notions of conceptual territory, spheres, domain groups, localized and inte-
grator functions, and type and function groups. Despite this structuring, the full generality
of the problem still requires a rich language in which to describe the rules for reconciling
discrepancies. Example solutions are illustrated in the Iris Programming Language (IPL)
extension of Iris OSQL [An, Ly, F1, F2], with some further extensions being proposed as
well.

To isolate these problems from other integration problems, we assume that the participating
databases have been mapped into a single model, namely the Iris functional object model
[AR]. We also avoid naming and identi�cation problems, as well as other problems associated
with the integration of heterogeneous databases. For the purpose of this paper, it hardly
even matters whether things are in di�erent databases; such semantic discrepancies could
arise as well within a single database.

This work is part of the Pegasus project at HP Labs [AD, PP], which is prototyping an
extension of Iris to integrate heterogeneous databases.

2 The Domain Mismatch Problem

2.1 Territories, Spheres, and Groups

The domain mismatch problem begins when some common conceptual territory is treated
in di�erent ways by di�erent domains in di�erent spheres. Spheres are usually di�erent
databases, but could also be subsets of the schema and data of one database, and might also
span multiple databases. One sphere might be included in another. In Figure 1, the spheres
might be databases in di�erent countries for a multi-national corporation.

Conceptual Spheres
Territories US France Germany

money m1 m2 m3  domain group
jobs j1 j2 j3  domain group

colors c1 c2 c3  domain group

Figure 1: Domains.
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A domain group is a set of domains di which cover some conceptual territory. Each domain
di is typically in a distinct sphere si. In Figure 1, the domains m1, m2, m3 might be di�erent
currencies in which money is represented.

When the conceptual territory is a measured quantity, such as weight, the di�erent domains
in the group would simply be di�erent representations expressed in di�erent units; this
mismatch is easily reconciled by arithmetic. The spheres might be di�erent databases, or
they might be di�erent sets of measurements in the same database, e.g., the weights used
for cars and the weights used for horses.

More complex discrepancies arise when the same conceptual territory is perceived as being
populated, or partitioned, in di�erent ways. The concept of \job" might be common to
several spheres, yet each sphere has a di�erent notion of what the speci�c jobs are. One
sphere might have engineer, secretary, and salesman as jobs, while the jobs in another might
include technician, designer, engineer, secretary, administrative assistant, and customer rep-
resentative. The same thing might arise with the sets of skills one might possess, or with
ethnic groupings, or with organizational units within di�erent business entities (projects,
departments, sections, labs, divisions, groups, operations, sectors, etc.).

Other examples might include di�erent palettes of colors covering the same spectrum, dif-
ferent grading systems at di�erent schools, di�erent rating systems for restaurants (or for
movies, or for hotels, etc.), terms in di�erent languages for the same or similar concepts,
di�erent kinds of geographic units (counties vs. postal codes vs. voting districts vs. assess-
ment districts, etc.). Another kind of mismatch arises if things are represented in one sphere
as character strings but in another as persistent objects.

Many examples in this paper deal with employees receiving salaries in di�erent curren-
cies. Some examples try to reconcile a sphere in which jobs are represented as character
strings (JobSphere1) with another sphere in which they are represented as persistent ob-
jects (JobSphere2). When we consider schema mismatch, we will introduce JobSphere3 in
which jobs occur as types. We will also use a stock market example, as in [KL], to illustrate
schema mismatch.

2.2 Domain Mappings

The existence of di�erent domains is not in itself a problem. So what if di�erent databases
represent money in di�erent currencies? It only becomes a problem when there is a need to
see them all in some integrated way. An important part of the solution is to be able to map
between the domains in a group.

A mapping �Di;j translates from elements of di to elements of dj in a group D. The mappings

for the group might be provided as a single domain group mapping �D(di; dj; x) which takes
as arguments a source and target domain, together with an element of the source domain; it
returns a corresponding element of the target domain. It might simply invoke a corresponding
direct mapping

�D(di; dj ; x) = �Di;j(x);

or it might do the conversion directly, based on appropriate conversion factors.
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2.3 Localized Functions and Integrators

Still, one doesn't simply look at currencies; what we want to integrate are some facts involving
those currencies. The situation isn't interesting until the various spheres have some stock
prices, or some employee salaries, or other such facts. In a functional model, such facts are
represented as functions; the facts of interest correspond to a set of functions

fi : ti! di

associated with the spheres si. These might, for example, be salaries of di�erent sets of
employees in a multi-national corporation, expressed in di�erent currencies.

The existence of such functions and domains is still just a situation. It only becomes a
problem when we want to see these facts in an integrated way, via an integrator function

f� : t�! d�

which might, for example, provide the salary of any employee, or the price of any stock.

Thus in most cases, the treatment of domain mismatch can be separated into two parts:

� Mappings between domains (corresponding to the mappings in [KL]).

� Integrator facilities which use such mappings (corresponding to the rules in [KL]).

Currency conversions represent mappings between di�erent domains, i.e., di�erent ways of
representing the territory of money values. The mapping is independent of usage.

Integrator facilities depend on how the domains are being used. The paradigm for reconciling
stock prices in di�erent currencies may di�er from the paradigm for reconciling salaries in
di�erent currencies, even though the same currency conversions are used. We might wish to
see the average of stock prices but the sum of salaries.

Domain mappings aren't always independent of usage. We will also examine usage-dependent
mappings.

In later sections we will examine the de�nition and maintenance of domain mappings in
detail, and then we will examine the de�nition and update of integrator functions.

2.4 Identifying Domains

Domains often correspond to types in the various spheres. One would ideally hope to �nd
the relevant domain speci�ed as the result type1 in a function signature, e.g.,

1\Domain" in the context of domain mismatch does not necessarily mean the domain of a function. A domain here can

correspond either to the argument type or result type of a function.
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Salary: Employee ! Dollars.

Unfortunately, domains often aren't modeled as types. When literal subtypes can't be de-
�ned, the result types of many functions are typically given as literal data types, such as
Real or Char, without identifying the unit of measure, currency, or other relevant domain.
Currencies might simply be identi�ed by character string names, in which case the domain
group Currency might simply be an enumerated subtype of Char consisting of the names of
the currencies.

