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1 Introduction

Optical time domain reflectometry is a well-established tool for the non-destructive char-
acterization of fiberoptic networks [1]. This characterization may be for the purpose of
monitoring long or short haul communication networks, or for more specialized sensing ap-
- plications. In the latter case, an external parameter affects the propagation of light through
the network. For example, it might change the reflection at specific sensing sites, or change
the polarization state in a continuously distributed fashion [2]. In general, the ideal reflec-
tometry system would have a spatial resolution high enough to locate closely separated sites
of reflection within the network under test, at interfaces in connectors, for example. In ad-
dition, the sensitivity would be high enough to measure Rayleigh backscattering throughout
the fiber network. The level of backscattering, its rate of change with distance, and the
locations and sizes of any discontinuities, comprise useful information on distributed and
localized losses, in the fiber and at splices or connectors.

In time domain reflectometry techniques, in which systems are probed with pulses of radi-
ation, spatial resolution is improved as the pulses are made shorter, and the measurement
bandwidth is increased. This raises the noise levels detected, and so reduces the dynamic
range of the measurements. The dynamic range of frequency domain systems, however, which
use continuous wave probes, is independent of spatial resolution. This basic feature gives
techniques like frequency-modulated continuous wave ranging (FMCW) [3] the potential to
achieve high spatial resolution without sacrificing dynamic range. Applying this to coherent
optical reflectometry [4] gains the additional advantage of the high sensitivity characteristic
of coherent optical detection.

A critical feature in a coherent optical FMCW system is the source, which can determine the
achievable spatial resolution and range. High spatial resolution in the measurement depends
on the source having a large, phase-continuous, linear tuning range. The extent to which
the source departs from perfect coherence, and so produces phase noise in the output signal
spectrum, limits two aspects of system performance. One is the distance over which mea-
surements of discrete reflections can be made, before incoherent mixing predominates, and
the other is the dynamic range between the reflection signal of interest and the level of phase
noise. The requirements on the source coherence length relative to measurement range, and
the significance of such aspects as the measurement bandwidth and the reflection strength
have not been expressed with clarity and precision. Although some initial experimental work
has been reported [5, 6, 7], there remains a need for a more complete theoretical foundation
to these aspects of coherent FMCW reflectometry.

In this paper, we present an outline of a quantitative analysis of a model of coherent FMCW
reflectometry which considers the phase noise due to finite laser linewidth. We discuss how
the results of this analysis impact the measurement ranges for discrete reflections and for
Rayleigh backscattering in the presence of such reflections.

2 Theory

The basis of coherent FMCW reflectometry [3] is the interferometric mixing of two signals
originating from the same linearly chirped source, one signal following a “test” path, while
the other follows a reference path. Any time delays between the signals reflected back
from sites along the test path and the signal from the reference reflection give rise to beat
. frequencies in the mixed output. The values of the beat frequencies are proportional to



the time delays, while the sizes of the signals at the beat frequencies are proportional to
the corresponding reflection factors. A spectral analysis of this output therefore reveals
the locations (relative to the reference path length) and strengths of any sites of reflection
along the test path. In a fiberoptic implementation of FMCW, a fiber directional coupler
is used to direct the light along reference and test paths in a Michelson configuration, and
the mixing occurs at a photodetector. Figure 1 schematically shows an example of such an
implementation. In practice, the system would include either some means of polarization
control in one arm of the interferometer, or a polarization diversity detection scheme to
avoid signal fading problems. Another desirable feature in one arm of the interferometer
would be a mechanism for shifting the optical frequency of the light. Otherwise, the beat
frequency spectrum would be confused by the presence of “intermixing” peaks, produced by
the beating of signals originating from different sites of reflection along the test arm with
- each other, as opposed to with the reference beam. By including such a frequency shifter,
the beat frequencies due to signals from the test arm mixing with the reference signal would
be shifted well away from the baseband region. The beat frequencies due to the test arm
signals mixing with eath other would remain in the baseband region, so subsequent signal
processing could remove them, and restore the spectrum to a form analogous to the time
domain response of the network. The simplified system shown in Figure 1, however, is an
adequate model for our present purposes. We assume that the slope of the frequency chirp
is perfectly linear in time, and that the frequency span is long enough to obtain whatever
spatial resolution is desired. We are considering the case of a single reflection from the test
arm of the interferometer, occurring at the end of the length of fiber, at a distance z¢ further
than the length of the reference arm. This corresponds to a total time delay experienced by
the test signal relative to the reference signal of 7o = 2nzo/c where ¢/n is the group velocity

of light in fiber.

