(b’ HEWLETT

PACKARD

PCLOS Reference Manual

Andreas Paepcke

Software and Systems Laboratory

HPL-91-182
December, 1991

PCLOS, object
persistence, CLOS,
object-oriented
programming,
persistent languages

Internal Accession Date Only

This document combines three formerly separate
manuals of as many successive PCLOS versions: 2.0,
2.1 and 3.0. The three-part structure reflects this.
Part one contains the bulk of information, about
PCLOS, and it is indexed for easy reference. Parts
two and three describe modifications that were made
to the system over time. These include bug fixes,
upgrades and modifications in response to user
feedback. The reader should therefore pay attention
to those, since they occasionally provide information
that supersedes material in part one. Note that parts
two and three are not included in the index.

© Copyright Hewlett-Packard Company 1991

(c) PCLOS Copyright 1988, 1991 Hewlett-Packard Company (by Andreas Paepcke)

Permission to use, copy, modify or distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice appear in
all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of Hewlett- Pa,cka.rd not be used in advertising
or publicity pertai o distribution of the software without specific, written prior per-
mission. Hewlett-Pacinrd make no representations about the suitability of this software
for any purpose. It is provided ”as is” without express or implied warranty.

HEWLETT-PACKARD DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL HEWLETT-PACKARD BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARIS-
é%% TQ\}VJE OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
RE.

Contents

I PCLOS Version 2.0

1 Introduction

1.1 Architecture. e e e
1.2 Protocol Adapters e e e e e e
2 Basics
2.1 Loading PCLOS it it
22 PreparingClasses i e e
3 The Master Protector
4 Controlling Persistence
4.1 Object Persistence i i e e e
42 ClassPersistence ittt
5 Caching
5.1 Object-Level Caching
52 Slot-Level Caching
53 Class-Level Caching
6 Information about Objects and Classes
6.1 AskingObjects i i i e e
6.2 AskingClasses i i ittt
6.3 Asking Protectors. e e

7 Transactions

8 Finding and Retrieving

11
11
11

13

17
17
18

20
20
22
22

24
24
24
25

26

28

9 The Protector Object

9.1 Controlling the Underlying Database
92 DestroyingDatat
9.3 Type Conversion Customization.
9.3.1 Managing Conversion Functions
9.3.2 Managing Native Types,

10 Protocol Management
10.1 Accessing Protocol Adapters Through Protectors
10.2 Controlling Protocol Adapters.

11 Debugging

12 The Iris Database
121 Complex Queries i it e e e e e e
1211 The :xeturn Term
1212 The :with Term
12.1.3 The :where Term,
12.14 Complex Query Examples
12.2 Long Informationin Slots

13 The In-Core Database
13.1 Archiving e e e e e e e e e e e e e

14 Some Examples

15 Limitations
15.1 Global Limitations it ittt
15.2 Limitations Specific to the In-core Database

II PCLOS Version 2.1
16 Introduction

17 Random Improvements

17.1 The find-protector Optional Argument

18 The Workspace Database

18.1 PCLOS Access to the Workspace

18.2 Limitations of Workspace Databases

IIT PCLOS Version 3.0

19 Introduction

20 Startup Procedure

21 Upgraded Workspace Support

21.1 Large Integers.

...........................

21.2 Access to Demons, IPC and Method Operations

21.3 Queries In Open Transactionst v,

21.4 Workspace Query Anomaly

22 The New Write-Through Mode
22.1 Why This New Mode? . . .

...........................

...........................

22.2 Definition of the Write-ThroughMode
22.3 Definition of the Write-Through-AllMode

22.4 Backward Compatibility . .

23 Performance-Related Modifications

23.1 Modified Rollback Support

52

52

52
52

52
53
53

53

53

55

55
55
55
56
57

57
57
58
59
60

60

23.2 Compiler Optimizations
23.3 Slot Access Optimizationsenen..

24 Transient Slots
25 Recursive Object Lattice Walker
26 Server-Independent Object Base Naming

27 Improved Dirtyness Management
27.1 Descriptionof Changes
27.2 Some Helpful Details,

28 Test Suite
29 Clearing An Environment

30 Miscellaneous
30.1 Dualism Of Operations i it it it
30.2 Class Names i v i it it et e e e e e e e e e e e
30.3 New Method to Find Protectors
30.4 New Method On Finders.
30.5 Little Hintsand Errata

31 Conclusion
32 Acknowledgments
33 Appendix: Methods and Globals

34 References

61

61

62

64
64
64

65

65

67
67
67
67
68
68

68

68

70

75

Part I
PCLOS Version 2.0

1 Introduction

The purpose of this document is to provide the technical information necessary to use
PCLOS. Separate reports are available to cover more detailed questions on architecture,
rationale and references to related work [1, 2, 3, 4].

PCLOS is a system that provides persistent storage and other amenities to CLOS program-
mers. CLOS stands for Common Lisp Object System and is being evolved into a standard
for adding object-oriented programming to Common Lisp. PCLOS provides persistence at
the object and the class level. Not all instances of a class need to be persistent. Transient
objects may dynamically be made persistent and vice versa. Objects and individual slots
may be cached explicitly by the programmer. While PCLOS currently does not cache on
its own initiative, it maintains knowledge about “dirtyness” of objects which may be used
to implement automatic cache maintenance.

Important features other than the preservation of state include transaction-based rollback
of object state for all persistent objects and associative search over the state of the object
base. PCLOS allows for the use of multiple, very different databases within the same
session. As more databases are supported, this enables users to make choices between
different databases based on their functionality and performance tradeoffs. Currently a
simple, single-user in-core database with transaction rollback is included with the system.
This database can be saved to and restored from an archive. Also included is the interface
to Iris, an HP-internal research prototype of an object-oriented, multi-user, disk-based
database! [5]. A product version related to the Iris prototype is called OpenODB. It has
been announced by Hewlett-Packard, but no PCLOS interface to this product has been
constructed. Its interface is very similar to that of Iris.

The system attempts to be as non-intrusive as possible. The guiding principle for the desi

is transparency. Ideally programs should run with minimal change under PCLOS. The
implementation deviates from this ideal whenever one of two situations occurs: efficiency
considerations suggest the introduction of special features, or some database concept is so
useful that it should find entry into the programming world. Caching is an example for
the first situation, transaction management is an example for the second.

The following sections introduce the bare minimum that makes understanding the later
sections easier. Some of the information here might become more clear in those later
sections when concrete operations are introduced. Any small database-specific pieces of
information will be provided when the various standard operations are introduced. In
addition, there is one section devoted to each kind of database where special capabilities
and idiosyncracies will be described.

1See part 11 of this document for a third database to which an interface is included.

1.1 Architecture

Most of the control over object persistence is done through messages sent to PCLOS
objects or classes. Some operations, however, do not affect particular objects, but control
the underlying databases. This is where protectors come in.

Every database session is represented by an object called protector? which is obtained by
the programmer through appropriate calls. This protector is the recipient of messages
that explicitly control its associated database. Examples are transaction management and
associative search. One object called the master-protector manages all protectors during a
Lisp session.

Persistent objects are represented in memory by husk objects which do not contain any
slot values unless the objects they represent are cached. Lisp eqness is guaranteed for all
objects. The programmer creates objects in memory in the usual way. When an object
is to be made persistent, the programmer protects the object by sending an appropriate
message to it. At that point its in-memory representation is “gutted” — it turns into a husk
object — and its state is transferred to the database. An appropriate database schema is
automatically generated as part of this process. By providing methods with appropriate
names, the programmer can operate on an object being protected shortly before and shortly
after it is committed to the database. This can be used for cleanup or caching purposes.
Transient and persistent objects are semantically and syntactically equivalent, except for
the effects of concurrency control and, of course, life span. Slot accesses to persistent
objects are transparently intercepted and appropriate commands are sent to the database
for information update and retrieval. Transient objects are not known to the database and
cannot be accessed by other users. Section 4 explains much of this in more detail.

Caching an object means to fetch all its slot values from the database and to put them
into the corresponding husk object. The system will subsequently use this in-memory
representation until instructed to change back to the default mode of operation. At that
point the programmer determines whether the database is to be updated from the in-
memory values or whether those values should be abandonned.

When the user runs a search over the database and an object satisfying the query predicate
is already represented in memory as a husk, the system will notice that fact. If, on the
other hand, a previously unknown object satisfies the query, a husk is made for it. We will
say that the object is “internalized”. Again, the programmer may operate on the object
immediately after it is introduced into the address space by providing a method with an
appropriate name.

If objects are protected or internalized, their classes — as defined in the current memor
image — must conform to the classes that were defined in the memory image from whi
the objects were first committed to the database. This is enforced by the system. The
programmer will be told in which way the current class differs from the class the database
assumes.

2The concept of a protector was first introduced in the DOOM system by Brian Beach and Jim Kempf [6, 7).

1.2 Protocol Adapters

The ability to use multiple different databases for an object base without changing pro-
grams is useful but could come with a cost: it potentially limits the amount of functionality
that can be made available for the program layer to the level of sophistication of the least
advanced supported database. Some users might want to forego the data-store indepen-
dence and want instead to make use of special capabilities of one particular database.
Protocol adapters fill this need. While every database must support a minimum core pro-
tocol, protocol adapters may be added by PCLOS implementors to make available special,
database specific features in some pleasing way. Each protocol adapter represents one
database concept which might or might not be supported by any given database. Exam-
ples of protocol adapters are transaction management, complex queries, database archivin
or support for the storage of particular datatypes. These protocol adapters are subdivide
into facets which represent sub-aspects of the adapter’s concept. Not all facets of a pro-
tocol adapter have to be supported by databases supporting that adapter. Examples of
facets are rollback and concurrency control for the transaction adapter. The complex
query adapter has facets that describe in which way the query is complex: are existential
variables supported? Can results be multi-valued?, etc.

Each facet contains some machine-readable information that is used by the implementation.
They also contain lists of assoctated operations which are methods that implement the
facet. Both, protocol adapters and their individual facets also contain human-readable
information that explains their capabilities. All of this information is accessible through
the protectors.

It is possible to dynamically add and remove facets from adapters or adapters from pro-
tectors. Such a removal will cause the associated database interface to not support the
associated concept. Removing the complex-query adapter from an Iris database will, for
instance, limit the query capabilities of that Iris session to core-level queries.

Since not every database supports all facets of every protocol adapter, the user might at-
tempt to execute operations that are not supported by the database being used. Database
interfaces and adapters may therefore be associated with functions that are invoked when
operations are attempted which require the presence of a particular unsupported adapter
or facet. These functions are called adapter-missing-actions and facet-missing-actions re-
spectively and may be installed and removed dynamically. An appropriate default action
is taken if no explicit missing-action was specified.

