Incremental, Bottom-Up,
Well-Founded Deduction

Brian W. Beach

(bﬁ HEWLETT

PACKARD

Software and Systems Laboratory

- HPL-91-20
February, 1991

expert systems; KBMS;
DATALOG; incremental
computation; logic
programming

. Internal Accession Date Only

In this paper we describe an algorithm, called
AFP, for the bottom-up execution of logic
programs well suited to data-driven applications,
where incremental updates to the base relations
are pro‘fagated through the program to produce
updated answers without completely re-executing
the program. We show that AFP conforms to the
well-founded semantics for general logic
programs and that it terminates in polynomial
time for DATALOG programs with negation.

AFP is based on a modified formulation of well-
founded negation that does not rely on computing
sets of false atoms, avoiding the instantiation of
the entire Herbrand base. AFP solves the two
major problems in incremental bottom-up
computation, recursion through negation and
self-supporting conclusions, by using a counting
technique over a two-dimensional representation
of time to detect and stop such loops. Its
feasibility has been verified with an
implementation in Prolog.

(c) Copyright Hewlett-Packard Company 1991

1 Introduction

A general logic program is one that includes both positive and negative subgoals in the
body of a rule. We follow the convention expounded by Reiter [Rei78] of viewing a program
as having two disjoint components: the eztensional database (EDB), that we will call the
facts, and the intensional database (IDB), that we will call the rules. In data-driven
applications, the set of facts varies over time, and the consequently changing conclusions
of the rules are used to trigger actions in the application.

There are two fundamentally different approaches to executing a logic program: bottom-up
and top-down. In bottom-up computation [Ull89], one starts with the facts constituting
the EDB, matches them against the premises in the rules in the IDB, and for all rules where
the body is known to be true, concludes that the head of the rule is true. Conclusions
drawn are then fed back into the process and used as the basis for further conclusions.
This process continues until no more conclusions can be drawn, i.e. when the fixed point
has been reached. Top-down evaluation in the context of the well-founded semantics has
been studied by Ross [Ros89).

In top-down computation a goal (query) is presented for solution. All rules are found
whose heads match the goal. The literals in the bodies of these rules are then taken as
subgoals to be proved in the same manner. The process stops when a subgoal is found
that is in the EDB or that does not match the head of any rule.

There are advantages and disadvantages to both approaches. Bottom-up evaluation can
produce unneeded answers, while top-down evaluation can make many attempts before
finding an avenue that leads to a proof. Despite its drawbacks, bottom-up computation
is useful in situations where the EDB is changing. In such situations incremental update
techniques can greatly improve performance; a small change to the EDB can make small
incremental changes to the set of conclusions without having to recompute them all.

One source of inspiration for AFP has been the work on production systems. Production
systems require that incremental updates to the EDB be efficiently processed to generate
a new set of active rules. The RETE algorithm developed by Forgy [For79, For81], and
the TREAT algorithm developed by Miranker [Mir87, NGR88, MJF*90] are examples of
incremental, bottom-up evaluators.

Our second source of inspiration comes from Van Gelder’s alternating fixpoint definition of
the semantics of general logic programs [VGRS88, PP90]. Negation through recursion can
cause RETE-style algorithms to oscillate between two answers. The alternating fixpoint
solves this program by defining a middle ground for undefined atoms.

A problem with prior incremental algorithms is that once concluded, an atom may become
self supporting and later changes in the EDB can leave conclusions present without any
support in the EDB. The counting technique AFP uses to stop recursion solves this

problem.

AFP solves these two major problems in incremental bottom—tip computation: recursion

through negation and self-supporting conclusions. An implementation in Prolog has been
written to confirm its viability.

The rest of this paper is organized as follows: Section 2 describes our formulation of
the alternating fixpoint; Section 3 describes the normal form that we use to ensure that
programs can be easily translated into the rule/goal networks of Section 4. Sections 5
and 6 are the core of the paper and describe the data represtation and actions of the AFP
algorithm. In Sections 7 and 8 we talk about some optimizations that can be made to AFP
both for general programs and for stratified programs. Finally in Section 9 we conclude
with pointers to future work in this area.

2 The Alternating Fixpoint

An alternating fixpoint computation is a sequence of estimates of the set of atoms that are
true, alternating between overestimates and underestimates and converging on the correct
answer. Each successive overestimate is a smaller set, excluding more atoms known to
be false. Each successive underestimate is a larger set, including more atoms known to
be true. An overestimate is used to construct the next underestimate, and vice versa. It
has been shown that these estimates will converge to a fixpoint where the underestimate
includes all true atoms, the overestimate excludes all false atoms, and the remaining atoms

are undefined [VG89).