The actual domain might not be recorded anywhere, or it might be speci�ed in the schema
(dictionary) as an auxiliary property of the function. It might occasionally be returned with
the function result, in some self-describing format (e.g., a Salary function might return both
a money value and a currency code). It might conceivably be deduced from the type or some
other property of the argument, e.g., the nationality of the employee.

We can't manage domain mismatch without identifying the domains involved. We therefore
postulate some function �(f; x) which identi�es the domain of the result returned by f(x).
It may or may not depend on the argument value x. As mentioned, in the ideal case �(f; x)
would simply return the result type from the signature of f , which might often be a literal
subtype.

Whether or not a domain di is a type, we can model it as a predicate such that di(x) is true
if and only if x belongs to the domain. The populations of domains might be de�ned by
various rules, in much the same way as derived types [Appendix A.2]. One might be de�ned
as the current set of results for some function; e.g., in JobSphere1 the domain of jobs might
be whatever jobs people happen to be holding at the moment:

JobName ::= fx j 9y AsgJob(y) = xg,

or it might be de�ned as the set of jobs about which some data is maintained:

JobName ::= fx j 9y JobSpecs(x) = yg.

This latter form might correspond to a domain de�ned as a primary key in a relational
database.

Domains could be aggregate types, such as sets or tuples, but our examples only show atomic
domains.

3 Schema Mismatch

Schema mismatch arises when similar concepts are expressed di�erently in the schema. A
common byproduct is that data instances in one sphere correspond to schema elements in
another. Depending on the model, the schema elements might be such thing as relations
and attributes, entities and relationships, classes and methods, types and functions, etc. Our
work will be expressed in terms of the types and functions in the Iris functional object model
[F1, F2].
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Many schema mismatch problems are really domain mismatch problems, except that some of
the domains are in the schema instead of in the data. Jobs, for example, are often modeled
as types, i.e., subtypes of Employee. Instead of AsgJob(Sam) = Engineer, we know that
Sam is an engineer because he is an instance of the type, i.e., Engineer(Sam) is true. We
thus have a JobSphere3 in which jobs are types. In this case the domain itself is a set of
types, i.e., the JobType type group [Appendix A.3].

An example involving functions is adapted from the stock market examples of [KL]. We have
a sphere StockSphere1 containing a base stock market Activity function on three arguments

Activity: Company � Reading � Date ! Price

whose extension at the moment is shown in Figure 2.

Activity

Company Reading Date Price

hp close 1/3/91 50

hp close 1/4/91 51

hp high 1/3/91 52

hp high 1/4/91 53

ibm close 1/3/91 52

ibm close 1/4/91 51

ibm high 1/3/91 55

ibm high 1/4/91 54

Figure 2: StockSphere1.

Another sphere StockSphere2 might maintain the same data in separate functions for each
company, such as

HPActivity: Reading � Date ! Price
IBMActivity: Reading � Date ! Price
...

The corresponding extensions of two of these functions are shown in Figure 3.

In StockSphere1 the domain of interest is a set of Company instances in the data. In
StockSphere2 the corresponding domain is a set of functions, i.e., it is a function group
ACFuncs.
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HPActivity IBMActivity

Reading Date Price Reading Date Price

close 1/3/91 50 close 1/3/91 52

close 1/4/91 51 close 1/4/91 51

high 1/3/91 52 high 1/3/91 55

high 1/4/91 53 high 1/4/91 54

Figure 3: The ACFuncs function group in StockSphere2.

4 The Nature of Domain Mappings

Mappings among domains may generally have a wide variety of characteristics [BL, DH]:

� Domain mappings could be multi-valued, e.g., a job in one company might correspond
to a set of possible jobs in another company, or a color in one palette might correspond
to several possible colors in another.

� Domain mappings might be usage-dependent, involving auxiliary rules inseparable from
the integrator functions. Thus an 85 might be a B for undergraduate courses, but an
A for graduate courses. The mapping for jobs might depend on other attributes of the
job-holder, such as length of time in job, or education level.

� The mapping might be natural, like a units or currency conversion, or arbitrary, like
mappings between jobs or colors, or the mapping from numeric grades to letter grades.
It might be an arbitrary estimate, such as a mapping from letter grades into numeric:
A!95, B!85, etc. Such estimates might be provided to facilitate statistical computa-
tions over large sets of students receiving both letter and number grades, even if there
is some loss of accuracy.

� If the mapping is not 1:1, then it does not have a (single-valued) inverse. There is no
natural inverse of the mapping from numeric grades to letter grades. If an arbitrary
estimate is introduced to serve as an inverse, then identity may not be preserved in
composition: a 90 might map to an A, then map back to a 95.

� Mappings might be provided only among existing domains, or a new domain might be
introduced to serve as a common denominator. ECU (European Currency Units) is
such a common denominator for national currencies. Or, di�erent systems for grading
restaurants (movies, etc.) might be arbitrarily mapped into \low", \medium", and
\high".

� Domain mappings might be extended to yield auxiliary information besides a target
domain value. The result might also include information about the source domain,
or about the mapping process. Thus a conversion to dollars might yield the result
< 55:45; UK; 1:85 >, i.e., a dollar value, the country of origin, and the conversion
used.
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That catalog of mapping characteristics illustrates the complexity of the domain mismatch
problem, showing that a rather rich language is required for its solution. For our present
purposes, we make the simplifying assumption that most useful domain mappings are usage-
independent, and return simple single-valued results.

We should assume mappings are identities on a single domain: �D(di; di; x) = �Di;i(x) = x.

The actual algorithms of domain mappings can be very rich and complex, involving various
forms of computation and assertion, requiring a \computationally complete" language for
their expression. (It could be procedural or declarative.) Following are a few examples in
IPL.