10

2 Basics

2.1 Loading PCLOS

In order to load PCLOS, use (require "pclos"). No other action is necessary. It is
assumed that “/lisp/modules/local/” is on the sys::*require-directories*. The load will
look for the PCLOS software relative to the root of the PCLOS tree which is taken to be
the value of the environment variable $pclos. This can be overridden, if global variable
pclos:*pclos* is non-nil. It is then assumed to be a string pointing to the root of the
PCLOS tree. Note that if you are using a CommonLisp dump which was made on another
machine, that process will “know” about the environment variables that were defined on
the other machine at the time the dump was created. If PCLOS seems to try the wrong
places for loading software you should therefore try to see the Lisp image’s ‘idea’ of the

value of $pclos.

2.2 Preparing Classes

In order to make objects persistent, their class must have special capabilities. These are
available to a class when 1ts metaclass is “pclos-class”. This is effected by including the
option (:metaclass pclos-class) in the defclass statement. Slots in a persistent class
may have one additional option: :transient {T | NIL} (default is NIL). If this option is
T, the slot will not be given to the database and will not be restored by transaction rollbacks
unless special measures are taken (see method begin-transaction on protectors).

Note that instances of persistent classes are not automatically persistent. Normal make-
instance statements will produce transient objects that behave in standard ways. The
object can be made persistent by sending the protect message to it.

Any module defining persistent classes should compile-load-eval-time require “pclos-load”
and “pclos-meta”. Any package should also use the package :pclos. All functions de-
scribed below assume that this is true. PCLOS exports all symbols that are meant to be
public.

Here is an example of the procedures explained in this section: we assume that the Lisp
variable prot contains a protector object. Its creation will be explained later and is not
important here.

(eval-when (compile load eval)
;; The compiler needs a small part of PCLOS for its work:
(require ‘‘pclos-load’’)
(require ‘‘pclos-meta’’))

(eval-when (load eval)
(require ‘‘pclos’’))

; 5 Make your package get access to CLOS and PCLOS symbols:
(in-package :my-stuff :use ’(:lisp :pcl :pclos))

11

(defclass CAR ()

(
(model :initform NIL :type simple-string)
(mileage :initform 0)
(current-rpm :initform 0 :transient T)
)
(:metaclass pclos-class)
)

Note that some slots are typed while others are not. If a type is provided, PCLOS will do
a more intelligent job of storing the slot values in databases. Some databases also allow
more sophisticated searching for typed slots (see page 41).

The current-rpm slot is transient presumably because it will only be used for values
without long-term significance.

(setf my-car (make-instance ’car
:model ¢‘Mercedes 450 SEL’’
:mileage 5))
The my-car object is transient, which means that no database contains it. But:

(protect my-car prot)

will make it persistent without causing any other changes. Messages to my-car will produce
the same results as before the protection.

12

3 The Master Protector

Since work on databases is done through protectors, there must be ways to find protectors
for given databases and to destroy them again. The object *master-protector* knows
how to do this. In addition, individual protectors respond to some administrative messages
which are documented in section 9.

Here i1s how you get a hold of a protector for one of the supported databases. This is the
most common function performed by the master protector. Remember that you need to
get a separate protector for each session:

(setf prot (find-protector *master-protectorx
? (<db-type> <db-name>)
&optional (<db-specific> NIL)))

Before we explain the options to this method below, here are two examples of calls to
find-protector:

(setf prot (find-protector *master-protector*
’(:iris ‘‘smithQhplhoop:/databases/testdb’’)
2000))

(setf prot (find-protector *master-protector*
’(:in-core ‘/users/jones/database/testdb’’)))

Here are the details of the find-protector method:

<db-type> == :iris | :in-core
<db-name> == case <db-type>
:iris A path to the Iris database. It uses the Arpa
notation.

Example: ‘‘hoopla®hplhoop:/dbtests/zarmer’’

This would either create or open an Iris db on
hplhoop, logging in as user hoopla. Rlogin criteria
hold for permissions.

:in-core A string. If the in-core database will never
be saved to an archive, the string is used for
identification only. Otherwise it is also used
as the default file name for archives to which
the database will save and restore.

<db-specific> == case <db-type>

13

tiris This information determines the Iris log
file size:
During transactions the database uses a file
for the non-committed activities. Currently
the length of this file is fixed, thereby
limiting the size of transactions (see section
on limitations). The number goes in chunks
of 512-byte blocks and defaults to 1000
(i.e. 512000 bytes). A value of 2000 is
generally good. This information is relevant
only vhen finding a protector on a
non-existing db, that is when an Iris db will
be created.

:in-core This information determines whether the system
will attempt to restore the in-core database
from an archive automatically as part of the
find. The <db-name> parameter will be used
as a path. If <db-specific> is T, a restore
will be attempted and an error is signaled
if the archive does not exist or is.
inaccessible. If <db-specific> is NIL, no
attempt is made to access any archive for
restoring. If the parameter is omitted, the
system will check whether there is a file
<db-name> and whether it may be opened for
reading and writing. If yes, the system will
do a restore. Otherwise no error is signaled
and the protector is returned.

Note that the restoration is only considered
during the first find-protector call, that is
when a protector has to be created. All
subsequent calls simply return the existing
protector.

Remember that you need to get a separate protector for each session. If you wish to use
several databases simultaneously, you will want to get a protector for each one. The call
above is not the only chance to fill an in-core database with information from an archive.
Separate operations are available to do that. They will be introduced in section 13.

If an Iris database is created as a result of this call, there will be roughly one minute of
wait time.

Here are some more obscure services provided by the master protector which may be
skipped on a first reading but come in handy for real work. Sometimes it is desireable
to cause the system to forget about all persistent objects managed by a protector. This
situation arises most frequently during debugging, when it is expensive to leave a session
and the programmer wishes to start over, possibly with some re-loaded application code.
The following call will abandon all husk objects, all knowledge about in-memory classes

14

which have been checked against classes known to the database and all other cached
information. The database itself is not affected, that is no information is destroyed:

(destroy-protector *master-protector* <protector>)

Note that objects which were persistent through <protector> will be unusable after this
operation. All slot values will have been destroyed.

It is sometimes desireable to avoid having the system recheck all classes but still to discard
all husk objects. The method abandon-known-objects on protectors accomplishes this.
It can be considered a less radical variant of destroy-protector and is documented on
page 30.

Normally the code for supporting particular databases is loaded on demand, that is when
the first protector for this type of database is found. The advantage of this is that no
unnecessary code is loaded. The disadvantage is the delay incurred during the first find-
protector operation. Preloading database code can be done through the master protector:

(load-database *master-protector* <db-type>)
The <db-type> parameter is the same as for the find-protector operation.

PCLOS redefines sys:exit to close all databases before leaving a Lisp session. In addition,
each protector supports a close-database operation to close the database it represents.
The master protector may be asked to close all known databases:

(close-all-databases *master-protectors*)

When working with multiple databases it is sometimes desireable to find all protectors of
a session, or to find all those that fill certain conditions. Example: find all protectors for
Iris databases; or find all protectors on databases that are currently open. The following
operations satisfy these needs:

(all-protectors *master-protector* &key (db-type T))

This returns a list of all protectors. If db-type is provided, it should be a database type
as defined in the find-protector operation. In that case only the protectors representing
the specified type of database will be returned.

(find-protector-if *master-protector*
test
tkey (db-type T) (find-all NIL))

This call returns protectors based on the function test and the database type specification
db-type. The master protector applies test to each protector. The test parameter must
therefore be a function that takes a protector as its sole argument. It must return T or
NIL, depending on whether the protector should be eligible for being returned. If db-type
is provided, it should be a database type as explained in the find-protector operation.
In that case only protectors representing a database of the specified type will be passed
to test for consideration. Furthermore, if find-all is T, a list of all protectors qualified

15

through this process will be returned. If it is NIL, only the first qualifying protector is
returned.

Examples: Find a protector that represents a database with an open transaction:

(find-protector-if *master-protector*
#’in-transaction?)

Find a protector which represents an in-core database that has an open transaction and
from which some objects are cached:

(find-protector-if *master-protector*
’(lambda (a-protector)
(and
(in-transaction? a-protector)
(get-cached-objects a-protector)))
:db-type :in-core)

Find all protectors whose associated database is currently open:

(find-protector-if *master-protector*
#’database-active?
:find-all T)

16

4 Controlling Persistence

Databases have knowledge about objects as well as their classes. The information about
classes includes the names and types of slots and their allocations as well as the values of
any class-allocated slots. Class persistence is therefore handled independently from object
persistence, although the programmer does not need to be aware of this: whenever objects
are protected, their classes are automatically protected also. Class-slot caching is also
available through operations on objects. First-time users of PCLOS may therefore ignore
explicit operations on class objects.

4.1 Object Persistence

To commit an object to the database, use the protect method on it. if methods before-
protect and/or after-protect methods are provided which take an object as their sole
argument, then these methods will be called immediately before and immediately after the
protect. The before-protect may be used to fix up any slot values before they go into
the database. The after-protect may, for instance, be used to cache objects as soon
as they are protected. Note that these two methods will be called only once during the
lifetime of an object.

When an object is internalized because it is in the result of a query, method after-
retrieve is called with the object as its only parameter. This method may be used to
cache objects automatically when they first come out of the database, or to set transient
slots. The after-retrieve method may be thought of as analogous to an initialize
method. It is called only once for each object that is brought in from the database during
a Lisp session.

(protect <obj> <protector> &key
(protect-enclosed-objects T)
(run-after-protect-method T))

This will put the <obj> into the database represented by <protector>. If :protect-
enclosed-objects is T, all objects recursively reachable from the slots of <obj> will also
be protected. Otherwise, a non-recursive protect is performed. The operation returns a
list of all objects that were newly protected.

Note that if a non-recursive protect is specified and unprotected objects are reachable from
<obj>, an error is signalled because PCLOS does not store references to transient objects
in the database. This option is intended for people who are intimidated by the machine
doing something they have not planned themselves.

If :run-after-protect-method is specified as NIL, the after-protect method is not
invoked.

If you protect an object whose class has never been “seen” by the database before, the
protect may take much longer than if any object of this type has been protected before
because an appropriate database schema is automatically generated in this case. Note also
that if you protect an already protected object with :protect-enclosed-objects set to T, this

17

call will not be a no-op because the system will have to check whether all other objects
that are reachable from <obj> are also protected.

(make-protected-instance <protector> <class-name> &rest keylist)

This behaves like make-instance, but the resulting object is automatically protected as part
of the call. The method is nothing more than a shorthand for the sequence make-instance,
protect.

(unprotect <obj>)

Will remove the object from the database. Your memory-resident object will still be
available. This is non-recursive. I you want to unprotect all objects reachable from
<obj>, use:

(recursive-unprotect <obj>)

This will return the list of all objects that were newly unprotected.