Each of the steps in this alternating fixpoint is itself a fixpoint computation that computes
a model for the program based on the previous estimate. We call each of these an inner
fizpoint and the computation as a whole the outer fizpoint.

The key to the alternating fixpoint is that the value of a negated subgoal is based on the
previous iteration of the outer fixed point computation. For a program including only
the rule p « —p the first guess is that p is true. The first iteration uses this assumption
to determine the status of —p, concluding that p is false. The second iteration uses the
previous conclusion to determine that p is true. The computation will alternate between
these two states. Since this is the fixed point, we know that p is not true because it is not
in the underestimates, and that p is not false because it is in the overestimates. Therefore
the value of p must be undefined, which is correct according the well-founded semantics.

In the following discussion we use H to denote the Herbrand base of the program, contain-
ing all atoms built from the predicates and constants in P, and Py to denote the Herbrand

instantiation of the program, consisting of all possible instantiations of the rules in P using
H.

Outer Fixpoint

Tttt

vyt Inner Fixpoints

Figure 1: Representation of Time

Definition 1: I(A, B), the immediate consequence function of a program P, gives the set
of atoms P can derive using A for positive subgoals and B for negative subgoals.

I(A’B) = {pE H I 3(p<—Q1.-.qn,—|7’1,-..,—lrm) € PH’
with every ¢; € A,and every r; ¢ B}

We use a two-dimensional notion of ttme to describe the progression of the alternating
fixpoint. The inner fixpoint progresses in the positive y direction (upward) and the outer
fixpoint progresses in the positive = direction (to the right), as shown in Figure 1. Time
(21,91) is before time (z2,y2) if ©1 < 2 or 21 =z, and y; < y2. A time (z,00) denotes the
result of one inner fixpoint.

The overestimate at time (z,y) is denoted by O,,, and the underestimate at time (z,y)
is denoted by U, ,. The equations below give the contents of each set. Each inner fixpoint
starts with E, the contents of the EDB and draws all possible conclusions from it.

Ovee = H

O_,,,,o = F (CI} > 0)

Ow,y = O:z,-,y—l U I(Ow,y_l, U:c—l,oo) (x >0 and Y > 0)
U,; 0 = FE

k)

Ua,‘,y

Ua:,y—l U I(Uz,y-—la Oz,oo) (y > 0)

The outer fixpoint proceeds: Og o, Up,cor O1,00y Ut,00) O2,000 Uz,00, €t cetera.

The inner fixpoint computations are monotonically non-decreasing positive induction,
because the negated conditions depend on a set held constant. Thus, U, , C U, ,4+1 and
Oz C Ogyt+1. Van Gelder has shown [VG89] that the outer fixpoint has non-decreasing
underestimates and non-increasing overestimates: Uy y C Upy1y and Oy 2 Ogy1y.

3 Normal Form

We make three basic assumptions about the structure of programs to be interpreted by
AFP. First, that they are bottom-up evaluable, second that they are in normal form, and
that they are function-free (i.e. DATALOG).

A logic program is bottom-up evaluable if, for every rule, every variable in the head of the
rule is contained in the body of the rule [BR88]. Every conclusion drawn by the program
will be fully bound.

We can assume, without loss of generality, that the set of predicates in the EDB and the
set of predicates in the IDB are disjoint. A program is said to be in normal form if every
predicate in the IDB has exactly one rule that can deduce it, and that every rule is in one
of the three forms shown below. We use X, Y, and Z to denote vectors of arguments, and
v(X) to denote the set of variables in X. Because we require that a program be bottom-up
evaluable, every variable in the head of a rule must occur in the body and every variable
in a negated subgoal must also appear in a positive subgoal. The necessary restrictions on
the sets are shown next to each type of rule.

p(X) « ¢(Y)Vr(Z) where v(X)C v(Y) and v(X) C v(Z)
p(X) « ¢(Y)Ar(Z) where v(X)Cv(Y)Uv(Z)
p(X) « ¢(Y)A-r(Z) where v(X) Cv(Y) and v(Z) C v(Y)

Note that the first form is not allowed in logic programs, but is equivalent to the two rules

p « q and p « r. Condensing them into one rule will make the AFP algorithm description
below much simpler.