The goal of this analysis is to obtain an expression for the spectral density of the output
photocurrent of the system modelled in Figure 1. This is given by the Fourier transform of
the autocorrelation function of the optical intensity received by the photodetector, which we
now derive.

For a linear frequency sweep of slope 4, the optical field E(¢) can be described by
E(t) — Eoej(wot+7r’rt2+¢c) (1)

where wy is the initial optical frequency and ¢; is the randomly fluctuating optical phase at
time . Assuming a 3dB coupler in Figure 1, with reflection factors of unity and R from
the reference and test arms respectively, the photocurrent I(t) is proportional to the optical
intensity incident on the photodetector, and, with the exception of an unimportant constant
factor, is given by

I(t) = |E(t)+ VRE(t - o)/ (2)
Combining equations ( 1) and ( 2) and simplifying, we get
1

I(t) = Eg (1 + R + 2\/]_Zcos(wbt + woTo — §wa0 + ¢ — ¢t—fo)) ®3)

where the beat frequency wy is given by 2wy7.



At this point, our model of the FMCW reflectometer may be recognised as an example
of a heterodyne interferometer. The analysis of the operation of such interferometers has
been carried out by many others [8, 9, 10, 11]. However, there are some inconsistencies
and discrepancies in the published results, some of which may be ascribed to differences in
definition, others to unstated differences in simplifying assumptions. The analysis will be
undertaken again here from the specific viewpoint of FMCW measurements.

The normalised autocorrelation fuction Ry(T) is given by

Ri(T) = (%) < IQIE+T) >
0
= (1 + R)2 + 2R cos LUbT < COS(¢t+T + ¢t—‘ro - ¢t—‘ro+T - ¢t) >
—2RsinwpT < sin(dep1 + bt—my — Pt—rg+T — Pt) > (4)

where <> denotes a time average.

Assuming that the source optical phase change over a time 7 is a stationary zero-mean
random variable, it follows that phase changes over non-overlapping periods of time are
. statistically independent. Defining A¢, = ¢; — ¢;_,, we can use the relationships

<cosAp, > = e 3<A> (5)
<sinA¢,> = 0
and solve equation ( 4) for two separate cases, which together make up all possibilities.
Case (1) For |T| < 7o
Ri(T) = (14 R)*+2RcoswyT < cos(deyr — ¢¢) >< c08(PtmptT — Ptery) >
= (1+ R)*+ 2R coswyTe™<A%> (6)
Case (2) For |T| > 7

RI(T) = (1 + R)2 + 2R COS&J(,T < COS(¢t+T - ¢t_m+T) >< COS(¢t - ¢t—'ro) >
= (14+ R)?+2Rcos wae—<A¢3o> (M

If we further assume that phase fluctuations are caused by the zero-mean frequency fluctu-
ations of a Lorentzian source, we can express the variance of the phase change A¢, over a
time period 7 in terms of the laser linewidth Avg or the source coherence time 7, using

A¢,2, =< (¢t - ¢t—1‘)2 >= 27('!7'|AVO (8)

where
1

TTe (9)

Substituting ( 8), and ( 921 into ( 6) and ( 7) we obtain our final expressions for the autocor-
relation of the detector photocurrent.

Al/o =

For |T|<7  Ry(T)=(1+R)*+2Rcosw,Te ATl (10)
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For |T| > 7o R1(T) = (1 + R)* + 2R cos w,Te~ 2/ (11)

Figure 2 is a plot of the autocorrelation function described by equations ( 10) and ( 11),
clearly showing the transition at the interferometer delay time from an exponentially decay-
ing sinusoid to one with constant amplitude. A qualitative understanding of the system’s
behaviour may be gained from considering how different system parameters would change
the shape of this plot, and so the corresponding spectral density.