NOTE:

If other persistent objects reference unprotected objects, an error will be sig-
nalled when the unsatisfyable reference is accessed. The use of recursive-
unprotect will properly unprotect all objects which are reachable from any
slots of <obj>. But there might be other objects in the database which ref-
erence <obj>. PCLOS does not currently provide support for solving this
problem.

Sometimes it is desireable to make a Lisp session forget that it ever internalized some
particular object. This can be effected by:

(abandon <obj>)

This method affects only the in-memory Lisp session. The actual object in the database is
not altered. Note, however, that the affected object is no longer usable after this method
has been invoked on it. For a way to abandon all objects known to some protector, see
method abandon-known-objects on page 30.

(recursive-abandon <obj>)
will recursively abandon <obj> and all objects reachable from <obj>. It will return a list
of affected objects.

4.2 Class Persistence

As mentioned above, classes are automatically protected by the system when the need
arises. This will be when the first object of an unprotected class is protected, or when
the first object of an unprotected class is retrieved from the database through a search.
In the latter case the class is obviously known to the database already. The class protect
will in this case be limited to a consistency check. Explicit operations on classes are

18

nevertheless provided to let programmers control when the overhead of class protection or
consistency checking occurs. In addition, explicit operations on classes allow unprotecting
of all instances of a class from one or more protectors.

Classes are themselves objects in a CLOS system and are obtained by using the CLOS
method (class-named <class-name-symbol>) or (class-of <object>).

(protect <class-obj> <protector>)
This call returns T if all went well.
(unprotect-instances <class-obj> <protector>)

This will unprotect all instances of the class on the given protector. The class itself will
stay protected. Instances on other databases will also not be affected. The operation
returns a list of all unprotected objects.

(unprotect <class-obj>
&key
(protector <home-protector>))

This will unprotect some subset or all instances of a class and will then remove all traces
of the class from its “home protector”, that is from the protector on which the class itself
is protected. The subset of instances that are unprotected depends on the protector key
argument. Remember that not all instances of a class need to reside in one database. If the
protector is the home protector, all instances of the class on all protectors it knows about
will be unprotected, which is generally what is wanted. If the specified protector is not
the class’s home protector, only instances on the specified protector will be unprotected
before destroying class-specific information in the home protector. This operation returns

T if all went well.

See also section 9 for unprotecting even more globally than at the class level.

19

5 Caching

You may load entire objects or individual slots into memory to speed up access to them.
If such loading is done in a transaction, the item will be locked in the database and you
have effectively cached it, else you should think of the loaded item as a snapshot from the
database. We will use the word ‘caching’ for both of these cases. The mechanisms for
caching slots and objects are independent, although there is an interaction: If an object is
cached, all slots are treated as cached. See uncache and uncache-slot to understand how
the mechanisms may be used independently.

5.1 Object-Level Caching

(cache <obj> &key
(cache-class-slots T)
(preserve-cached-values T))

If :cache-class-slots is T, the <obj>’s class-allocated slots will also be cached. If
:preserve-cached-values is T, then any slots that were cached individually prior to the
object cache will be preserved. Otherwise they will be overwritten. If you call cache on an
already cached object, T is returned and nothing is done.

(recursive-cache <obj>
&key
(cache-class-slots T)
(preserve-cached-values T))

This is like cache, but it also caches all objects reachable from the object being cached.
The operation returns a list of all objects that were newly cached.

(recache <obj>
key
(recache-class-slots T)
(preserve-cached-values T))

If <obj> is not cached, this is equivalent to the cache operation. Otherwise this will update
the already cached object to conform to the state of the object in the database, destroying
all slot values of the previous in-memory copy.

(recursive-recache <obj>
tkey
(recache-class-slots T)
(preserve-cached-values T))

Does recache to <obj> and to all objects reachable from it.

20

(uncache <obj>
&key
(uncache-class-slots T)
(uncache-cached-slots NIL))

Write state of the cached object out to the database and destroy the in-memory copy of
<obj>. All subsequent slot accesses will be to the database. If uncache-cached-slots is T,
then slots that were cached individually will be uncached as part of the object uncaching.

Subtle point:

When writing the slot values back, PICLOS will protect any objects reachable from <obg>
because transient objects may not be referenced by persistent objects in the database. So
this operation can cause other objects to be protected as a side effect. The same is true
for the write-back operation below.

(recursive-uncache <obj>
&key
(uncache-class-slots T)
(uncache-cached-slots NIL))

Uncaches <obj> and all objects reachable from it and returns the list of uncached objects.

(wvrite-back <obj>
&key
(vrite-back-class-slots T))

Write state of the cached object out to the database but do not uncache the object. Retain
the in-memory copy of the object state. Subsequent slot accesses will still use the copy in

memory. The subtle point explained above in the context of uncache is relevant in the
context of write-back also.

(recursive-write-back <obj>
&key
(write-back-class-slots T))

Execute a write-back operation on <obj> and on all objects reachable from it. A list of
objects which were written back is returned.

(abort-cache <obj>
&key
(abort-cache-class-slots T)
(abort-cache-cached-slots NIL))

21

Cause <obj> to be uncached without updating the database with the in-memory copy of
the object state, that is, abandon the in-memory copy. If abort-cache-cached-slots is T,
explicitly cached slots will also be affected.

(recursive-abort-cache <obj>
&key
(abort-cache-class-slots T)
(abort-cache-cached-slots NIL))

Perform an abort-cache on <obj> and on all objects reachable from it. Return a list of
all the affected objects.

5.2 Slot-Level Caching

Slots are currently cached on a per-object basis. Although PCLOS does not currently sup-
port caching a slot for all of a class’ instances, the programmer can produce that behavior
by invoking the cache-slot method in a class’ after-protect and after-retrieve meth-
ods. This will ensure that the desired slot is cached for all newly protected instances and
for all instances that are retrieved through a search.

Caching of class-allocated slots cannot be done on a per-slot basis. See section 5.3 for
how all class-allocated slots may be cached together in one operation.

(cache-slot <obj> <slot-name>)
Cache the specified slot. This mechanism is independent of the caching of the entire object.
(recache-slot <obj> <slot-name>)

If the slot is not cached, this is equivalent to cache-slot. Otherwise the operation updates
the specified slot’s value to conform to the current value of the slot in the database.

(uncache-slot <obj> <slot-name>)

Writes out the current value of the slot to the database and causes all subsequent accesses
of slots to go to the database for the values.

5.3 Class-Level Caching

Programmers can live without any of the following class-level caching operations. This is
because object-level caching will by default also cache class-allocated slots. The operations
are provided to allow the caching of class-allocated slots without access to any instance:

(cache <class-obj> &key
(preserve-cached-values T))

This will cache all of the class-allocated slots of <class-obj>.

22

(recache <class-obj> &key
(preserve-cached-values T))

Will overwrite the class-allocated slots with the current values in the database. The slots
will stay cached.

(uncache <class-obj> &key
(uncache-cached-slots NIL))

Write out in-memory values of all class-allocated slots and then cause them to be not
cached.

(vrite-back <class-obj>)

Write the in-memory values of the cached class-allocated slots back to the database, but
keep the slots cached.

(abort-cache <class-obj> &key
(abort-cache-cached-slots NIL))

Make all class-allocated slots considered not cached, but do not write out their values to
the database.

23

6 Information about Objects and Classes

All PCLOS objects and classes can give useful persistence-related information. In addition,
PCLOS classes and protectors can provide some information about persistent objects. This
section introduces these operations. See section 11 for access to more low-level information.

6.1 Asking Objects

(protected? <obj>)

Returns NIL or non-NIL. A non-NIL result means that the object is protected.
(cached? <obj>)

Returns T or NIL.

(protector <obj>)

This returns the PCLOS protector on which the <obj> is protected.
(describe <obj>)

This offers information in addition to the standard describe: If the object is protected,
information about the relevant database is shown, else the fact that the object is unpro-
tected is announced. Information is provided about whether the object is currently cached.
After each slot name a parenthesized expression of one or two characters is shown: “P”
means that the slot is persistent. “T” means that it is transient. A “P” may be followed
by a “C” which indicates that the slot is currently cached.

(obj-dirty? <obj>)

The PCLOS system keeps track of “object dirtyness”. An object is considered dirty if it
is not protected or if the object or one of its slots are cached and the cached information
was modified. Several actions will cause an object to become clean. They are the obvious
operations of protecting, uncaching, recaching, writing back or cache aborting. This “dirt-
management” may be used in conjunction with the get-cached-objects operation to
implement automatic caching.

6.2 Asking Classes

(get-cached-objects <class-obj>)

Returns a list of all instances of the class that are currently cached on any of the protectors
on which the class keeps instances.

(protected? <class-obj>)
Returns NIL or non-NIL. A non-NIL result means that the class is protected.

(cached? <class-obj>)

24

Returns T or NIL.

6.3 Asking Protectors

In addition to the following operations, section 7 introduces an operation to find out
whether a protector is in a transaction.

(get-cached-objects <protector>)
Returns a list of all objects that are currently cached on the specified <protector>.
(get-cached-classes <protector>)

Returns a list of all classes that are currently cached on the specified <protector>.

25

7 Transactions

Transactions serve two purposes: First, while in a transaction, locks are placed on objects
that are accessed to control concurrency for databases that support multiple users. Second,
a transaction may be aborted, thereby undoing whatever was done to persistent objects
since the transaction was begun. These two aspects do not need to be supported by all
databases. The Iris database supports both, the in-core database only supports rollback.

It is important to understand that a rollback also undoes “systemy” things: Protect,
cache, unprotect or any of their relatives are undone like anything else.

Objects that are cached are protected by transactions in the sense that rollback is pos-
sible. This behavior may be overridden by the user (see function begin-transaction).
This service is expensive in space, but no costs in time will incur outside of the begin-
transaction and abort-transaction calls. The space costs amount to roughly the size
of the affected objects.

It is also important to realize that symbols will be restored if they are referenced in any
cached objects. The treatment of symbols in the context of rollback is different depending
on whether the symbol is referenced from a cached or an uncached object: If the symbol is
referenced from a cached object, a rollback will completely restore the symbol. This means
that defun or binding of such symbols will also be undone. The rollback for cached objects
is therefore somewhat more complete. The one aspect that is never undone for symbols is
interning. If a symbol is interned during a transaction, it will not be uninterned.

As a general rule, transient slots are not restored by rollbacks, that is, their values are
unchanged after a rollback. By setting a key-parameter in the begin-transaction call,
transient slots may be protected for cached objects.

See the section on limitations to understand peculiarities regarding eg’ness.