Simple numeric conversion:

CREATE FUNCTION MapFoot2Inch(Number f) ! Number AS
RETURN 12 � f;

Non-algorithmic conversion might be done by some form of conditional (case statement, rule,
etc.):

CREATE FUNCTION MapColorsUS2French(Char us) ! Char AS
RETURN
IF us = `red' THEN `rouge';
ELSE IF us = `white' THEN `blanc';
...
ELSE `unknown';

If the domains are large, or the mapping is frequently updated, it might be de�ned as a
stored function

CREATE FUNCTION MapColorsUS2French(Char us) ! Char fr AS STORED;

to be maintained by assertions such as

MapColorsUS2French(`red') := `rouge';
MapColorsUS2French(`white') := `blanc';
...

A domain group mapping for currencies, using a stored table of conversion rates:

CREATE FUNCTION ConvRate(Currency c1, Currency c2) ! Number AS Stored;

ConvRate(US,UK) ::= 1.85;
...
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CREATE FUNCTION
MapCurrency(Currency c1, Currency c2, Number x) ! Number AS
RETURN
IF c1 = c2 THEN x
ELSE x � ConvRate(c1,c2);

Note the use of the domain group Currency as a type in the signature.

5 Maintaining Mappings and Domains

The problem of maintaining mappings does not arise if the domains are �xed and the map-
pings are totally de�ned, e.g., by a computation on data values. This is the case for units
conversions, or string mappings based on concatenation or similar operations.

A mapping �Di;j might be a partial function, i.e., not de�ned for all values of the source
domain di. For example, the mapping from letter grades to numeric may be de�ned as a
mapping from character strings to integers, but only have de�ned values for �ve or six letters.
The mapping would have to be adjusted if a new letter grade became meaningful.

The maintenance problem most often arises from changes in the domains di or dj . Things
might be added to di or removed from dj ; a result value of �Di;j might no longer exist, or
might no longer belong to dj . Literal data types constitute �xed domains; their populations
can't change. In general, though, the source and target domains di and dj might each have
variable populations. Restricted literal types, such as enumerated types, might be �xed
or variable, depending on whether they are subject to re-de�nition. A domain de�ned by
primary key values in a relational database is usually variable. Non-literal object types
typically constitute variable domains, but they could sometimes be considered �xed (e.g.,
the set of Earth's planets).

When the population of a domain changes, it may a�ect mappings from and to this domain.
When an element is added to dk, it may be necessary to �nd or create corresponding elements
in the other domains dj in the group, and to adjust the mappings �Dk;j . When an element is
removed from dk, it may be necessary to remove or destroy corresponding elements in the
other domains di in the group, and to adjust the mappings �Di;k.

The general problems:

� When and how are such population changes detected, and the necessary adjustments
initiated?

� How are the corresponding elements in other domains discovered or created? This is
more complex if certain initializations are required.

� How are the mappings adjusted?

The need seems to arise in two contexts:
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� When it is necessary to enumerate the elements of some target domain dj , with the
expectation that it include the images of all the other domains di. This is much the
same problem as enumerating the instances of a derived type [Appendix A.2].

� When a mapping is invoked, e.g., when someone wants to see the jobs of all or certain
people, as mapped into some target domain dj . In this case, the adjustments could be
triggered by a \mapping fault" when the mapping recognizes that it is not de�ned for
some argument. This will be discussed in subsequent sections.

The easiest solution to implement puts the burden of responsibility on users, requiring them
to manually maintain the domains and mappings by appropriately creating and deleting
objects, and by modifying mapping rules or data. In this case, when a mapping encounters
an unfamiliar value it simply returns an error. The complexity of the problem still requires
this solution as a fall-back for the general case.

The following sections identify some of the problems involved, and illustrate algorithmic
solutions for some of the simpler cases.

5.1 Mapping Faults

We illustrate the case when a mapping is invoked with an argument for which it has no
de�ned result, and it is programmed to make the adjustment.

5.1.1 Creating Objects

Let's consider JobSphere1 and JobSphere2, in which jobs are represented as character strings
and as persistent objects. In general, automatic object creation depends on being able to
do all the necessary initialization. The correspondence here might simply be by name: the
string in JobSphere1 is the name of the object in JobSphere2. When the mapping encounters
a new string in JobSphere1, it could automatically create a job in JobSphere2 having that
name:

CREATE FUNCTION MapName2Job(Char n) ! Job AS
BEGIN
VAR j;
j := SELECT Job jj WHERE Name(jj)=n;
IF IsNull(j) THEN
j := CREATE Job;
Name(j) := n;

RETURN j;
END;

Note the risk of relying on properties such as names as the basis for a mapping. If users can
change the names of job objects, they may become unreliable for mappings.
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5.1.2 Creating Types

The schema mismatch examples can be handled similarly. Suppose the target sphere is
JobSphere3, which maintains jobs as types, e.g., as subtypes of Employee. The target
domain for the mapping is the JobType type group described earlier. The appropriate
action on encountering a new job name is to create a new type having that name:

CREATE FUNCTION MapName2JobType(Char n) ! JobType AS
BEGIN
VAR j;
j := SELECT JobType jj WHERE Name(jj)=n;
IF IsNull(j) THEN
j := CREATE JobType;
Name(j) := n;

RETURN j;
END;

Note that the object being created is a type.

Without type groups, this mapping would have to be expressed in terms of Type rather than
JobType. In that case it would really provide a mapping between any type and its name,
whether or not the type corresponds to a job. It would return spurious results when invoked
with the name of a type which is not a job type. The problem cannot be solved simply by
limiting to subtypes of Employee, since there may be other subtypes such as Male, Female,
Retired, Exempt, Temporary, PartTime, etc. which don't correspond to jobs.

5.1.3 Creating Functions

Schemamismatch involving functions is also similar. For the mapping �S1;2 betweenStockSphere1
and StockSphere2, we de�ne the target domain in StockSphere2 as the function group AC-
Funcs. Whenever this mapping encounters a new company in StockSphere1, it should create
a new function in the group. This can be done automatically if all the initialization infor-
mation is known. All functions in the group have the same signature, hence the argument
and result types are known. The only thing missing is a name for the function. We will
assume that to be provided by an arbitrary MakeName function, which might engage in a
user dialog to get a name, or it might simply concatenate some prede�ned pre�x or su�x.