For the case of complete incoherence, corresponding to an infinitely long interferometer
delay, the exponentially decaying envelope never reaches a transition point. Its Fourier
transform (neglecting the DC component) would therefore be a Lorentzian, centred on the
beat frequency w;. This matches our expectations for the interferometric output from an
incoherent source, as found in delayed self-heterodyne measurements. For the opposite
extreme of perfect coherence, or zero interferometer delay, the autocorrelation plot would
just be a sinusoid of constant amplitude, and its Fourier transform would be a delta function
at the beat frequency.

To obtain a general expression for the two-sided spectral density of the photocurrent, Si(f),
we take the Fourier transform of the autocorrelation function. Beginning with

Su(f) [ Ra()eCirDar

= /TO [(1 4+ R)? 4 2R cos w, Te~T/me) e~ nif D g

=70

+ / "I + R)? + 2R cos wTe~@n/))e=@mif g
™
+ / “°l( + R)? + 2R coswy Te"@m/]e=CrifDgr  (12)

and working through the algebraic manipulations we finally obtain

Si(f) = (L+R*6(f) + Re ™/§(f+f) (13)

R, _—@n/r) sin 27(f % fo)70
+1+7F2T3(f:tfb)2 [1 e (2 {cos27r(f:|:fb)To+ ) }]

where f, = wy/27. A more useful expression to relate to experimental measurements is the
one-sided spectral density S}l)( f) given by

S = (1+RP8(f) + 2ReC/™§(f - fp) (14)
2R, =@/ s 2m( f — sin 27 (f — fo)70
2~ ) [1 { S A D ey -y }]

Three terms make up the spectral density function. The first is a delta function at DC, which
corresponds to the average level of optical power reaching the photodetector, dependent on
the value of the reflection factor R. The second is a delta function at the beat frequency,
weighted by a factor including R and an exponential function of the ratio of delay to coherence
time. This second term corresponds to the FMCW beat signal arising directly from the



reflection site, reduced in magnitude by the system’s degree of incoherence. The third term
is a continuous function of frequency, strongly affected by the coherence time and the delay
time. It represents the distribution of phase noise around the beat frequency. Equation ( 14)
can be used to generate plots to show how the distribution of phase noise, the last term in
the expression, evolves as a function of system coherence, from a Lorentzian of halfwidth
equal to twice the laser linewidth for a low coherence system, to a sinc? function with ‘zeros’
at intervals of the reciprocal of the delay time, for a high coherence system [10].

So far in the analysis, we have ignored the phenomenon of Rayleigh backscattering, which
would effectively contribute a continuum of small ‘reflections’ from the fiber in the test arm,
up to the distance zo. After coherent mixing with the reflection from the reference arm,
the resulting photocurrent would have a spectral density function whose magnitude can be
calculated as follows.

If we take S to be the backscattering capture coefficient and «, to be the loss coefficient
due to Rayleigh backscattering [12], the fraction Rggs of the incident power scattered into a
guided wave travelling in the backward direction is given by

RRBS = Sa,A:I: (15)

where Az is the system’s spatial resolution. In an FMCW system, the spatial resolution is
given by
c c
2nF, 2ny f (16)
where F, is the optical frequency span swept through during the measurement time, and

the effective measurement time is equal to the reciprocal of the frequency resolution of the
measurement, A f, hereafter called the measurement bandwidth.

Az

From ( 15) and ( 16), the one-sided spectral density S}l)( ) due to Rayleigh backscat-

RBS
tering, normalised with respect to the input power, can be expressed as

s = Sa..z—;; (17)

Other contributions to the detected spectral density include relative intensity noise from the
- source, and shot noise at the receiver. These are strongly system-specific, and may warrant
attention if they dominate phase noise or the Rayleigh backscattering level in a particular
application.