(begin-transaction <protector> &key
(include-cached-objects T)
(include-cached-slots T)
(save-cached-transient-slots NIL))

This operation begins a transaction. It is an error to do this while already in an open
transaction.

If :include-cached-objects is T, then rollback is supported for cached objects. This
option is available because of the expense in storage of rollback support for cached objects.

If :include-cached-slots is T, then rollback is supported for cached slots.

If :save-cached-transient-slotsis T, then rollback will be supported for transient slots
of cached objects. Please note the implication of this: unless an object is cached, there is
no way to roll back transient slots. Note also that by default transient slots even of cached
objects are not rolled back.

(end-transaction <protector>)

26

Make all changes permanent in the database and release all database locks. If the protector
is not currently in a transaction, this operation is a no-op.

(abort-transaction <protector>)

Cause rollback and release all database locks. If the protector is not currently in a trans-
action, this operation is a no-op. Note that Lisp e¢’ness is maintained only for objects
and symbols, not for any other items. Example: At the beginning of a transaction slot
foo contains list ? (a b ¢). The slot is modified and then the transaction is aborted. Now
slot foo will again contain a list ’(a b c), but the list before and after the transaction
will not be eg. ~

(in-transaction? <protector>)

Returns T if the protector is currently in a transaction.

27

8 Finding and Retrieving

Associative search for objects in the database by properties of their state is done through
the protector of a database. The core-level protocol supports a very simple, Lispy-
looking query language which understands the concepts of PCLOS classes and slots. In-
terfaces to some databases that support more powerful query capabilities are equipped
with a complex-query protocol adapter. Currently the Iris database is the only supported
database with a complex-query adapter. Please refer to the special section on the Iris
database for details. The description of how to find objects below are guaranteed to work
on all supported databases. When qualifying objects are found in the database which have
not yet been internalized, they will be internalized as part of the query solving process.
Corresponding classes that need protecting will also be taken care of at that time.

Limitations to note:

Core-level queries can currently only involve one PCLOS class at a time. No queries are
possible across classes. An example of this would be “Find all objects of any type whose
slot ’foo has value 10”. This will not work for core-level queries even if it is guaranteed
that all classes known to the database actually have a slot named ’foo.

Another limitation is that the query process does not yet completely understand PCLOS
inheritance.

Example:

Class bar inherits from class foo. Finding “all objects of type foo such that some criterion
is true” will only search over objects of type foo, although one might expect the search to
also extend over the objects of the inheriting class bar.

The negation operator is not currently supported by the Iris database.

The Core-Level Query Language:

Operators are ‘=, /=", ‘>, ‘>=", ‘<’, ‘<=’, ‘and’, and ‘or’. The functions ‘and’ and ‘or’
are n’ary. All others take two arguments. Equality is the same as “eq’ness” in the case of
symbols and protected objects. For other lisp items one should think of query language

equality as analogous to the Lisp “equal”. Please see the examples at the end of this
section for more details.

(find-one <prot> <class-name> <pred>)

This returns the first object found in the database that satisfies <pred>. If no objects
satisfies the predicate, the function returns NIL. If <pred> is T, all objects of class <class-
name> qualify.

(find-all <prot> <class-name> <pred>)

This returns a list of all objects satisfying <pred>. If <pred> is T, all objects of class
<class-name> qualify.

Examples:

28

(find-all prot
‘my-type
’(= name "fred"))

(find-all prot
'my-type
‘(or
(> name "fred")
(= obj-ref ,interesting-obj)))

The latter will find objects of type my-type whose slot called name is lexically greater than
fred or whose slot called obj-ref is eg to the object interesting-obj. Note the use of
backquoting to get interesting-obj evaluated to an object.

(finder <prot> <class-name> <pred>)

This should be used when it is desirable to examine the result of the search one object at
a time. In order to use this function a transaction MUST have been started. Failing to
do this results in an error. The result of this function is a “finder” object which accepts
various messages to provide successive elements of the query result set:

(next <finder>)

Returns the next object from the result set represented by <finder>, or NIL if no results
are left.

(all <finder>)

Returns the entire remainder of the finder’s contents in a list.
(more? <finder>)

Returns T, if more objects are left in the result scan, NIL otherwise.
(close-finder <finder>)

Will discard any information left in the finder and free all database resources held on
account of the query the finder was the result of.

(close-all-finders-by-class <prot> <class-name>)

Closes all finders whose underlying queries involved <class-name>. If <class-name> is
NIL, all finders are closed which is equivalent to

(close-all-finders <prot>)

This function unconditionally closes all finders on <prot>’s database.

29

9 The Protector Object

Each PCLOS protector represents one database session to the programming language
object system. The protector object is mostly needed by PCLOS-internal top level service
functions. Some of these services are, however, potentially interesting to the PCLOS user
and are therefore made available by protectors. The sections below document some of
them and may be skipped on a first reading. Other sections also contain operations for
accessing protector services which are extensive enough to warrant their own section.

Note that unless otherwise noted, all operations can be undone through transaction roll-
back. To be very clear about this: You can only undo anything if you have executed a
begin-transaction on the protector beforehand! The very few operations that cannot

be undone will refuse to execute if the protector is currently in a transaction. They are
also clearly marked in bold face.

9.1 Controlling the Underlying Database

(close-database <protector>)

This will cleanly close the database associated with the protector. It depends on the the
underlying database whether this operation is necessary before leaving a session. The
PCLOS system will automatically close all databases when a (sys:exit) is executed, so
the programmer should generally not have to use this operation explicitly. Transactions
should, however, be closed before system exit. Otherwise a continuable error will occur.
A database may be re-opened at any point using;:

(open-database <protector>)

This allows continuation from the point where the database was closed. This function does
not have to be called explicitly by the user unless an explicitly closed database is to be
reopened.

(database-active? <protector>)

Returns T if the associated database is currently open, NIL otherwise.
(database-name <protector>)

This returns the name of the underlying database.

(database-type <protector>)

This returns type of underlying database (i.e. :iris or :in-core, etc.).

9.2 Destroying Data

(abandon-known-objects <protector>)

This will cause protector to forget about all objects it has internalized. It will still re-
member the classes and no changes are made to the database. This operation is used

30

mostly during debugging sessions when new application code is reloaded and the program-
mer wants to start with a more or less clean slate. The advantage to having the classes
remembered is that the time overhead for protecting the classes and performing consis-
tency checks is avoided. For a completely clean slate use the destroy-protector method
on the master-protector. Note that both of these operations will make all affected objects
unusable, that is any pointers to them in the current Lisp session should be discarded.

(destroy-class <protector> <class-name>)

This operation brutally destroys the specified class and all its instances in memory and in
the database. The class will still be usable in memory, but it will not be protected. Its
class-allocated slots will be invalidated, and all instances will no longer be internalized or

usable after the call.
(destroy-all-classes <protector>)

This operation brutally destroys all classes and all its instances in memory and in the
database. The instances will no longer be internalized.

(unprotect-all-data <protector>)

This will unprotect all objects and classes the protector knows about. It will then destroy
all data in the database. When all goes well, all objects and classes known to the current
Lisp session before the operation will still be usable afterwards.

There is currently a problem with unprotect-all-data. If it runs into an object that
references another object which it has already unprotected, the routine will break. The
only “fix” to this is to manually destroy the class whose instance contains the bad reference.
This is done using the destroy-class operation below. Then unprotect-all-data may
be re-invoked. This obviously needs fixing.

(destroy-database <protector>)

Note: This operation cannot be undone through transaction rollback. This is
the fastest way to destroy a protector’s associated database and all persistent objects and
classes known to the protector. In order to use the protector again after this operation,
the programmer must execute open-database on the protector. That will create a new
database and activate it for use. Note that all affected objects will be unusable after this
operation and the database itself is completely destroyed.

9.3 Type Conversion Customization

This subsection describes how programmers may influence the way Lisp items are stored
in the database. The most direct way to influence this is to type slots in PCLOS classes.
PCLOS will attempt to map Lisp types to types that are native to any database used.
Note that databases are sometimes stricter about type integrity enforcement than Clos.

When Lisp items are to be stored in a database that does not provide a corresponding
type, some mapping must be found. PCLOS will take care of the following Lisp types:

e persistent objects.

31

e strings.

e lists (any cons).

o defstructs (I think, needs testing).
e integers.

o floats.

e symbols.

¢ simple-vectors.

Multi-dimensional arrays and array displacement are not currently supported. For pro-
grammers wanting to store items for which PCLOS provides no type mapping, there are
two independent mechanisms available:

¢ The programmer my add or remove types that are assumed by PCLOS to be accept-
able to the database directly, that is types that are considered database-nativedatabase-
native.

e The programmer may provide conversion functions that take an unstorable item.
Such functions return an equivalent item which is of a storable type and from which
the original item can be reconstructed.

The operations concerned with these two mechanisms are introduced here. Note that all
of these operations are on protectors which means that they are specific to each database
session.

9.3.1 Managing Conversion Functions

(add-customer-prog-to-db-converter <protector>
<key>
<encode-func>)

This is used to extend PCLOS’ ability to store complicated datatypes. A programmer
may “teach” PCLOS about new types on a database by database basis. This is done
by providing one or more functions which know how to encode a Lisp item into an item
that can be stored directly on the database, that is into an item of a type which PCLOS
already understands. Each such function should take one Lisp item and return two values:
The second return value should be T if the function knew how to convert the Lisp item.
Otherwise it should be NIL. If the function could do the conversion, the first return value
should be the encoded value. A programmer may add as many converter functions as
desired. The <key> parameter is used to find or remove functions after they were added.

Whenever PCLOS needs to convert a Lisp item to a database format, it will try the
customer conversion functions in turn until one of them agrees to do the conversion or until

32

no more converter functions are available. In the latter case PCLOS finds out whether it
has built-in knowledge about the conversion. If not, it will signal an error.

The <encode-func> may be a Lisp function object (i.e. of the form '#foo) or it may be
a function name. Note that if <encode-func> is a function object and the function is
redefined, this redefinition will not be reflected in the function used for conversion. In that
case it 1s necessary to remove the customer conversion function and add it back.

When the PCLOS system retrieves data from a database, it detects that an item has been
“encoded” by a custom-function. It then passes the encoded item to a <decode-func>
which must have been installed using: "

(add-customer-db-to-prog-converter <protector>
<key>
<decode-func>)

This adds function <decode-func> to the chain of functions responsible for all conversions
from database format to Lisp format of custom-encoded items. The <decode-func> should
take an item encoded by one of the encode functions added through add-customer-prog-
to-db-converter. It should return two values: The second result should be T or NIL
depending on whether the function knew how to decode the information. If decoding was
possible, then the first return value should contain the Lisp item which is the decoding
of the encoded information. PCLOS will walk the decode function chain in the manner
described for the encode function chain above.