If we don't assume any algorithmic correspondence between companies and functions, such
as one based on naming patterns, then the correspondence has to be maintained as stored
assertions:

CREATE FUNCTION Co2FuncData (Company c) ! ACFuncs f AS STORED;

With that, we can de�ne the actual mapping function as
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CREATE FUNCTION MapCompany2ACFunc (Company c) ! ACFuncs AS
BEGIN
VAR f;
f := Co2FuncData(c);
IF IsNull(f) THEN
fn := MakeName(c);
f := CREATE ACFuncs fn(Reading,Date) ! Price AS STORED;
Co2FuncData(c) := f;

RETURN f;
END;

Note the programmatic creation of functions within this procedure, with the function name
provided in a variable.

5.1.4 Completing the Mappings

We have described how a mapping fault in �Di;j might cause an adjustment to the mapping
and the target domain dj upon encountering an unfamiliar element of a source domain di.
We haven't addressed the question of further adjustments in other domains dk. How do
we know how to map something from dk into the new element of dj? For example, when
we created a new JobType in JobSphere3, how do we know how to map things from other
spheres into that new type?

We could wait until �Dk;j faults on an unfamiliar argument, and then see if it should map
to the recently created element in dj . But that raises a new question: how did we know to
create a new element in dj when �Di;j faulted? Maybe we should have mapped to a pre-existing
element in dj .

This is an aspect of the identity problem, trying to determine whether things in di�erent
domains are \the same thing". Such identity problems are being investigated separately,
and are not addressed in this paper.

5.2 Deletion

All we do here is describe the problem.

How do we know if deletion happens?

When do jobs disappear in the �rst sphere? Under what conditions does the disappearance
of a job name in the �rst sphere require deletion of the corresponding job in the second?
There could be a pileup of super
uous objects when the corresponding literals disappear.
(This could be more serious in schema mismatch, when the super
uous objects might be
types or functions.)

Under what conditions does deleting a job in the second sphere imply things should be
changed in the �rst? What sort of change? Do people lose jobs? If we delete a job in the
second sphere, and its name still occurs in the �rst, then the job might get re-created all
over again in the second.
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The solutions require local administrators to establish policy, which needs to be expressible
in the database programming language.

6 Integrated Use

6.1 Integrator Functions

The localized functions fi : ti! di (Section 2.3) typically occur in distinct spheres si whose
autonomies need to be respected, i.e., new types, functions, or other objects cannot be
created in these spheres for the purpose of integration. Integration is thus done in a new
integrating sphere s�, which may or may not include the si as sub-spheres.

In terms of the salary example, the ti would be sets of employees in di�erent countries,
and the di correspond to the di�erent currencies. The domain mappings �Di;j are currency
conversions. Salaries can be seen in a uniform way by mapping them into a common currency
d� in s�, which may or may not be one of the di. The localized functions fi might not have
the same name, e.g., \Salary", \Sal", \Wages", \Pay", \Earnings", or equivalents in other
languages.

An integrating sphere might be in the style of one of the underlying spheres sk, meaning
that the forms and representations of functions, types, and objects in s� are like those in sk.
In that case we sometimes denote the integrating sphere as s�k to give us a hint of its style.

The integrator function f� : t�! d� would be de�ned in the integrating sphere s�, with

t� = t1 [ : : : [ tn;
f�(x) ::= if ti(x) then �D(di; d�; fi(x)):

f�(x) chooses and executes the appropriate localized function fi, then maps its result from
the domain di to the domain d�. For now we make the simplifying assumption that ti\tj = �
for i 6= j, so that we don't have to worry about fi and fj yielding possibly di�erent results
for the same argument (to be relaxed later).

We de�ne the type group T = ft1; : : : ; tng and the function group F = ff1; : : : ; fng.

The steps in evaluating f�(x):

1. Determine the relevant type ti of the argument x.

2. Pick the corresponding localized function fi.

3. Evaluate yi = fi(x).

4. Identify the source domain di.

5. Compute the �nal result by applying the domain group mapping: f�(x) = �D(di; d�; yi).
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Type groups (Appendix A.3) are useful for step 1. We are not interested in all the possible
types to which x might belong, but only one of the localized types ti in the group T . We
can do step 1 as ti = Classify(x; T ).

Step 2 requires choosing the localized function fi de�ned on the argument type ti. Function
groups are useful here since we don't want just any function that happens to be de�ned on ti.
Step 2 consists of picking the fi in F which is de�ned on ti. This mechanism is at the heart of
the integrator function, and will be discussed at length in subsequent sections. (The astute
reader may observe a close resemblance to the resolution of overloaded functions.) Whatever
the mechanism, we can characterize it as a \binding" function �(f�; ti) which returns the
corresponding fi 2 F .

yi = fi(x) is readily evaluated for step 3. Step 4 is handled by the arbitrary function we
de�ned in Section 2.4: di = �(fi; x). Step 5 is a straightforward application of the domain
group mapping.

Combining all these steps, we can express the behavior of f�(x) as

f  �(f�; Classify(x; T ));
f�(x) = �D(�(f; x); d�; f(x)):

The binding step, i.e., picking the localized function fi in F corresponding to the localized
type ti, can be done

� Implicitly via overloading.

� Programmatically, e.g., via case statements or conditionals.

� Via explicit stored mappings, using function groups.

6.1.1 Binding Via Overloading

Integrators strongly resemble overloaded functions. In both cases, invocation of a function
requires choosing from a set of other functions to be executed. Simple resolution (binding)
of overloaded functions is based on the types of the arguments, which is just what we want
here. In fact, this is a very simple form of overload resolution, since it is only based on single
types, and there is no inheritance through intermediate types.

Let's �rst illustrate overloading applied to simple integration when there are no mismatches.
Assume we have disjoint sets of employees AEmployee: : :ZEmployee, perhaps in di�erent
sectors of the company, and there is a Salary function on each, all returning salaries in US
dollars. These existing Salary functions constitute a group of localized functions fA : : : fZ .