From the viewpoint of FMCW reflectometry, cases of high coherence are most relevant,
and an approximation of equation ( 14) for high coherence would be valuable. An analytical
derivation of such an approximation can be carried out more easily by returning to equations
( 10) and ( 11). The assumption of high coherence is expressed quantitatively by setting
70/Tc << 1. Equations ( 10) and ( 11) then simplify to

AR|T|

Te

For 7] < 7 Ri(T) ~ (1 + R)*> + 2R coswpT —

coswpT (18)
For 7| > 7o Ri(T) =~ (1 + R)? + 2R cos w,T



The autocorrelation amplitude decays linearly rather than exponentially in this high co-
herence case, before reaching a constant value. Sj(f), the two-sided spectral density of
the corresponding photocurrent, is given by the Fourier transform of the autocorrelation
function.

Si(f) = /_ o:o [(1 + R)? + 2R cos 27 f,T)e~?"i/D)dT

" [‘{ﬂ] cos 2x fyTe~ ST 4T (19)

—T0

which leads to the following expression for the one-sided spectral density

SU(f) = (1 + R)26(f) + 2R6(f £ fi) + 4R(72/7.)sinc(f £ fi)7o (20)

This describes a delta function at DC, a delta function at the beat frequency, and a sinc?
function, with zeros at the reciprocal of the delay time, centred at the beat frequency.

Figure 3 shows a typical plot of the spectral density of the detected photocurrent, taken
from equations ( 20) and ( 17) in combination. The backscattering contribution stops at
the beat frequency of the main reflection, as we have assumed the reflection occurs at the
end of the fiber. Notice the sinc? rippling of the phase noise, gradually falling below the
level of the Rayleigh backscattering on the low frequency (fiber) side of the reflection signal
peak. It is clear that the dynamic range of the measurement may be significantly reduced
close to the reflection peak because of the phase noise. Expressions are given in the figure
for the average level of Rayleigh backscattering, the peak value of phase noise, and the delta
function weights at DC and the beat frequency.

In a real measurement, the power in a given bandwidth is measured rather than spectral
density, and the phase noise power, any other noise power such as RIN, and the Rayleigh
backscattering power would be proportional to the bandwidth of the measurement system.
The DC and beat frequency signals, however, would be of finite but fixed heights, indepen-
dent of bandwidth. This means that if we could improve the spatial resolution by increasing
the source’s frequency span, and increase the measurement time by the same factor, to keep
the slope v constant, the corresponding reduction in the measurement bandwidth would
cause all noise and backscattering levels to be lowered by exactly the same amount. We
would therefore not suffer any reduction in the dynamic range of the measurement. This
proportionality between spatial resolution and measurement bandwidth is one of the main
advantages of FMCW over time domain reflectometry. In the latter technique, an improve-
ment in spatial resolution occurs at the cost of an increase in the measurement bandwidth,
-which both lowers the backscattering signal and raises the noise levels, and so greatly reduces
the dynamic range of the measurement.

3 Application

The importance of equations ( 14) and ( 17) to coherent FMCW reflectometry lies in the pos-
sibility they offer of predicting measurement performance for various combinations of system
parameters. This may be useful in designing a system to fit a particular measurement need,
or in defining the measurement capabilities of a given system. As an example of the latter



situation, suppose for a given source of known wavelength, linewidth, and phase-continuous
tuning range, we wish to know how far down a fiber network a Rayleigh backscattering sig-
nal is detectable in the presence of a reflection of some known magnitude at the fiber end.
Choosing a practical sweep rate, and corresponding measurement bandwidth, the phase noise
term of equation ( 14) could be employed to determine, for the given parameters, the peak
value of phase noise power, relative to the input power, as a function of the fiber length.