All <encode-func>s should encode items in such a way that the <decode-func>s can
recognize the type of the encoded information and take appropriate action.

To be clear: The <decode-func>s will only be called with items that have been encoded
with an <encode-func>. The shape of the item produced by the <encode-func> is not
used in any way to determine whether an item retrieved from the database is custom-
encoded information. Separate tags are used for this purpose.

Example:

A Lisp compiled-function-item cannot be stored in a PCLOS database directly. An encoder
function could encode this as a list:

(éompiled-function <source-code>)

When the decode function is passed a two element list whose first element is ’ compiled-
function, it could compile the second element and return the resulting compiled-function-
item as a result.

Since multiple encode and decode functions may be added to a protector, one needs a way
of finding the functions and for removing them:

(find-customer-prog-to-db-converter <protector> <key>)

This returns the customer encoding function that was installed under the specified <key>

or NIL.

33

(find-customer-db-to-prog-converter <protector> <key>)

Th{g returns the customer decoding function that was installed under the specified <key>
or NIL.

(remove-customer-prog-to-db-converter <protector> <key>)
This removes the customer encoding function that was installed under the specified <key>.
(remove-customer-db-to-prog-converter <protector> <key>)
This removes the customer decoding function that was installed under the speciﬁed <key>.

9.3.2 Managing Native Types

Here are the operations which allow the programmer to declare that certain types should
be considered native to the protector’s database. Notice that if items of native types are
embedded in non-native structures they will still be converted. Example: Lisp lists are
considered non-native for the Iris database. If the slot of an object contains a list that
includes an integer, that integer will be encoded as part of the list. If the integer is instead
itself the value of a slot, it will be stored in an Iris database unchanged because integers
are database-native for Iris databases.

(add-database-native-type <protector> <predicate>)

The <predicate> must be a function which takes any Lisp item and returns T if the item
is of the relevant type or NIL otherwise.

(remove-database-native-type <protector>
<predicate>
tkey
(test #’equal))

Removes the predicate that would allow some type to be considered native. Returns T if
all right.

34

10 Protocol Management

Protocol adapters were introduced at the beginning of this manual. This section introduces
questions the programmer can ask about the protocol adapters relevant for a protector’s
database and questions that may be asked of protocol adapter objects themselves. In ad-
dition, operations are introduced that allow the dynamic addition and removal of database
interface features by manipulating adapters and facets. Parameter descriptions <adapter>
and <facet> below imply adapter and facet objects respectively. Parameter descriptions
<adapter-id> and <facet-id> mean Lisp symbols that are names for adapters and facets
respectively. :

10.1 Accessing Protocol Adapters Through Protectors

(add-protocol-adapter <protector> <adapter>)

This adds the specified protocol adapter object to the protector’s database interface. The
only way a programmer would get a hold of an adapter is by finding it or removing it from
the protector first. The above operation can then used to add it back in.

(remove-protocol-adapter <protector> <adapter-id>)

Remove and return the specified protocol adapter, that is, cause the database interface to
no longer support the specified protocol adapter. Note that removing a protocol adapter
will cause the database interface involved to no longer support that adapter! This means
that some operations on the database will fail.

(find-protocol-adapter <protector> <adapter-id>)

Return the protocol adapter object with the specified id or NIL.
(explain-protocol-adapter <protector> <adapter-id>)

Print the specified adapter’s human-readable explanation to the output buffer.
(all-protocol-adapters <protector>)

Return a list of all protocol adapters supported by the associated database.
(explain-all-protocol-adapters <protector>)

Print the human-readable explanations of all the associated database interface’s protocol
adapters.

(explain-all <protector>)

Print the human-readable explanations of all facets of all the associated database interface’s
protocol adapters.

(add-adapter-missing-action <protector> <adapter-id> <action>)

35

Install <action> as the function to call when an operation is attempted that requires the
pres:fnce of the specified adapter when that adapter is not supported by the database
interface.

(remove-adapter-missing-action <protector> <adapter-id>)

Remove and return the function to call when an operation is attempted that requires the
presence of the specified adapter when that adapter is not supported by the database
interface. Return NIL if not found.

(find-adapter-missing-action <protector> <adapter-id>)

Find and return the function to call when an operation is attempted that requires the
presence of the specified adapter when that adapter is not supported by the database
interface. Return NIL if not found.

10.2 Controlling Protocol Adapters

We are getting to a pretty low level here. But a programmer can add, remove and find
individual facets of protocol adapters and can have facets explain themselves.

(add-facet <protocol-adapter> <facet>)

Add the given facet object to the specified adapter. The only way a programmer can get
a hold of a facet object is by finding it or removing it first from an adapter object.

(remove-facet <protocol-adapter> <facet-id>)
Remove and return the facet with the specified name from the protocol adapter. Note that

removing a facet will cause the database interface whose adapter is involved to no longer
support the facet of that adapter! This means that some operations on the database will

fail.

(find-facet <protocol-adapter> <facet-id>)

Return the facet object with the specified name or NIL.

(all-facets <protocol-adapter>)

Return a list of all facet objects of the adapter.

(explain-yourself <protocol-adapter>)

Print human-readable information about the adapter to the output buffer.
(explain-facet <protocol-adapter> <facet-id>)

Print human-readable information about the facet to the output buffer.
(explain-all-facets <protocol-adapter>)

Print human-readable information about all of the adapter’s facets to the output buffer.

36

(add-facet-missing-action <protocol-adapter> <facet-id> <action>)

Install <action> as the function to call when an operation is attempted that requires the
presence of the specified facet when that facet is not part of the adapter.

(remove-facet-missing-action <protocol-adapter> <facet-id>)

Remove and return the function to call when an operation is attempted that requires the
presence of the specified facet when that facet is not part of the adapter. Return NIL if
not found.

(find-facet-missing-action <protocol-adapter> <facet-id>)

Find and return the function to call when an operation is attempted that requires the
presence of the specified facet when that facet is not part of the adapter. Return NIL if
not found.

(explain-yourself <facet>)

Print human-readable information about the facet to the output buffer.

(associated-operations <facet>)

Return a list of the names of methods that are involved in implementing this facet.

37

11 Debugging

If the (flobal variable pclos: :*database-trace* is set to T, all database operations will
print debugging information to the output buffer.

(database <prot>)

Returns the database object (<db-obj>) of <prot>. This may be asked for its name
through (name <db-obj>). It is also used for the functions display-xxx described below.

(pclos::internal-representation <obj>)

This will print the contents of the object’s internal representation. Similiar information
is shown gy (describe <obj>), but while describe goes through normal slot access
methods, internal-representation will show the contents of the actual storage used
and will show some normally hidden administrative information.

(pclos::display <db-obj>)

Displays the contents of all db tables which have been accessed in this session. In particular,
it shows the MASTER-CLASS-TABLE that contains information about PCLOS classes

that are known to the database.
(pclos::display-all-tables <db>) [Iris only]

Goes) into the database and finds and displays all tables (each corresponds to one PCLOS
class).

(pclos::display-one-table <db> <class-name>) [Iris only]
Displays the table corresponding to the given class.
(pclos::display-table-names <db>) [Iris only]

Prints names of PCLOS classes represented in the database and known to the current Lisp
session.

38

12 The Iris Database

This section presents information that is specific to the Iris database and did not fit well
into other sections.

12.1 Complex Queries

The Iris database allows for much more elaborate query facilities than are available through
the core-level protocol queries. These capabilities include multi-valued results; non-object
results, searching over multiple classes, existential variables and the use of user-defined or
database-intrinsic database functions. Each query consists of either two or three parts.
Each part is introduced by a keyword:

e :return Introduces the list of return variables and their types.
e :with Introduces existential variables and their types.

o :where Introduces the search predicate.

The second of these query terms is optional. Return variables and existential variables are
collectively called the query variables. Unless otherwise noted, all specifications are Lisp
symbols.

12.1.1 The :return Term

The :return term controls how many values are returned for each query result. If, for
instance, the :return clause contains 3 specifications, then every query result will be a
three-element list. Each specification is a list of two symbols: A variable name which is
used in the search predicate, and a Lisp datatype. If the search will bind the variable to
an object slot that was explicitly typed, the datatype in the specification should match the
slot’s declared type. The value T should be used for untyped slots. All return variables
introduced in the :return query term must be used in the search predicate.

12.1.2 The :with Term

The :with query term introduces existential variables. An existential variable in this
context is an item which is used in the query predicate, but which is not returned in
the query results. In this respect it behaves a little bit like a local variable. But there
is an additional property of existential variables that deviates from this analogy: During
query solution an existential variable is conceptually bound to every possible value of its
associated type. All existential variables introduced in the :with query term must be used
in the search predicate.

12.1.3 The :where Term

This term introduces the actual search specification. It contains conjunction and disjunc-
tion — introduced by and and or — and other operators. All operator names are assumed
to refer to functions known to the respective database, except for the name slot-value,

39

which has a special meaning for PCLOS query preprocessing and should be considered
reserved. Slot-value is a pseudo-operator which takes two arguments: a query variable
that refers to an object and a slot name. The slot-value expression refers to the specified
slot of the specified object during the search.

If the search specification is T, all objects introduced in the :return term are returned.

Note that even with complex queries it is not possible to search over anything “deeper”
than direct slot values in the sense that one cannot search for objects that are enclosed in
lists or vectors.

12.1.4 Complex Query Examples

Assume the following scenario: Classes animal, ranger and cares-for-link are defined
as follows:

(defclass ANIMAL ()
(

(species)
(age :type integer)
)

(:metaclass pclos-class)

)
(d?:f class RANGER ()

(name :type symbol)
§age :type integer)

(:metaclass pclos-class)

)

(defclass CARES-FOR-LINK ()
(
(left) ;; Always contains a ranger.
(right) ;; Alvays contains an animal.
(hours-per-week :type integer)
)

(:metaclass pclos-class)

)

Assume further that <mary> is a 23-year-old ranger whose name is Mary, that <tiger>
is a 10-year-old animal and that <camel> is a 30-year-old animal. We postulate further
that we have two cares-for-links: One link indicating that Mary cares for <camel> 30
hours per week and one indicating that Mary cares for <tiger> during 10 hours of each
week. Figure 1 illustrates this scenario.

Here are some examples of possible queries:

Find all animals whose age is greater than 9:

40

Ranger

name: Mary
age: 23

Cares-for-link

left. Mary
right: Camel
hours: 30

Animal

species: Camel
age: 30

(find-all *prot*

:return

‘(

(the-animal animal)

:where

Figure 1: Scenario for Searching Examples

‘(> (slot-value the-animal age) 9)

Returns: ((<tiger>) (<camel>))

Note in this context an important problem: If the age slot for animals had not been
declared to be of type integer, the ‘>’ operator would have caused an error because Iris
has static type checking. It would have noticed that anything could come out of slot age
and this relational operator only works for strings and integers. Equality will work in a

41

Cares-for-link
left: Mary
right: Tiger
hours: 10

Animal

species: Tiger
age: 10

much broader context: objects, symbols and most other types are acceptable to the ‘=’
operator.