An arbitrary general logic program can be transformed into a normalized program using
three rewriting rules. The first rewriting rule is used to produce a unique rule that can
conclude each predicate. If there are two rules to conclude the same predicate p, then
they are rewritten into three rules: one disjunctive rule, and two rules concluding new
predicates corresponding to the initial two rules. Two rules of the form:

p(Xs) «— a(Y)A...Ag(Y,)
p(Xp) « m(YOA...ArR(Yn)

become three rules:
p(X) « pu(X)Vp(X)
Pa(Xs) — a(YO)A...Aq(YR)
pb(xb) — 7’1(Y1) A...A rm(Ym)

where X is a vector of n variables (p takes n arguments), and p, and p, are both new
predicate names not used in the program.

The second rewrite rule is use for rules with a single subgoal in their body, or with no
positive subgoals. A rule of the form p(X) « ¢(Y) becomes p(X) « t A ¢(Y), and a rule
of the form p(X) « —¢;(Y1)A...A ¢, (Y,) becomes p(X) — tA=q1(Y1)A...A-gn(Y,),
where ¢ is a special EDB predicate that is always true.

The third rewrite rule is used for rules with more than two subgoals; it takes two positive
subgoals, or a positive subgoal and a negative subgoal and makes a new rule with them,
substituting the new predicate back in the original rule. If we start with a rule

p(X) « qa(Yi)Aq@(Y2)A...Agn(Yn)

we replace it with two rules:

p(X) « P(Z)ANg(Y3)A... ANga(Y,)
P(Z) « @(Y1)Ag(Ys)

where v(Z) = (v(Y1) Uv(Y2)) N (v(X)Uv(Ys)U...UVv(YL,))

and p’ is a new predicate name not appearing elsewhere in the program. Z is a vector of
all variables in Y; and Y, that are used elsewhere in the rule.

Lemma 3.1: A program translated to normal form has the same meaning under the well-
founded semantics as the original program.

Positive equality in a rule can, via syntactic transformations, be eliminated. Negative
equality can be handled as a filter on the atoms in the bottom-up computation [VGT89].
We will ignore the issue of equality in the rest of the paper.

The example we will use throughout this paper is Ross’s program to find numbers with
odd numbers of prime factors [Ros90], shown below 1.

p(X) « bX)
p(X) « eX,Y,Z)A-p(Y)Ap(Z)

The normal form is shown below.

p(X) « pl(X)Vp2(X)

pl(X) — tAKX)

p2(X) « p3(X,Z2)Ap(2)
p3(X,Z) « e(X,Y,Z)A-p(Y).

1p and e are EDB predicates: b(X) is true if X is prime and e(X,Y, Z) is true if X has factors Y and Z.

~

p2: and
‘\ (I

pl: and

p3: andnot
X

t: leaf b: leaf e: leaf

Figure 2: Network of nodes for prime number program.

4 Translation from rules to network

Every predicate in the program corresponds to one node in the network. EDB predicates
correspond to leaf nodes and rule predicates correspond to rule nodes. Each EDB predicate
has a single leaf node that sends any changes to that predicate to the rule nodes depending
on it.

Since each IDB predicate in a normal-form program has exactly one rule, we can establish a
one-to-one-to-one correspondence between predicates, rules, and nodes. There is a different
type of rule node for each of the three rule types in normal form:

1. or nodes for disjunctive rules,

2. and nodes for conjunctive rules without negation, and

3. andnot nodes for conjunctive rules with negation.
The two inputs to a rule node are connected to the two nodes corresponding to the

predicates it depends on. The output of a rule node is connected to all rule nodes depending
on it.

The network for the prime number program is shown in Figure 2.

{u(3,5),4(5,1)}

Figure 3: Sample shape of U

5 Representation of Fixpoint Stages

An alternating fixpoint computation involves the creation of an infinite number of sets Oy,
and U, ,. Obviously, we can’t represent all of these sets explicitly.

Let’s examine a few properties of O and U. For a given atom p, the set of (z,y) values
where p in in O,y and U, can be thought of as an area in the first quadrant including
all of the integral points (z,y) where p is a member of the set. The set of possible shapes
for these areas is highly restricted. We know that U is monotonically nondecreasing in the
positive z and y directions; thus, if p € U, , then V2’ > z,y’ > y:p € U, . The shape of
the resulting area is as shown in Figure 3, and can be represented by the set of points at
the lower-left corners.