In order to access the salary of all employees, all we have to do is de�ne a supertype spanning
all the employees [DH], with a Salary function de�ned on it (Figure 4):

CREATE TYPE Employee SUPERTYPE OF AEmployee : : :ZEmployee;

CREATE FUNCTION Salary(Employee) ! Number AS 0;
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Employee

| Salary

|

----------------------

| |

AEmployee ... ZEmployee

Salary Salary

Figure 4:

The Salary function on Employee is de�ned to provide a default value, in case the Employee
supertype is instantiable. Via late binding and overload resolution [Ly], an invocation of
Salary(x) will bind to the Salary function de�ned on whichever subtype x belongs to. (We
are still assuming these types are disjoint.)

If the salary functions don't all have the same name, overload resolution could be extended
with a simple aliasing mechanism to allow them to behave as though they had the same
name. Equivalently, the function group F could be explicitly de�ned as the set of functions
to which f�(x) could be resolved.

Overloading can also be exploited in several cases when there are domain mismatches, i.e.,
di�erent currencies:

� If localized functions can be installed to do the currency conversion. This reduces to
the previous case.

� Currency can be automatically determined, either because it is explicitly returned by
the localized functions or because it can be deduced from the type or country of the
employee.

Assume now that the various Salary functions return results in local currencies, and we
want to see them all in US dollars. If there is a Country function de�ned for each employee
(possibly de�ned in terms of the subtype to which he belongs), then we might de�ne a global
salary function as

CREATE FUNCTION GSalary(Employee e) ! Number AS
RETURN MapCurrency(Country(e),`US',Salary(e));

Here Salary(e) is again bound to the appropriate localized function by overloading. Its result
is then converted byMapCurrency, based on the country of the employee. Note that Country
is serving as the � function for identifying the domain.
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6.1.2 Binding By Cases

When overloading cannot be exploited, equivalent functionality can be explicitly speci�ed in
conditionals, case statements, or rules.

Suppose we didn't have appropriate name correspondences, and aliasing is not supported
(Figure 5).

Employee

| Salary

|

----------------------

| |

AEmployee ... ZEmployee

ASalary ZSalary

Figure 5:

Then the Salary function for all employees could be written as

CREATE FUNCTION Salary(Employee e) ! Number AS
BEGIN
RETURN
IF AEmployee(e) THEN MapCurrency(Country(e),`US',ASalary(e));
ELSE IF BEmployee(e) THEN MapCurrency(Country(e),`US',BSalary(e));
...
ELSE IF ZEmployee(e) THEN MapCurrency(Country(e),`US',ZSalary(e));
ELSE 0; /* or other default or error action */

END;

Note that compile-time type checking needs to observe the conditionals. For example,
ASalary is applied to the variable e, which has only been declared as Employee, not AEm-
ployee. Verifying that e will in fact be bound to an instance of AEmployee requires awareness
of the logic 
ow. An alternative would be to defer to run-time type checking.

6.1.3 Binding Via Stored Mappings

The logic of overloading can also be simulated via stored mappings. Suppose we de�ned the
type group and function group

EmpType = fAEmployee, : : : , ZEmployeeg
SalFunc = fASalary, : : : , ZSalaryg

as follows:
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CREATE TYPEGROUP EmpType;
ADD TYPE EmpType TO TypeNamed(AEmployee),: : : ,TypeNamed(ZEmployee);

CREATE FUNCTIONGROUP SalFunc;
ADD TYPE SalFunc TO FuncNamed(ASalary),: : : ,FuncNamed(ZSalary);

We can establish the mapping between EmpType and SalFunc in stored data:

CREATE FUNCTION ET2SF (EmpType) ! SalFunc AS STORED;

ET2SF(TypeNamed(`AEmployee')) := FuncNamed(`ASalary');
...
ET2SF(TypeNamed(`ZEmployee')) := FuncNamed(`ZSalary');

Using the Classify function to determine the EmpType of an employee, we can de�ne the
Salary function on Employee as

CREATE FUNCTION Salary(Employee e) ! Number AS
RETURN MapCurrency(Country(e),`US',ET2SF(Classify(e,EmpType))(e));

Let's do that again with the functions unnested, to see the logic:

CREATE FUNCTION Salary(Employee e) ! Number AS
BEGIN
VAR t,f,x,c;
t := Classify(e,EmpType); /* an EmpType */
f := ET2SF(t); /* a salary function */
x := f(e); /* a salary in local currency */
c := Country(e); /* the local currency */
RETURN MapCurrency(c,`US',x); /* convert to US currency */

END;

Note the application of function variables.

6.2 Generalized Integration

Integrator functions have so far been relatively simple, mimicking the behavior of the under-
lying localized functions by simply picking one of them and converting its result to another
domain.

Sometimes they need to be more elaborate, e.g., to reconcile mismatch within the argument
type, to compensate for missing localized functions, to reconcile the results of several local-
ized functions, to provide auxiliary information, or to incorporate usage-dependent domain
mappings.
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For a more general example, suppose we wanted to know the starting salaries of jobs in a
multi-national corporation, where each sector in the corporation may use di�erent concepts
and representations of jobs, as well as di�erent currencies. The sectors correspond to the
underlying spheres si, and the corporation is the integrating sphere s�.

Corresponding to each domain group D = fd1; : : : ; dng there is an integrating domain d�

in the sphere s�. It is the target domain for the mappings �Di;� to be used in integration.
If the integrating domain is \in the style of" one of the dk, e.g., it uses the same sort of
representation, we will write the domain as d�k . In this case, we would typically expect �Dk;�
to be the identity mapping, i.e., �D(dk; d�k ; x) = x.

Let's say that each sphere si has a type (domain) Jobi, which together constitute the group
JobGroup. Job1 in sphere s1 might be a set of job names occurring as primary keys; Job2 in
s2 might be a set of persistent job objects. The integrating domain Job� might be chosen to
be in the form of persistent job objects; if we reuse the objects in Job2, then the integrating
domain might be written Job�2 . There may be more job objects in the latter, corresponding
to jobs existing in s1 but not in s2. There may or may not be a direct correspondence between
jobs in s� and the jobs in any si, i.e., the mapping may be very complex and arbitrary, as
discussed earlier.