Find all animals which are either 10 years or older, or that are tigers:

(find-all *prot*
:return
“(
(the-animal animal)

)
:where
¢ (or
(>= (slot-value the-animal age) 10)
(= (slot-value the-animal species) tiger))

)

Returns: ((<tiger>) (<camel>) (<tiger>))

Note the duplicate in this result. This is due to the fact that <tiger> qualifies once because
it is 10 years old, and once because it is a tiger.

Find all animals that are cared for by anybody:

(find-all *protx*

:return

‘(
(the-animal animal)
)

:with

‘(
(care-link cares-for-link)
)

:where

‘(= the-animal (slot-value care-link right))

)

Returns: ((<tiger>) (<camel>))

Go through all the cares-for-links. Filter out the ones where the animal being cared
for is older than the ranger caring for it. Then, for each cares-for-link that qualifies,
return the ranger (the link’s 1eft slot), the animal (the link’s right slot) and the number
of h)ours per week the ranger spends caring for the animal (the link’s hours-per-week
slot):

42

(find-all *prot*

:return

“(
(the-ranger ranger)
(the-animal animal)
(the-hours integer)
)

:with

‘(
§a-link cares-for-link)

:where

‘(and
(= the-ranger (slot-value a-link left))
(= the-animal (slot-value a-link right))
(= the-hours (slot-value a-link hours-per-week))

(> (slot-value the-animal age) (slot-value the-ranger age))

)
)

Returns: ((<mary> <camel> 30))

Queries may use built-in or user-defined database functions also. This means that if one
is familiar with the internals of the database, one may use this knowledge even at this
level of abstraction. Find the names of all user types (UserTypeNm is one of Iris’ built-in
functions):

(find-all *prot*
:return
“(
(name simple-string)
)
:where
‘(= name (iris::UserTypeNm))

Returns:

(
("RANGER" n)
("ANIMAL ")

("CARES-FOR-LINK ")

43

Find all animals:

(find-all *protx*

creturn

“(
(the-animal animal)
)

:where

T

)

Returns: ((<tiger>) (<camel>))

12.2 Long Information in Slots

This section describes a PCLOS problem that occurs only for Iris databases. A clean fix
does not currently exist for it, but it is very low-level and can be skipped on a first reading,.

The Iris database has a potential problem when the sum of the lengths of the database
representations of all slots of an object exceeds 4096. PCLOS attempts to take care of
this by storing particularly large slot values separately. The “threshold” used is stored
in pclos:*field-length-limit*. Whenever the database representation of a slot value
exceeds that number, it is stored in a separate file with proper back-pointers into the
database. References to the long information in the long-information file are placed in
the database where the long information would normally be stored. This works well in all
cases but when enough slots are just below that threshold to cause the overflow. In that
case PCLOS signals an error. By changing the threshold the programmer can then avoid
the problem.

Apart from the fact that it is not bullet-proof, this mechanism has two disadvantages:
PCLOS must be able to open the long—ini%rmation file to store long information in and
the pointers between the long-information file and the database must be maintained when
a short value is placed into a slot which previously contained long information.

The second problem is “solved” by a garbage collection routine which may be run on a
database at any time. The references are not cleaned up while values are set because
this would be prohibitively expensive. Not doing the garbage collection causes the long-
information file to grow unnecessarily, but has no impact on the size or integrity of the
remainder of the database.

The garbage collection routine is invoked by:

44

(pclos::long-string-gc (database <protector>))

Opening the long-information file may become a problem when Iris is used in server mode.
In that case there must be a remote file access (RFA) path to the remote server into the
directory where the database resides. This access must allow reading and writing. PC-
LOS will attempt to open the long-information file using the database user name, the name
“guest” and the name “rfa” in turn. If all these attempts fail, PCLOS will signal a continu-
agll:: error. If the user continues, operation proceeds without the long-information “fix”.
If any long information is subsequently encountered, an error is signalled. The PCLOS
user may avoid the continuable error by setting the variable *ignore-long-information-
problems* to T. In that case the system behaves as if the continuable error had been issued
and continued.

45

13 The In-Core Database

This database has the obvious disadvantages of single-user, in-memory data stores.

13.1 Archiving

In the context of the find-protector command it was explained how one may cause a
new in-core database to load information from an archive that was previously stored there
by another in-core database. Two operations are available to cause an in-core database to
save all its state to an archive and to restore from one:

(save-to-archive <protector>
&optional
(archive-name NIL))

If archive-name is provided, it must be a file path. The method will write all of the
database’s state to the specified archive. In this case the path must be writable in the
Unix sense. If archive-name is not provided, the database’s name is used. Recall that this
is the second element in the list passed to find-protector when the database is made.

(restore-from-archive <protector>
&optional
(archive-name NIL))

This will load all information stored in the archive into the database. Note that no appli-
cation objects will be internalized or created in any other way as part of this operation.
It will succeed even if some classes stored in the database are not defined in the current
session.

Note that this command will destroy any information that is currently stored in the
database. It will also invalidate all internalized objects.

If archive-name is provided, this will read the archive which must have been produced by
a save-to-archive of some in-core database. The state contained in the archive will then
be the new contents of the database. The name must be the path to a readable file in the
Unix sense. If archive-name is not provided or is NIL, the database’s name is used. Recall
that tglis is the second element in the list passed to find-protector when the database
is made.

Restore-from-archive currently has an unpleasant limitation: all Lisp packages of sym-
bols in the archive must exist in the current Lisp session, and all symbols that were exported
from these packages at the time the archive was created must have been exported in the
current session also. If these conditions are not met, an error will occur. The problem can
then be fixed and the command may be reissued.

46

14 Some Examples

Here are a few samples of how a programmer operates in PCLOS.

;3 Load the core of the system:
(require "pclos")

;; Nov get the interface to a particular session of a
;3 particular kind of database:

(setf *protector*
(find-protector *master-protector*
’(:iris "smithQ@hpldbserv:/dbtests/testdb")))

(defclass TEST ()
(
(slot0 :initform 10)
(slotl :initform 20)
)

(:metaclass pclos-class)

)

;3 Create a transient object:
(setf objO (make-instance ’test))

;3 Make the object persistent:
(protect objO *protector*)

;; Now handling of the ’test class and of objO are not different from
;; ordinary Clos. For example: Set a slot (will modify database directly):
(setf (slot-value objO ’slot0) 100)

;3 User-Controlled Caching and Transactions:

;3 Define checkpoint to roll back to:
(begin-transaction *protector*)

(setf (slot-value objO ’slot0) 200)
(setf (slot-value objO ’slotl) 300)

;s Abort everything done since beginning of transaction:
(abort-transaction *protector*)

;; Now s8lotO is 100 and slotl is 20.

;3 Cache the object under the protection of a tramsaction
;; to make access to its slots faster:

(begin-transaction *protectorx*)

(cache obj0)

47

;; Modify in-memory copy of a slot. Nobody can write to database
;3 copy, since Iris has concurrency control:
(setf (slot-value objO ’slot0) 500)

;5 The following abort will reset slot0 to 100 and will cause obj0
;5 to be no longer cached:
(abort-transaction *protectorx)

;3 Cache object without transaction protection, i.e. take a snapshot:
(cache objog

;3 The following transaction will not protect the object copy in the
;; database because objO is already cached:

(begin-transaction *protector*)

;3 Modify in-memory copy of a slot. Database copy may meanwhile
;; be overwritten by others:
(setf (slot-value objO ’slot0) 500)

;3 The following abort will affect the in-memory state of objO only.

;; Modifications done by others to objO in the database are not rolled back.
;; Afterwards slotO will contain 100:

(abort-transaction *protector*)

;3 Update the in-memory snapshot of objO to reflect its state
;; as known by the database:

(recache obj0)
;3 Finding objects:

;; Find one of any objects of class ’test in the database
;; Tepresented by *protector* for which slot0 is equal to 50:
(setf objl (find-one *protector*

’test

?(= slot0 50)))

;; Find all instances of class ’test:
(setf instances (find-all *protector*
’test
t))

48

15 Limitations

The follipwing sections summarize current PCLOS limitations the programmer should be
aware of.

15.1 Global Limitations

The following limitations are present for all databases:

Execution Speed When running with transient or cached objects, execution speed is
comparable to execution speed with standard Clos but the benefits of using with-
slots for compile-time optimization is lost. This does mean some loss in execution
speed. All slot accesses will be equivalent to using slot-value in PCLOS classes.
The reason for this is simply that the values of slots might be in the database or in
memory, depending on whether the respective object is transient, cached or persistent
and uncached at run-time. No compile-time optimization is therefore possible.

Inheritance from non-persistent classes: This is legal, but when methods of the non-
persistent parent class are invoked with an instance of the child persistent class, slots
will be accessed incorrectly if (with-slots ((:use-accessors NIL)) ...) isused.
Allis well if :use-accessors is T, or if slot-value is used to access slots in methods of
the non-persistent parent class. This can probably be fixed when PCLOS is ported
to some later version of the Clos implementation when method deoptimization is
supported.

It is illegal for a non-persistent class to inherit from a persistent class.

Redefining persistent classes: Class redefinition should ideally modify all class infor-
mation and instances in all databases and in memory. PCLOS does not currently
do this. Class redefinition is possible with the understanding that the database will
not be modified as part of the redefinition. This means that any attempt to protect
instances of the newly shaped class will cause an error if the previous shape of the
class was known to the database, that is if the class has been protected before. The
unprotect operation on the class or, more brutally, the destroy-class operation
on the protector may be used to remove all knowledge of the class from a database.
In order to remind the programmer of this limitation, redefining persistent classes
will signal a continuable error in a standard PCLOS environment. This can become
annoying during debug sessions, and the error signalling can be disabled by setting
the variable pclos:*allow-persistent-class-redefinition* to T.

It is always illegal to redefine classes while in a transaction.

Recursive class definition: It is currently not possible to type slots of a PCLOS class to
another PCLOS class which in turn contains a slot typed to the first class. Example:

(d?fclass man ()

(partner :type woman)

(:metaclass pclos-class)

49

)

(defclass woman ()

(

(partner :type man)

(:metaclass pclos-class)

)

This will signal a clearly self-describing error as soon as an attempt is made to
protect any instance of class man or woman. The problem is not fundamental and
can be fixed. Other than type checking and cleanliness nothing is lost by not typing
slots when the type is another PCLOS class. Note, however, that for some complex
query operations typing is a good idea for types other than PCLOS classes because
operators like ‘>’ are acceptable only if slots are correctly typed (see section on Iris
complex queries).