The shapes for O are symmetrical because O is nondecreasing with y and nonincreasing
with x; they can be defined by the positions of the lower-right corners. Since an atom may
be present in all overestimates, the last lower right corner may be at z = oo.

We do not, however, want to do this. In order to show termination later we will need to
know that the algorithm proceeds only forward in time. As the computation progresses it
will start at the left of the diagram and work to the right, and will need to know about
the presense of an atom p in O before it gets to the lower-right corner. To accommodate
these requirements we will represent the area redundantly using both lower-left and lower-
right corners. A lower-left corner indicates that p is present in O, and a lower-right corner
indicates that p is no longer present. The lower-right corner is in the first outer iteration
where p does not appear. See Figure 4.

We use tokens to represent the points on the area charts. There are three types of tokens:
u, [, and r. A token of the form u(p,z,y) represents an underestimate that becomes true
at time (x,y). A token of the form I(p, z1,y) represents the time that atom p first enters

T
- @
)
T
- ®

I I I 1 I N I 1 1 1
T T T T T 1 T T T 1

{1(1,4), r(4,4), 1(4,6)} {1(1,4),7(4,4)}
Figure 4: Sample shapes of O

the overestimate set, or steps up to a higher y level. Each lower right corner is represented
by a token of the form r(p, z2,y), matching some ! token with the same y.

More precisely, the equation defining the set T' of tokens corresponding to a given O and
U is shown below.

T {U(p,x,y) |lp€ Uy, P ¢ U. -1, P ¢ Ux,y—l}

U {l(p,1,y) |p € O1,4,p & O1,y-1}
U {T(P, x,y) IP € Oz-14,P ¢ Oy, p ¢ Oz—l,y—l}
U {l(p,-??, y) I T > 1,P € Oz‘,y,p € O:l:—l,y-—-lap ¢ Oz,y-—l}

The most important property of this representation is that the set of tokens representing
the contents of U and O up to a time (z,y) depends solely on the contents of U and O up
to (z,y), and do not depend on their later contents. This allows the algorithm to proceed
strictly forward in time. Once the tokens up to time (z,y) have been established, they will
never have to be modified. This is why the tokens representing the lower-right corners of
overestimates are one unit to the right of the actual corner.

Theorem 5.1: Changing U or O at time (z,y) will not change the set of token in T at
times before (z,y).

Proof: This follows directly from the definition of T. Every membership in T of a token
at time (z,y) is predicated only on the contents of U and O at earlier times. |

It is also important that we have a finite representation of U and O for atoms whose status
is unknown, i.e. those that are present in all O, but not in any U, . This is the reason
that overestimates and underestimates are represented separately.

u

1 I 4 1 Il 1 1 1 1 i 1 I Il n 1 1 3 i I [1 1 4
1 T T T T T 1 T T T T T T T 1 T T T T T T T 1

p: {u(1,4)} q: {u(4,6),u(6,1)} pVaq: {u(l,5),u(6,i)}
Figure 5: Disjunction of two underestimates

T + T .

1 1 1 1 r

e =) 1 - -

- - ‘ -

1 [l i 1 1 L 1]] Il [l L II‘ 1 L 1] L L L] 1] L L]
p: {1(1,5)} q: {1(1,1),7(4,1)} pAg: {I(1,6),7(4,6)}

Figure 6: Conjunction of two overestimates

A disjunctive rule of the form p « ¢V r will place p in all U where either ¢ or r is present
at the previous time and in every O where either ¢ or r is present at the previous time.
Figure 5 shows the disjunction of two underestimates.

Conjunctive rules such as p «— ¢ A r will place p in every set U, , and O,, where p and q
both appear in the preceding U or O of the inner fixpoint. Figure 6 shows the conjunction
of two overestimates. With both conjunctive and disjunctive rules, both inputs are always
either underestimates or overestimates; the two are never mixed. This is because the inputs
and the output are all within the same inner fixpoint.

5.1 Negation
Conjunctive rules with negation of the form p «+ ¢ A -r are a little different. Recall that

the immediate consequence function I treats negation specially by looking for negated
subgoals in the previous iteration of the outer fixpoint. Let’s consider the underestimates

utput Sto

Disjunction

Redundant Storg

Node Logic

Input Stor Input Stor

Figure 7: The internal structure of a node

and overestimates separately. For any ¢ that is an underestimate, the corresponding r will
be an overestimate. All atoms are present in Og ., so a conjunctive rule with negation can
never conclude that any atoms are in Up,. The presence of an overestimate r that is in
all overestimates until O, o, will prevent p from being in any underestimates until Uz .
In other words, the fact that r is true until outer iteration z will prevent p from being in
any underestimates until time x + 1. The reverse case where ¢ is an overestimate and r is
an underestimate is symmetrical. The fact that r first appears in U, , will prevent p from
being in any overestimates beyond O,,.