To get starting salaries in s� we need a function

StartSal�: Job� ! d�.

d� is the common currency chosen for the corporation, e.g., US dollars.

For a given job in Job�, the StartSal� function has to:

1. Get the starting salary from each sector that has such a job.

2. Convert that to the common currency.

3. Do something about results from multiple sectors.

Step 1 is di�cult if there is not a good inverse mapping from the integrated type Job� and
the type Jobi in each sphere si. We will assume such a mapping exists.

Step 1 essentially amounts to having a function StartSali� de�ned for each subtype Jobi�. A
simple case is when sphere si has a StartSali function, and there is a simple mapping �J�i from
Job� to Jobi. It's simplest when the mapping is the identity mapping; then StartSali�(x) =
StartSali(x). This simple case corresponds to our �rst integration example, involving salaries
of employees. We essentially assumed that the Employee type was already integrated, and
that a salary function was available for each subtype.

If a StartSali function is not available, StartSali� has to be provided in some other way
in s�, either explicitly or implicitly. The mechanism might be to simply rename (alias) an
existing function in si, or to provide a function which either supplies a default value or makes
use of other functions available in si. Such functions might be explicitly de�ned in s�, or
they might be implicitly speci�ed in the de�nition of StartSal� itself.
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6.2.1 Missing Localized Functions

Sometimes the appropriate localized functions simply don't exist. Then it becomes necessary
to invent them in the integrating sphere, either to provide default values or to reconstruct
results from other information known in the localized spheres. This can either be done
directly within the integrator function, or by simulating separate localized functions in the
integrating sphere.

For example, there might not be a Salary function for ZEmployees, but rather the two
functions BasePay and OvertimePay which could be added together to give a total salary.
One approach would be to de�ne a Salary function for ZEmployees (in the integrating sphere,
if autonomy needs to be respected) as the sum of the other two. Then integration could
proceed as before. Alternatively, it could be incorporated into the integrator function:

CREATE FUNCTION Salary(Employee e) ! Number AS
BEGIN
RETURN
IF AEmployee(e) THEN MapCurrency(Country(e),`US',ASalary(e));
ELSE IF BEmployee(e) THEN MapCurrency(Country(e),`US',BSalary(e));
...
ELSE IF ZEmployee(e) THENMapCurrency(Country(e),`US',BasePay(e)+OvertimePay(e));
ELSE 0; /* or other default or error action */

END;

6.2.2 Integration of Overlapping Spheres

When the underlying populations are not disjoint (ti\tj 6= �), the results of several localized
functions may need to be reconciled. This might arise, for example, when the same movie
or restaurant is rated in several databases, or various sources of income for a given person
are reported in di�erent databases. The integrator function might be programmed to take
various possible actions, such as

� Simply report all the results, identifying the sources.

� Select a \best" one, by some criterion.

� Merge the results, perhaps by summing or averaging, as appropriate.

While the resolution of this situation generally requires some arbitrary computation to be
speci�ed, two basic requirements can be identi�ed:

� Aggregation of multiple results from the localized functions.

� Operations on such aggregates.
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Suppose, for example, that an employee could belong to more than one EmpType, earning
a salary in each. (We won't say how that is detected across multiple databases. Since we
are not addressing identi�er problems in this paper, we simply assume an employee has the
same identi�er everywhere.)

If we wished to simply report all such salaries, together with the type from which each salary
comes, we might de�ne a query over the possible types:

CREATE FUNCTION Salary(Employee e) ! Set of <EmpType, Number> AS
SELECT t, MapCurrency(Country(e),`US',ET2SF(t)(e))
FOR EACH EmpType t WHERE t(e);

The query in that function iterates over the types t in EmpType (not over the instances of
those types). If the employee e is an instance of t, the result will include a tuple < n; s >,
where n is the name of the particular EmpType and s is the corresponding salary converted
to US dollars.

Note the use of a type group in the signature and in the for-each clause.

If we wished to simply report the sum of salaries:

CREATE FUNCTION Salary(Employee e) ! Number AS
RETURN BagSum(SELECT MapCurrency(Country(e),`US',ET2SF(t)(e))

FOR EACH EmpType t WHERE t(e));

6.2.3 Auxiliary Results

Auxiliary information might indicate the underlying source of the information, e.g., the
currency from which it was converted. Or it might provide some indication of the reliability
of the conversion; mapping from letter grades back to numeric might be accompanied by
a 
ag identifying it as an estimate. Auxiliary information was illustrated in the previous
section, when the particular EmpType was returned along with the salary.

6.2.4 Usage-Dependent Domain Mappings

Sometimes mappings cannot be separated from the integrator functions. The mapping might
depend on auxiliary rules involving the use of the source domain. Thus an 85 might be a B for
undergraduate courses, but an A for graduate courses. Similarly, the mapping for jobs might
depend on other attributes of the job-holder, such as length of time in job, or educational
level. Then the mapping needs to know the job-holder (or information about him), not just
the job being mapped. In such cases the domain mappings would be incorporated into the
integrator functions.

6.3 Integrators For Schema Mismatch

6.3.1 With Types

In general, we can't integrate StockSphere3 with the other two without knowing which types
correspond to jobs. It might occasionally turn out that those are the only (user-de�ned)
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types in the schema, or the only types that employees might possess, or the only subtypes
of Employee. Usually, however, we can't do the integration without type groups.

Once we have the JobType type group, we can assume the three localized functions

Job1 : Emp1 ! JobName;

Job2 : Emp2 ! Job;

Job3 : Emp3 ! JobType;
Job3(e) ::= Classify(e; Jobtype):

in the three spheres (if not present, they could be added as part of the integration). Now we
are back to the previous case of de�ning an integrator over three localized functions.

Creating types in the integrating sphere is potentially more complex than described in Sec-
tion 5.1.2. Each created type is itself potentially an integrating domain [Section 6.2] with a
complex de�nition.

Integrating the job spheres in the style of JobSphere3 would require making each job a type.
Introducing a new job such as \Designer" into JobSphere�3 means introducing a de�nition
of Designer itself as a derived type, being the image of designer jobs in all the spheres.
Providing a rule to generate such de�nitions automatically could be di�cult.