The curve labelled ‘phase noise’ in Figure 4 shows the result of following the procedure just
described, for a specific case. The qualitative features of this curve and the others in this
figure are, however, true for the general case, with only the details and the relative positions
of the curves changing for specific system parameter changes. The phase noise curve shown
follows the pattern of all such curves - a linear increase with distance, until the onset of
incoherent behaviour, where it flattens out. The curve labelled ‘reflection peak’ represents
the signal power due to the discrete reflection, obtained from the second term in equation
( 14), which is determined by the source linewidth and the reflection factor. Notice that the
signal drops very slowly with distance over the coherent measurement range, and then falls
very sharply, as the light reflected back from the test arm becomes incoherent with the light
reflected back from the reference arm. As an indication of the onset of incoherennt mixing,
we could arbitrarily choose the point at which the power of the beat frequency signal falls
by 1dB from its value at perfect coherence, or zero path delay. We could then propose that
this system should not be used to make reflection strength measurements beyond this point,
marked ‘a’ in the figure, which is determined by the source linewidth, and is independent of
the reflection factor, R. The curve labelled ‘Rayleigh backscattering’ shows the average level
of the Rayleigh backscattered power, obtained by multiplying the expression in in equation
( 17) by the resolution bandwidth. at the wavelength of interest in equation ( 17) and
multiplying by the resolution bandwidth. To answer our main question on the Rayleigh
backscattering measurement range, we can see that up to the fiber distance marked ‘b’ in
Figure 4, the level of Rayleigh backscattering is above the phase noise. For longer fibers,
_the phase noise from the end reflection will dominate the backscattering signal. However, in
order to make Rayleigh backscattering measurements in fibers shorter than ‘b’, it would be
essential to keep any other noise sources, such as shot noise or the optical source’s relative
intensity noise (RIN), below the level of the backscattering signal.

It should be noted that for a fixed value of the frequency slope v the crossover point ‘b’ is
independent of the spatial resolution, since the phase noise and the Rayleigh backscattering
signals have the same dependence on measurement bandwidth. However, if we were to re-
duce the slope v and the measurement bandwidth by the same factor, so keeping the spatial
resolution constant, the backscattering level would be unchanged but the phase noise curve

would decrease, resulting in an increase om the measurement range for Rayleigh backscat-
tering.

The curves in Figure 4 show the various signal strengths plotted against distance for given
source parameters. An alternative set of curves could be obtained by plotting the powers due
to phase noise, Rayleigh backscattering, and the reflection signal itself as functions of laser
linewidth for a fixed value of measurement path delay. This could help in making a decision
on a suitable source for an FMCW measurement system for a specific application. Figure
5 shows a typical set of such curves, generated from equations ( 14) and ( 17), following a
similar procedure to that for Figure 4. The significance of the point marked ‘aa’ in this figure
is the same as that of ‘a’ in Figure 4, showing the 1dB limit for coherent measurements, now
in terms of the allowable linewidth for the desired measurement range. In the same way,
point ‘bb’ marks the limit for Rayleigh backscattering measurements in terms of the allowable



linewidth for a source of given tuning range, tuning rate, and measurement bandwidth, in
the presence of an end reflection.

Let us take some specific cases of practical sources likely to be of some interest in FMCW
reflectometry. Consider first an external cavity laser of 100 KHz linewidth, operating at 1.3
pm, and tunable through a span of 100 GHz without mode hops. We might be interested in
finding out how far down a fiber network we would be able to detect a Rayleigh backscattering
signal in the presence of a 4 % Fresnel reflection at the fiber end. In order to take full
advantage of the 100 GHz frequency span, and obtain the corresponding spatial resolution
of 1mm, we could choose a sweep rate v of 10'® Hz/s, and collect data during a time interval
of 10 ms. This would mean a measurement bandwidth of 100 Hz. The other numbers we
need are the coherence time corresponding to the linewidth of 100 KHz, which is 3.18 us,
the reflection factor R, which we set at 0.04, and the appropriate values of scattering factor
and attenuation due to scattering. For standard single mode fiber, we take a, = 0.001 and
S = 8.1x10~® per meter [1]. Following the procedure described above, to generate curves of
power against fiber length, we obtain a value for the transition point ‘a’, marking the range
for coherent reflectometry, as ~ 100 m, and a value for ‘b’ of ~ 30 c¢m, indicating that phase
noise arising from the 4% end reflection would dominate Rayleigh backscattering in fiber
lengths any longer than this.

If we were to reduce the slope ¥ and the measurement bandwidth by a factor of 10, to
102 Hz/s and 10 Hz respectively, the spatial resolution would be unchanged, at lmm, the
backscattering level would remain in place, but the phase noise curve would shift down by
10 dB, moving the point ‘b’ to about 3 m - a tenfold increase in the measurement range.