6 The AFP Algorithm

Internally, each node consists of two input stores, some type-dependent logic, a redundant
store, disjunction logic, and an output store, as shown in Figure 7. The input stores hold
the tokens that have come from other nodes. The logic keeps the redundant store up
to date based on the input, although because some parts of the input relations may be
projected out the results may contain redundant tokens. This redundancy is removed by
the disjunction logic, and the minimal set of output tokens to represent the results are put
into the output store.

The storage of the input sets is necessary so that incremental joins can be done. When a
token is added to or removed from one input set, the change must be compared with the
contents of the other input set to determine what change to the output is required.

10

A change is the addition or removal of a token. We will denote these two types of changes
using + and —. The addition of an underestimate is denoted by +u(p,z,y), while its
removal is denoted by —u(p, z,y).

Every change to the EDB generates two changes that are propagated through the network.
The addition of atom p generates +u(p,0,0) and +I(p,1,0)). The removal of atom p
generates —u(p,0,0) and —I(p,1,0).

Changes produced by one node must be forwarded on to the nodes it is connected to, but
to ensure correctness, we must make sure that the computation proceeds forward in time.
Nodes must not be allowed to produce results until their inputs are certain. All of the
pending changes are stored in a list, sorted by time. At each step in the processing, the
change with the lowest time is removed from the list and processed, producing further
changes. As we will see shortly, these further changes will have higher times than the
original.

Each type of node is responsible for ensuring that its set of output tokens is consistent
with its input set. This is important, because it is the basis for the proof of correctness for
AFP. Whenever a node receives a change to one input set, it calculates the corresponding
changes to its output set and puts them into the sorted list. Incremental changes are
handled by keeping the tokens in each store sorted by atom, and within each atom sorted
by time.

Changes to the redundant store are processed by the disjunction logic. When a token is
added, it is inserted into the sorted list. For underestimates, there are two cases to handle:
(1) When the new token covers an area that is a subset of that covered by some token
already present, no changes to the output store are needed, and (2) when the new token
is does not cover a subset it is sent to the output store and any tokens previously there
that are now redundant are removed. The removal of a token reverses the process. For
overestimates, each pairs of [and r tokens is treated as a unit inside the node. A similar
algorithm comparing the areas covered is used to update the output store.

Changes to the input stores are handled by the node-specific logic. In or nodes, each input
change is forwarded directly to the redundant store and the disjunction logic takes care
of it. Incremental joins are done by the logic in and nodes. Every newly changed area on
one side is intersected with all areas for matching atoms on the right side and the results
sent to the redundant store. The specific comparison done between the atoms is defined
by the rule that the node corresponds to. For the rule p(X,Z) « ¢(X,Y) Ar(Y,Z), the
second argument to the predicate on the left is matched against the first argument to the
predicate on the right.

An andnot node must deal with a time shift. Tokens from the positive side are compared
against tokens from the negated side at the previous z time. Because of this time shift,
of the two areas being compared one will be an overestimate and the other will be an

11

underestimate. The y time coordinates from the negated side can be ignored, because
the inference rule looks only at the final result of the inner fixpoint. For each atom p, an
andnot node keeps track of the highest # where p is present in the overestimate on the
negated side, and the lowest ¢ where p is present in the underestimate on the negated side.
These z values are used to trim the areas of the matching tokens on the positive side.

To summarize, the AFP algorithm proceeds as follows.

1. For each addition of an atom p to the EDB, create two changes and put them in the
sorted list: +u(p,0,0) and +{(p,1,0).

2. For each removal of an atom p from the EDB, create two changes and put them in
the sorted list: —u(p,0,0) and —I(p,1,0).

3. While there are changes in the list, take out the one with the lowest time and process
it through all nodes taking it as input, generating more changes to add to the list. If
there are ever two changes in the list that cancel each other out, such as +u(p, z,y)
and —u(p, z,y), remove both of them.

Theorem 6.1: Processing a token through a node will only produce tokens with later
times than the input token.