Other uses of types in the integrated sphere are similarly complicated by the fact that
they are essentially derived types (Appendix A.2), with corresponding implications for type
checking and queries.

6.3.2 With Functions

The relationship between StockSphere1 and StockSphere2 is expressed in the equivalence

Activity(c,r,d) = �S1;2(c)(r; d).

That is, the function obtained from the mapping �S1;2(c) [Section 5.1.3] is in turn applied to
(r; d) to yield the same result as Activity(c; r; d). For example,

�S1;2(HP) = HPActivity;

Activity(HP,r,d) = HPActivity(r,d).

As in [KL], we might want to

1. Integrate in a sphere StockSphere�1 in which all stocks are presented in the style of
StockSphere1, i.e., as arguments to a single Activity� function.
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2. Integrate in a sphere StockSphere�2 in which all stocks are presented in the style of
StockSphere2, i.e., via an individual XActivity� function for each company X.

The existing functions in the underlying spheres will be labelled Activity1 and XActivity2.

For StockSphere�1, the integrator function has the form

Activity�: Company� � Reading � Date ! Price.

For simplicity, we assume that Reading, Date, and Price are uniform across the spheres.
In this case, we are integrating mismatched arguments rather than results, and the general
mechanisms of image domains and associated mappings as described in Section 6.2 apply
here. We will need subtypes Company1 and Company2 corresponding to the stocks existing
in the two spheres. As before, we start with the simplifying assumption that they are disjoint.

A key step is to recognize that the localized function Activity2 does not exist. We can
introduce it explicitly as a distinct function, or incorporate into the de�nition of Activity�

as follows:

Activity�(c; r; d) ::=
if Company1(c) then Activity1(c; r; d)
else �S�;2(c)(r; d):

The mapping �S�;2 is largely the same as �S1;2.

For StockSphere�2, integration is actually accomplished by a group of functions ACFuncs�

corresponding to the group of functions ACFuncs in StockSphere2. There may be more
functions in ACFuncs� than in ACFuncs. There is an integrator function for each company
in either sphere, having a form such as

HPActivity�(r; d) ::=
if Company1(HP ) then Activity1(HP; r; d)
else �S�;2(HP )(r; d):

Again, note that creating new functions in the integrating sphere is potentially more complex
than described in Section 5.1.3. Each created function is itself an integrating function with
a complex de�nition of the form just shown.

6.4 Updating Integrator Functions

Update is a major aspect of the domain mismatch problem. In the integrated view, we not
only want to see the salaries of employees, we may want to update them as well.

Update in a functional object model [F1, F2, Ly] is modeled as an assignment
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f(x) := y

causing subsequent invocations of f(x) to return y. A localized function could be directly
updated by

fi(x) := yi

in which yi is an element of di. This might be a direct update of the salary of an individual
in his local currency.

One might wish to do such updates through an integrator function, e.g., express a salary
update in US dollars and have it converted to the local currency. This might occur in a
global update giving everyone in the company a 10% increase.

With y� 2 d�, the update of an integrator function

f�(x) := y�

should be performed as

if ti(x) then fi(x) := �D(d�; di; y�);

i.e.,

1. Determine the type ti of x (recall our disjointness assumption).

2. Apply the corresponding mapping �D�;i (e.g., a currency conversion) to y�, yielding an
element yi of di.

3. Find the corresponding localized function fi.

4. Do the update.

Update through integrator functions is much the same as the view update problem. It
can only be done automatically in limited cases, i.e., when the integrator function and the
domain mapping are both simply invertible. Otherwise, as described in [KL], it is necessary
to explicitly de�ne the update algorithm to be associated with the integrator function, which
could be done via \update entry points" (a proposed extension):

CREATE FUNCTION Salary(Employee e) ! Number s AS
RETURN MapCurrency(Country(e),`US',ET2SF(Classify(e,EmpType))(e));

ENTRY(:=):
ET2SF(Classify(e,EmpType))(e) := MapCurrency(`US',Country(e),s);
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As before, we can explode this without nested functions to see the logic:

CREATE FUNCTION Salary(Employee e) ! Number s AS
BEGIN
VAR t,f,x,c;
t := Classify(e,EmpType); /* an EmpType */
f := ET2SF(t); /* a salary function */
x := f(e); /* a salary in local currency */
c := Country(e); /* the local currency */
RETURN MapCurrency(c,`US',x); /* convert to US currency */

END;
ENTRY(:=):
BEGIN
VAR t,f,x,c;
t := Classify(e,EmpType); /* an EmpType */
f := ET2SF(t); /* a salary function */
c := Country(e); /* the local currency */
x := MapCurrency(`US',c,s);/*convert to local currency*/
f(e) := x; /* the update */

END;

Note the function variable in the update.

7 Conclusions

Domain mismatch and schema mismatch are complex problems. They can best be under-
stood by structuring the environment in terms of domain groups corresponding to conceptual
territories, with di�erent domains occurring in di�erent spheres. Integration then occurs us-
ing integrating domains in an integrating sphere. The domain mismatch problem separates
into two parts, the de�nition and maintenance of domain mappings, and the de�nition and
update of integrator functions. Schema mismatch can in many cases be reduced to the
domain mismatch problem by treating type groups and function groups as domains in them-
selves. The problems can generally be decomposed into a mapping aspect (corresponding to
the mappings in [KL]) and an integrating aspect (corresponding to the rules in [KL]).

Although such analysis and decomposition is helpful, the solutions generally require sophis-
ticated language capabilities. The role of a database programming language is to permit
the solutions to be expressed and maintained with the database, rather than in application
code.

Thus behavior speci�cation is an essential contribution of object-orientation to the solution of
the mismatch problem. Subtypes and supertypes are another essential feature for reconciling
disparate domains. Overloaded operators are also useful. Object identity, on the other
hand, seems to add problems: maintaining domain mappings can require explicit creation
or deletion of persistent objects.

In a context which includes type systems, persistent objects, and non-trivial correspondences
between domains, desirable language facilities include:
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� Arbitrary computational power: conditionals, iteration, and probably even recursion
(though we haven't actively looked for examples requiring recursion), as well as aggre-
gate types and operations.