Slots typed to symbols: When typing a slot to be symbol, setting the slot to NIL may
cause a problem: NIL and T are mapped by PCLOS to type boolean on all databases
that support such a type. Lisp considers NIL to be a symbol and therefore allows its
assignment to slots typed to contain symbols. But when a database is asked to put
value NIL into a slot that was typed to contain symbols, the database will complain
that a boolean is assigned to a slot that requires a symbol.

Egness: Lisp eg’ness is guaranteed for symbols and objects for regular operation and for
transaction rollback. But items of all other Lisp types are not guaranteed in this
respect. Example:

(setf (x objl) ’(a b ¢))
(setf (x obj2) (x obj1))

(eq (x obj1) (x obj2)) => NIL

which is not what standard Clos would do. Reason: The two slots really are different
items, namely strangely encoded bits in a database. In cached objects one might
actually observe egness, but it is a bad idea to rely on this coincidence. In particular,
after a transaction rollback, eqness is not going to be valid for cached objects either.

Substructures of slots: This one is unpleasant: One cannot set substructures of slots.
Example:

(setf (x objl) ’(a b ¢)) ; fine
(setf (second (x obj1)) ’z) ; LOOKS fine, but
(x obj1) => (a b c)

Instead one has to write:

50

(setf foo (x objl))
(setf (second foo) ’z)
(setf (x objl) foo)

Reason: The setf method of second knows nothing about persistent slots. This could
be fixed for all setf methods one could think of, for instance first through tenth
and svref and elt and but there will always be one more, and a way would have
to be found to ensure proper behavior for setf methods defined by the programmer.

One mode of operation that has worked is to assign slots to local (1let) variables, to
have the method code operate on these local variables, and to assign the locals back
to the corresponding slots at the end of the method. A more luxurious way would be
to write a macro analogous to with-slots that would accomplish this automatically.

Legal datatypes: As described in the section on type conversion customization, most
Lisp datatypes are supported on all supported databases. But this is not true for
multi-dimensional arrays and array displacement. Please see the above-mentioned
section on type conversion customization for ways to provide mappings for these
types also.

Required compile script fix: Due to the fact that the Hewlett-Packard CommonLisp
compiler is not reentrant, it must be ensured that the PCLOS metaclass is known
when files are compiled that define PCLOS classes. If this is not done, the compilation
will still work, but it will take much longer.

This problem is taken care of by including the following two lines in the compilation
script (which is often called clfaslfile):

(require "pclos-load")
(require "pclos-meta")

The best place is just before the (compile-file ...) entry of the script.

Searching through complex structures: Searching will only find items which are stored
at the “top level” of slots. It is not possible to search for items that are, for instance,
enclosed in lists or vectors.

15.2 Limitations Specific to the In-core Database

The following limitations are only relevant if the In-core database is used with PCLOS:

Packages required for database restoration: When an In-core database is restored
from an archive, all Lisp packages of symbols in the archive must exist in the current
Lisp session, and all symbols that were exported from these packages a the time the
archive was created must have been exported in the current session also. If these
conditions are not met, an error will occur. The problem can then be fixed and the
command may be reissued.

51

Part 11
PCLOS Version 2.1

16 Introduction

This part describes the differences between PCLOS Version 2.0 and Version 2.1. The
major differences are that PCLOS 2.1 is compatible with a newer version of Iris, that a
thir;i da(.;;aba.se has been added and that one PCLOS call was changed because its semantics
confused users.

17 Random Improvements

17.1 The find-protector Optional Argument

The call to find-protector takes one optional parameter which has different meanings for
the various databases. For the Iris database that parameter indicates the size of the log file,
which is set to a reasonable value if the parameter is not provided in the call. The meaning
for the in-core database is the one that has been changed for this release. It used to allow
the programmer to trigger an automatic restoration from archive of the in-core database
about to be accessed. This seemed to confuse users. The optional parameter has therefore
been deactivated for in-core databases. This means that the first call to find-protector
with the in-core specification will always return a protector to an empty in-core database.
If this database is to be charged from some archive, an explicit restore-from-archive
message must subsequently be sent to the protector.

18 The Workspace Database

The Workspace is an in-memory database which is maintained in a separate server process
from the PCLOS client - possibly on a different machine. This database is not included in
the public PCLOS system, but the interface to it is provided for reference. It is accessible
to multiple clients simultaneously, but no concurrency control is currently provided. Like
the single-user in-core database available since PCLOS 2.0, Workspace databases may be
archived to a file and retrieved later on. Since the Workspace database is in-memory, it is
faster than the Iris database and PCLOS caching might not be necessary as often.

The Workspace offers additional capabilities beyond data storage. These include in par-
ticular the ability to register methods and to use the server as a message dispatch hub.
None of these capabilities have been introduced into the PCLOS model. For details about

them, see Brian Beach.

Note that currently only one Workspace database may be open at any time.

52

18.1 PCLOS Access to the Workspace

Access to the Workspace from PCLOS is identical to access using Iris or the in-core
database with the exception of any special limitations noted in section 18.2. Applica-
tions s}:lould run on any of these three PCLOS databases as long as core-level operations
are used.

%‘he fixl1d-prot ector message now recognizes the additional database specification :workspace.
xample:

(setf prot (find-protector *master-protector*
’(:workspace ‘‘/databases/testdb’’)))

This call will return a protector which will use a Workspace server process for its database.
The meaning of the optional third parameter to find-protector is a cache size. The
Workspace database implements its own internal caching which is independent from the
PCLOS caching mechanism. This cache size is the num%)er of objects that are to be kept
in cache and it is set to a reasonable default if the optional parameter is omitted or has
incorrect contents: it must be an integer greater than 0.

18.2 Limitations of Workspace Databases

The following limitations are currently known:

Integers n stored in the workspace must satisfy —23 < n < 231 — 1.

e Information is currently stored in the workspace in a slow and space-wasting way
whenever items of non-native types are involved. This does not otherwise affect
PCLOS users. When the problem is fixed, no application changes will be necessary.

Unprotecting a class cannot currently be rolled back.

Only one Workspace process is usable at any given time. This is enforced by PCLOS.

Part III
PCLOS Version 3.0

19 Introduction

The PCLOS 3.0 release contains changes done to allow upgrading to new subsystems, and
to add or correct functionality.

53

Here is a list of the major differences between the PCLOS versions 2.1 and 3.0:

e Support for the Workspace object base was updated to be compatible with the March
1989 version of the Workspace software. Object-oriented access to demons and the
IPC capabilities of the Workspace has been provided. There is no longer a size
limitation for integers, and rollback of unprotect on classes now works.

e A new write-through mode of operation was added to avoid problems encountered in
the past with uncached operation. Full backward compatibility has been preserved.

e The ability of PCLOS to keep track of whether objects were modified and need
updating has been worked over and made quite reliable even in the face of transaction
rollback. Class objects now also support the obj-dirty? message.

e The PCLOS code was modified to adhere to a configuration configuration scheme
and versioning conventions.

e In the PCLOS 2.1 release PCLOS did not consider packages in its comparison of
class names. This meant that no two classes could have the same print name, even
if they were in different packages. This has been fixed.

e Performance related modifications:
— Rollback support for cached information has been made significantly more time

and space efficient.

— The code was inspected and modified to allow compilation with less safe, but
faster optimizations in key parts of the code.

— Slot access mechanisms were modified to improve performance for slot accesses
to both unprotected and protected instances.

— The Workspace interface is now more space and time efficient for all data struc-
tures other than integers and object references.

¢ Transient slots are no longer followed in the recursive functions like recursive-
cache. For programmers using the apply-to-object recursive apply facility, an
option has been provided to control whether transient slots should be considered in
the recursive walk.

e A recursive object lattice walker has been made available.
e A fully automatic, object-oriented test suite for PCLOS is now available to allow

convenient regression testing after code modifications.

In the remainder of the document each change or addition is described in turn. Some of
the sections clarify issues that were omitted or whose description was not clear enough in
earlier documentation.

54

20 Startup Procedure

In order to load and run your PCLOS you need to load the PCLOS configuration file. This
file is delivered to you in <pclos-root>/admin/pclos-config.l. This default copy is correct
for the average system. As in the installation procedure, the configuration uses the $pclos
environment variable if it is defined. Otherwise the directory /users/pclos will be used. As

in previous releases, you may set the global Lisp variable *pclos* to override this default
behavior. This is documented in the original PCLOS 2.0 Manual.

To load your configuration and PCLOS, evaluate the following expression in your Lisp
environment:

(config:register-and-require-config "pclos"
"<pclos-root>/admin/pclos-config.l")

¢¢

(require ‘‘pclos’?’)

After PCLOS is loaded, you may obtain version information by evaluating the expression:

(config:find-app-version "pclos")

21 Upgraded Workspace Support

The two major Workspace changes that are relevant to object persistence are the addition
of concurrency control primitives and support for rollback. é)ha.nges of PCLOS’s use of
the new Workspace software should be transparent to programmers using PCLOS, except
for the support of rollback for the unprotect operation on class objects. PCLOS 2.1 made
this capability available for the Iris and In-core object base, but not for the Workspace.
This capability is now available. Here are details on changes or additional functionality.

21.1 Large Integers

In the 2.1 release, integers stored in the Workspace were required to be in the range:
~231 < n < 23! — 1. This limitation no longer exists.

21.2 Access to Demons, IPC and Method Operations

The latest Workspace software provides new capabilities in the areas of demons and in-
terprocess communication. These capabilities have been made available to the users of
PCLOS. They are not part of the official PCLOS release and have therefore not been in-
corporated into the PCLOS system model. Instead, programmers may get access to the
CLOS object that represents the interface to the Workspace. The relevant Workspace
operations are then controlled through messages to this Workspace object.

55

The Workspace interface object is obtained from the protector associated with the partic-
ular Workspace session:

(wvorkspace-db (database <protector>))

Here is a list of methods that are supported. Please consult the Workspace documentation
for details on how to use these methods. Note that you need to be careful not to inter-
fer with PCLOS’ use of the Workspace interface object. In particular, you should use the
PCLOS begin-transaction, end-transaction and commit-transaction operations, in-
stead of directly using the respective Workspace interface methods below. The use of the
other primitives is less critical, because their functionality is not part of the PCLOS model.
Interference is therefore less likely. Do remember that access to these low-level methods is
not part of the PCLOS release. It is not subject to the same degree of testing that is done
on the release as a whole.