Proof: By definition, the contents of U and O at time (z,y) depend only on the contents
of U and O at prior times. This means that changing U or O at time (z,y) can only affect
U or O at later times. We know by Theorem 5.1 that this will affect only those tokens at
times after (z,y). |

Theorem 6.2: AFP precisely models the alternating fixpoint. The U and O defined by
the tokens produced by AFP are exactly the same as the U and O defined by the alternating
fixpoint.

Proof: The proof is by induction on time; we show that after AFP terminates, the correct
answer is produced at every time (z,y). The base case is (0,0), at which time the correct
state is stored in the leaf nodes. No other node can produce any tokens affecting time
(0,0), because nodes always produce tokens at times later than the times of input tokens.
Assume that the correct state exists for all times #; < ¢. The output of every node will be
correct through time ¢, because the only tokens that can affect time ¢ are from previous
times, and those are all correct. |

12

Theorem 6.3: AFP will terminate in polynomial time (in number of token comparisons)
for DATALOG programs with negation.

Proof: We know that the alternating fixpoint will reach a fixpoint at some finite z, bounded
by a polynomial. Each inner fixpoint is also polynomial bounded, and the number of
possible tokens at each (z,y) is bounded by |H|, the size of the Herbrand base, which is
bounded by a polynomial. The time spent processing each token is also bounded by |H]|.
The product of all of these is a polynomial. 1

Theorem 6.4: Each removal processed represents a corner in the old state that is not
present in the new state, and each addition processed represents a corner in the new state
that is not present in the old state. Each change processed represents the number of
changes processed is the same as the number of corners on the area diagrams.

Proof: Because AFP accurately models the alternating fixpoint, and because there is a
unique representation of U and O using tokens, and because AFP proceeds forward in
time, when a token is processed it must be necessary to represent the contents of U or O.

Corollary 6.5: The number of tokens processed during an incremental change is bounded
by the sum of the number of tokens needed to represent the old U and O and the number
of tokens needed to represent the new U and O.

7 Stratified Programs

A stratified program is one that has no recursion through negation [Ros90]. In a stratified
program, all of the answers can be computed in one stratum before going on to the next.
This means that once in a stratum, the incoming changes can be considered to be EDB
updates, and the times on the tokens can be reset to 0. This will save time by avoiding
the production of [tokens that are sure to have matching r tokens.

To implement this approach, one would generate a rule dependency graph for the program
and find strongly connected components (SCCs), label each SCC with a number greater
than that for any SCC providing input to it, and include this number in the time attached
to a token so that the time is now a triple: (s, z,y), where s is the stratification level. Now,
when a token passes into a new stratum, the s value is set to that of the new stratum, and
the and y values are reset. This can be done by adding a stratum node to every link
between strata.

13

The addition of the stratum number to the time is necessary so that all processing will be
done in lower strata before working on upper strata.

In stratified programs, the outer fixpoint will be reached after exactly two inner fixpoints:
one for underestimates and one for overestimates, thus exactly two tokens will be produced
for each conclusion reached by the program.

8 Optimization

In an efficient implementation it would be possible to have only one token store for each
predicate, used for the redundant store inside the node, the output store for the node and
the input stores of the dependent nodes.

A further optimization can be achieved by not differentiating between overestimates and
underestimates in strongly connected components where there is no recursion involving
negation, and where all inputs come from similarly constrained strongly connected com-
ponents.

Also, disjunctive nodes will work with more than two inputs. To reduce the amount
of memory required there can be a single disjunctive node for each predicate in the
unnormalized program, taking input from the node for each rule concluding the predicate.

9 Future Work

It is possible to redefine the alternating fixpoint to reduce the number of tokens required
for underestimates by starting each underestimate with the results of the previous one, as
shown below.

Ovpe = H

Oa:,O = FE (.’L' > 0)

Opy = Ozy-1UI(Opy-1,Uz-1,00) (z>0andy>0)
ono - E

Ux,O = U:c—l,oo (:17 > 0)

Usy = Usy-1UI(Uzy-1,0z,0) (y>0)

Using this definition, the area of coverage for an underestimate token u(p,z,y) includes
every (z,yl) for y1 > y and every (z1,yl) for every 1 > z and every y1, including y1 < y.
This means that only one underestimate token per atom is required, whereas the previous
method generated a new one whenever the shrinking overestimates allowed a shorter proof.