� Type and function groups, including disjointness and covering speci�cations.

� Uniform treatment of system and user objects:

{ Uniform syntax/semantics for creating user- and system-type objects.

{ Variables and expressions allowed wherever system objects can occur, i.e., func-
tions and types. This would include their occurrence in declarations and queries.

{ DDL within procedures, e.g., dynamic creation of types and functions, with pa-
rameterized arguments.

{ User subtypes of system types (e.g., type and function groups).

{ Creation of user-de�ned supertypes as well as subtypes.

� Update entry points.

� Extended overloading, via aliasing and compatible result types.

� Derived types.

� Subtypes of literals, including

{ Dimensioned types (units).

{ Enumerated types.

{ Length-constrained types.

OSQL and IPL are still evolving, and we have not completed our analysis of the extent to
which they currently support these requirements. This will be continued in the Pegasus
project.
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A Appendix: Type Groups and Function Groups

A.1 Types

We model a type t as a predicate function t(x) which is true if and only if x is an instance
of t. More generally, for any predicate and its corresponding extension, we let p denote
the set and p(x) the corresponding predicate expression, such that p(x) , x 2 p. Thus
[p(x) = q(x) _ r(x)], [p = q [ r]. This notation applies to types and groups.

A.2 Derived Types

Like any function, predicate functions which serve as types can have their values established
by assertion (stored data) or by derivation rules. The type of an object can be asserted
when it is created (e.g., as a person) or later during its lifetime (e.g., when it becomes an
employee).

Special derivation rules apply to types via subtype relationships: every employee is a person.

Derived types (a proposed extension to OSQL) could be de�ned in much the same way as
derived functions:

CREATE TYPE Senior SUBTYPE OF Person x AS
Age(x) > 65;

Much like view maintenance, derived types can be supported in a backward-chaining or
forward-chaining fashion. Backward chaining means the derivation is evaluated whenever
the type is referenced (e.g., in queries), which could be ine�cient for complex derivations.
Forward chaining means that every addition or deletion has to be detected (e.g., whenever
a person is created or destroyed, or changes age) and propagated into the extension of the
type. This would require some sort of monitor or trigger facility.

A.3 Type Groups

A type group is a type whose instances are types, i.e., a subtype of Type in the Iris model.
It is an auxiliary concept being proposed as an extension to OSQL/IPL.

Type groups are useful in the signatures of functions which have types as their arguments or
results, when they are constrained to accept or return restricted sets of types. For example,
when jobs such as Engineer and Programmer are types, we may want to de�ne a mapping
which returns one of these job types, but not any other type. We also might want a query
to range over just this set of types.

TypeGroup (the type whose instances are type groups) would itself be a type group, and so
would Type. A type group such as JobType might be de�nable in OSQL by either of the
following:

CREATE TYPEGROUP JobType;
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CREATE TYPE JobType SUBTYPE OF Type;

The following three could then be equivalent:

CREATE TYPE Engineer;
ADD TYPE JobType TO Engineer;

x := CREATE JobType;
Name(x) := `Engineer';

CREATE JobType `Engineer';

Classify(x,T) classi�es an object x with respect to the types in a group T , returning the
types in T of which x is an instance:

Classify: Object � TypeGroup ! Type,
Classify(x; T ) = ft j T (t) ^ t(x)g,

or, in OSQL,

CREATE FUNCTION Classify(Object x, TypeGroup g) ! Set of Type AS
SELECT Type t WHERE g(t) AND t(x);

Notice how types are being applied as variable functions (predicates) via g and t.

If the types in T are disjoint, then Classify(x,T) is single-valued. For example,Classify(x; JobType)
returns the instance(s) of JobType of which x is an instance.

Type groups have several potential uses:

� They can themselves serve as domains when dealing with schema mismatch.

� Speci�cation that the types in a type group are disjoint, or that they cover or partition
some other type. For example, JobType usually partitions Employee.

Type groups are closely related to parameterized types. A \parameterized type" is typically
not really a type itself, but a mapping into a set of types. A type group corresponds to the
set into which this mapping maps.
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A.4 Covered Types

A covered type (also a proposed OSQL extension) is the union of types in a type group:

CREATE TYPE t COVERED BY T;

The type Employee could be de�ned as being covered by the group JobType.

Properties:

� Every instance ti in the group T is a subtype of t.

� Any type added to the group T becomes a subtype of t.

� The group T covers t, i.e., every instance of t is an instance of at least one ti 2
T . It follows that t has no \immediate" instances, i.e., it is an abstract type, not
instantiable. Objects cannot be created as instances of t, or made instances of t (unless
simultaneously made an instance of some ti). A type ti cannot be removed from an
object unless the object retains or is immediately given another type tj 2 T .

� If the group T is disjoint, then it partitions t, i.e., every instance of t is an instance of
exactly one ti 2 T .

Enumerating the instances of a type t covered by a group T is logically equivalent to the
OSQL-like query

SELECT UNIQUE x FROM Object x, Type ti WHERE T(ti) AND ti(x);

A covered type is e�ectively a derived type, i.e., one having a membership condition derived
by some rule. Enumerating the instances of a covered type could be as di�cult as enumer-
ating the instances of a derived type, especially when the types in the covering group are
themselves derived.

Type groups provide a useful way to organize the subtypes of a type. A type can be cov-
ered or partitioned by several independent type groups, corresponding to di�erent ways of
subdividing the type. For example, employees might also be partitioned by the two sub-
types Male and Female, which might constitute a Gender type group. Employees may also
be divided into subtypes A,B,C,: : :by organizational criteria, e.g., by division or country.
These subtypes would constitute yet another type group. (It would be interesting to explore
combinations of type groups, yielding groups of intersections of types, e.g., MaleEngineers.)

A.5 Function Groups

A function group is analogous to a type group, being a type whose instances are functions,
hence a subtype of Function. Useful type groups typically have the same or similar signatures,
related via type groups.

If types are modeled as predicate functions, then type groups turn out to be a special case
of function groups.
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