Now consider a Nd:YAG ring laser source, at 1.32 pym, with a linewidth of 100 Hz, and
a phase-continuous tuning range of 10 GHz. The best spatial resolution possible wth this
tuning range is 1 cm, and could be achieved by choosing a sweep rate of 10!! Hz/s and a
bandwidth of 10 Hz. We find that the points ‘a’ and ‘b’ occur at about 50 Km and 100 m
respectively. These improvements in measurement range compared to the external cavity
laser might be important enough in some applications to outweigh the disadvantage of the
poorer resolution. Other features, such as reliability or ease of operation, may also deserve
serious consideration in the process of making a choice between the two types of source for
_a particular system.

Finally, consider a semiconductor source, a 1.55 um distributed feedback laser of 25 MHz
linewidth and a maximum phase-continuous tuning range of 500 GHz. We could keep the
measurement bandwidth at 10 Hz, and choose a sweep rate of 5x10'? Hz/s, to make use of the
full tuning range, and obtain a spatial resolution of 0.2 mm. Estimating the attenuation due
to scattering at 1.55 ym by assuming an inverse fourth power relationship with wavelength
[1], we obtain @, = 4x10~° per m. Plotting the power curves against fiber length as before, we
would find that the useful measurement range for discrete reﬁections was about 50 cm, and
that the range for Rayleigh backscattering measurements in the presence of a 4 % reflection
was about 2 cm. So, although the spatial resolution would be very good, due to the large
tuning range, the measurement ranges would be quite short, due to the short coherence
length of this type of source.



4 Conclusion

The presence of phase noise in the spectrum of the signal output from a coherent opti-
cal FMCW reflectometry system limits the ranges over which either discrete reflections or
Rayleigh backscattering may be accurately measured. System parameters that determine
these limits include the linewidth of the source, the measurement bandwidth, the frequency
chirp rate, and the scattering characteristics of the fiber. The general expressions derived
for FMCW measurement systems have been used to calculate the limits for three sources of
practical interest.

The first case was a 1.3 gm source of 100 KHz linewidth, phase-continuously tunable through
100 GHz. These numbers would be quite feasible for an external cavity laser. A system based
on such a source was shown to have a useful range for discrete reflection measurement of
~ 100 m. Its range for Rayleigh backscattering measurements in the presence of a 4 %
reflection, with a spatial resolution of lmm, and a measurement time of 100ms, was 3 m.
The second case was a 1.32 pm source of 100 Hz linewidth and a phase-continuous tuning
range of 10 GHz. These numbers could well describe a Nd:YAG ring laser. The corresponding
FMCW system was shown to have ranges of ~ 50 Km and 100 m for discrete reflection and
Rayleigh backscattering measurements respectively, with a spatial resolution of 1 cm and a
measurement time of 100 ms. The third case was a 1.55 pm source of 25 MHz linewidth,
and a phase-continuous tuning range of 500 GHz. Distributed feedback lasers can have
such characteristics. Measurement ranges in this case were ~ 50 cm for discrete reflections
and ~ 2 cm for Rayleigh backscattering levels, with a spatial resolution of 0.2 mm, for a
measurement time of 100 ms and phase noise due to a 4 g{) reflection.
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Figures

Figure 1.  Fiberoptic implementation of coherent FMCW reflectometry, showing chirped
laser source, reference and test arms of interferometer with corresponding optical fields, and
the detector photocurrent.

Figure 2. Autocorrelation Ry(T) of the photocurrent I(¢).

Figure 3. One sided spectral density S}l)( f) of the photocurrent I(t) for a high coherence
system, showing the delta functions at DC and the beat frequency, and the distribution of
phase noise around the beat frequency, with the average level of Rayleigh backscattering
superimposed on the low frequency side.

Figure 4. Phase noise power, Rayleigh backscattering power, and end-reflection power as
functions of fiber length.

Figure 5. Phase noise power, Rayleigh backscattering power, and end-reflection power as
functions of source linewidth.
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