We have not found a similar optimization for the overestimates, but have not found a
convincing reason why it would not be possible.

14

Another interesting area of investigation is the use of magic sets [BMSU85, BR87] with
incremental updates. This would allow for incremental updates to the magic seed relations
as well as incremental updates to the EDB, and could be useful within the scope of a
transaction to continually verify constraints.

General logic programs with function symbols pose problems for bottom-up evaluation
because they involve predicates with infinite extensions. AFP works for general logic
programs and will terminate if no predicate has an infinite extension. When it terminates,
the answers produced are correct. We would like to explore the implementation issues in
supporting general logic programs.

10 Summary

AFP is the first incremental algorithm to correctly handle retraction, with the elimination
of self-supporting conclusions, and to correctly handle negation, as defined by the well-
founded semantics. We believe that AFP is well suited to data-driven applications where
incremental recomputation of results is important.

The key advance in AFP is the data representation, which allows a computation to
proceed monotonically forward without getting stuck in recursive loops, and which has
a finite representation for atoms in alterate inner fixpoints. We have shown that this data
representation, along with the AFP algorithm, is correct and demonstrated its feasibility
with an implementation in Prolog.

11 References

[BMSUS85] Francois Bancilhon, David Maier, Yehoshue Sagiv, and Jeffrey D. Ullman.
Magic sets and other strange ways to implement logic programs. In Proceedings
of the 4th ACM SIGMOD-SIGACT Symposium on Principles of Database
Systems, 1985. ‘

[BR8T] Beeri and Ramakrishnan. On the power of magic. In Proceedings of the 6th
ACM SIGMOD-SIGACT Symposium on Principles of Database Systems, 1987.

[BR8S8] Fancois Bancilhon and Raghu Ramakrishnan. Performance evaluation of data
intensive logic programs. In Jack Minker, editor, Deductive Databases and
Logic Programming, pages 439-517. Morgan Kaufmann, 1988.

[Cla78] K. L. Clark. Negation as failure. In Gallaire and Minker, editors, Logic and
Databases, pages 293-322. Plenum Press, New York, 1978.

[For79] Charles L. Forgy. On the Efficient Implementation of Production Systems. PhD
thesis, CMU, 1979.

15

[For81]

[Mir87]

[MJIF+90]

[NGRSS]

[PP90]

[Rei78]

[Ros89]

[Ros90]

[U1189)

[VG89]

[VGRS88]

[VGTS89]

Charles L. Forgy. OPS5 reference manual. Technical Report CMU-CS-81-135,
CMU, 1981.

Daniel P. Miranker. TREAT: A better match algorithm for AI production
systems. In Proceedings of the National Conference on Artificial Intelligence.
American Association for Artificial Intelligence, August 1987.

Daniel P. Miranker, Bernie J. Lofaso Jr., Gary Farmer, Arun Chandra, and
David Brant. On a TREAT-based production system compiler. In Proceedings
of the Tenth International Conference on Ezpert Systems and Their Applica-
tions, 1990.

Nayak, Gupta, and Rosenbloom. Comparison of RETE and TREAT production
systems for Soar. In Proceedings of the National Conference on Artificial
Intelligence, page 693, 1988.

H. Przymusinska and T. Przymusinski. Semantic issues in deductive databases
and logic programs. In R. Banerji, editor, Formal Approaches to Artificial
Intelligence: A Sourcebook. North-Holland, New York, 1990.

R. Reiter. On closed world databases. In Gallaire and Minker, editors, Logic
and Databases. Plenum Press, New York, 1978.

K. A. Ross. A procedural semantics for well-founded negation in logic programs.
In Eighth ACM Symposium on Principles of Database Systems, pages 22-33,
1989.

Kenneth A. Ross. Modular stratification and magic sets for DATALOG
programs with negation. In Proceedings of the 9th ACM SIGMOD-SIGACT
Symposium on Principles of Database Systems, 1990.

Jeffrey D. Ullman. Bottom-up beats top-down for DATALOG. In Eighth ACM
Symposium on Principles of Database Systems, 1989.

Allen Van Gelder. The alternating fixed point of logic programs with negation.
Technical Report UCSC-CRL-89-39, UCSC, 1989.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics of logic programs. Technical Report UCSC-CRL-88-16, UCSC, 1988.

Allen Van Gelder and Rodney W. Topor. Safety and translation of relational
calculus queries. Technical Report UCSC-CRL-89-40, UCSC, 1989.

16