Messages: Demons:

ws-handle-messages ws-prim-set-demon

ws-handle-message ws-set-object-demon

ws-next-lisp-message ws-remove-demon

ws-send-ansver ws-handle~demons

ws-avait-messages

vs-messages-pending Methods:

Transactions: ws-add-method
ws-remove-method

ws-transaction-begin ws-call

ws-transaction-lock ws-handle-method-message

ws-transaction-abort ws-method-names

ws-transaction-commit

ws-transaction-add-object Misc:

ws~-lock

ws-commit ws-find-type

ws-abort ws-socket-id

ws-client-id

21.3 Queries In Open Transactions

When issuing queries to the Workspace through PCLOS, you should keep in mind that
modifications to Workspace data is only “seen” by queries after the changes have been
committed. When you therefore begin a transaction and make changes to objects, any

56

queries by you or by others will not “see” these changes. They are made visible when you
end the transaction.

21.4 Workspace Query Anomaly

While the visibility rules described above are correct behavior, the following query aspect
of PCLOS on the Workspace is incorrect. Since neither Lisp nor the Workspace are typed,
a given slot may contain differently typed values in different instances of a class. Datatypes
not native to the standard Workspace are represented with some appropriate encoding.
This means, for example, that a query requesting all instances of some class whose slot
foo is greater than 10 might return instances whose foo slot contains, for instance, a
Lisp symbol. The Workspace query processor cannot distinguish between slot values that
contain a user’s integer and values that contain some encoded information that happens to
look like an integer. If type discipline for slot values is maintained by programmers, this is
obviously not a problem. But since values of different types are legal in CLOS slots, this
behavior can be confusing.

This same problem would exist on the Iris interface. Iris, however, has stricter type restric-
tions than the Workspace when applying functions as parts of queries: Error conditions
are, for instance, signalled when a comparison operator is applied with one string and
another integer argument.

22 The New Write-Through Mode

This section describes a new mode for objects and their classes. Related modes that have
been available in previous releases include for example: cached, protected and others. The
new write-through mode was added to fix problems that occurred in the uncached mode.

The following subsection explains why this mode was introduced. Then the technical
details are presented.

22.1 Why This New Mode?

A proliferation of system modes tends to be confusing. But the decision on eliminating
modes must be based on experience. An initial system must be flexible, because the correct
behavior and preferred usage is not yet clear. Once the preferred way of operating has
been determined, options may be eliminated safely, or may be consolidated into option

packages.

In this case a mode has been added to avoid problems that have been observed when
protected objects are not cached. Uncached operation is attractive when object slot updates
are to be propagated to the object bases as quickly as possible, and when slot reading is
to produce the freshest values possible.

Without caching, each reading of a slot will bring the slot’s value into memory from the
object base. Writing of slots is not done in memory, but is immediately pushed into the
underlying object base.

A problem arises with slot reading in uncached operation. Space for the slot value being

57

retrieved is allocated each time the slot is read. The resulting performance cost is obviously
high if the persistent slots are accessed frequently. For infrequently accessed slots, or for
fast object servers, this cost can be acceptable. The problem, however, lies in the fact that
ifa ufrogra.m reads a slot twice in a row and the value is not an object or a symbol, the two
results will have the correct contents, but will be in different locations. Since Lisp often
uses eqness, this can lead to problems. This difficulty has been documented in the section

on PCLOS shortcomings in the original PCLOS 2.0 Manual.

Another problem of uncached operation was also documented in the 2.0 Manual: it arises
when destructive operations are performed on vectors or lists. These operations do not
cause a slot to be updated. Instead, they simply modify information the slot points to. In
uncached mode these changes were lost. A workaround has been the introduction of local
variables which are initialized to slot values, and which are assigned to the respective slots
at the end of methods.

A new mode is therefore needed that avoids these problems, but retains as much as possible
of the object base immediacy of the uncached mode of operation.

22.2 Definition of the Write-Through Mode

Both objects and classes may be put into and out of write-through mode. This is done
through the operations:

(vrite-through <instance-or-class-object> &key
(affect-class-slots T)
(preserve-cached-values T))

(recursive-write-through <instance> &key
(affect-class-slots T)
(preserve-cached-values T))

(unvrite-through <instance-or-class-object> &key
(affect-class-slots T))

(recursive-unwrite-through <instance> &key
(affect-class-slots T))

(write-through? <instance-or-class-object>)

In the write-through mode every slot update will be done both in memory and in the object
base. This ensures that the new value is propagated as quickly as possible. When slots
are read, the value from memory is used, just like in the cached mode. This avoids both
the eqness problem and the difficulties with destructive operations. It does mean that
information in slots may be stale, unless the programmer takes precautions. These may
use one of the following mechanisms:

58

e The use of transactions to prevent the slots from being written by others.
¢ Client-managed locking.

e Properly placed recache operations.

You can think of the write-through mode as causing the same behavior as the cached mode,
with the exception that slot updates are written to the object base. It is indeed true that
an unwrite-through operation on an object that has been in write-through mode will
transfer the object into the cached mode.

The keyword arguments have the same meaning they have for the cache and uncache
operations: The :preserve-cached-values argument controls whether those slots that
have been cached separately should be overwritten with the respective values from the
object base when the object is put into write-through mode; remember that a transition to
the write-through mode will have to bring the slot values from the object base into memory
just like the cache operation does.

The :affect-class-slots argument controls whether the operation should automatically
be done to the object’s class. The default of this argument is T. This means that any class-
allocated slots will track the state of the object involved.

Unless the programmer uses the unwrite-through-all operation (documented below),
PCLOS will cause all persistent objects to be in write-through mode by default! The
unwrite-through operation may, of course, be used at any time. The operations uncache
and abort-cache will also take an object out of write-through mode. The describe
operation on objects will show whether an object is in write-through mode.

The capability of write-through mode is not limited to instances. Class objects may also
be put into write-through mode. This means that all class-allocated slots are treated in the
write-through way. This may be useful for applications that want to treat the slots that
are private to each instance differently than the slots that are shared among all instances.
Here are two example scenarios: many instance-allocated slots may be kept transient for
maximum performance. The class-allocated slots, on the other hand, would be persistent
and in write-through mode. This would extend the sharing intrinsic in class-allocation to
the entire client community. It is indeed possible to define classes with some class-allocated
slots, and to keep all instances of the class unprotected. The class, on the other hand, could
be protected and the class-allocated slots could be used for sharing among instances of the
class, both locally and throughout the client community.

The write-through, unwrite-through, recursive-write-through and recursive-unwrite-
through operations will be rolled back when performed within a transaction that is sub-
sequently aborted.

22.3 Definition of the Write-Through-All Mode

The write-through-all mode is an attribute of class objects only. It is set and reset by the
following operations:

59

(write-through-all <class-object>)
(unwrite-through-all <class-object>)

When in write-through-all mode, a class will ensure that all its new instances will be in
write-through mode. This includes both newly created instances and instances that are
brought into the current environment through queries. Instances that are already in the
environment when the write-through-all operation is performed will be unaffected.

Both the write-through-all and the unwrite-through-all operations will be rolled
back when performed within a transaction that is subsequently aborted.

22.4 Backward Compatibility

The cache, uncache and abort-cache operations are still available. If an unwrite-
through operation is applied to an object that is in write-through mode, the object will
revert to the cached mode. If you do take objects into the uncached mode, do keep in mind
the two problems explained above.

23 Performance-Related Modifications

Various changes have been made that address performance issues. While persistence is
still expensive, some operations have been optimized. The following presents some details.

Since these implementation modifications introduce no semantic changes, this section may
be skipped by anyone not interested in implementation details.

23.1 Modified Rollback Support

The support for rollback of modifications to objects that are cached or in write-through
mode has been modified to scale up, and to minimize information copying.

The original strategy for supporting rollback for cached objects was to copy the objects
at the beginning of a transaction. This places all of the cost of rollback support at the
beginning of the transaction. This is desirable, but it will work only if relatively few objects
are cached. The performance limitations even of relatively fast object servers forces caching
to be used in most cases. PCLOS was therefore modified to use lazy copying which only
saves information when it is to be updated. Once cached information has been modified
once, subsequent accesses incur a minimal overhead.

23.2 Compiler Optimizations

The CommonLisp compiler is capable of optimizing code when instructed to do so. These
optimizations cause assumptions to be made about the shape of data structures and about
the correctness of function parameters. Code to be optimized needs to be written with
these assumptions in mind, so that the resulting binaries operate correctly. PCLOS has
been modified to allow optimizations at least at key sites of bottlenecks such as slot access.

60

23.3 Slot Access Optimizations

In addition to the compiler optimizations, the slot access methods have been hand-tailored
to do as little work as possible. This should affect the performance of slot access to both
protected and unprotected instances. Automatically created slot accessors are no longer
generated. This enhances performance and saves space.

24 Transient Slots

PCLOS must often recursively work through an object lattice. This is done, for instance,
when an object is protected. All objects reachabie from the respective object will also
be protected. Another example is the recursive-write-through operation. Beginning
with this release, transient slots are no longer considered when traversing object lattices.
This means on one hand that the programmer is free to put any information into transient
slots without worrying about PCLOS getting confused or irritated. On the other hand,
care must be taken to remember that objects reachable only through some transient slot
will not be affected by all of these recursive operations.

25 Recursive Object Lattice Walker

The facility used by PCLOS to run through object lattices may be useful for other purposes.
It has therefore been made available for use by PCLOS users. This is a system function
which trusts its users. No argument or sanity checking is done! This function is for
knowledgeable, careful, macho men and women only.

(apply-to-object (object client-function
more-args &key (test NIL)
(obj-first NILg
(fetch-slots-first NIL)
(notify-if-circularity NIL)
(do-transient-slots T))

Given an object and a client-function, this routine goes through the object’s slots.
If it finds an object anywhere hidden in the slots, it apply’s function client-function,
passing it the object and more-args. At the end it applys client-function to the
object originally passed. The more-args parameter may be NIL. Otherwise it must be a
list of arguments. The apply-to-object function returns a list of objects to which the
client-function was applied.

If keyword argument :obj-first is T, the client-function call will first be done to the
object itself and then to any objects that are reachable through its slots.

The keyword argument :test, when provided, should be a function expecting an object as
the sole parameter. Whenever apply-to-object is about to apply client-function to
an object, it will pass the object to the :test function. The call of the client-function
will be done only if the :test function returns non-NIL.

61

If the key :notify-if-circularity is non-NIL, it must contain a function to be called
when a reference circularity is detected. This function will be called when apply-to-
object detects that one of the slots of some object points back to an object it already
looked at. The function will be called with two arguments: the object that is being referred
back to (i.e. the starting point of the cycle during the recursive walk), and a cons cell
whose car is a reference count and whose cdr is T or NIL, depending on whether client-
function has already been applied to the object. After the function specified in the
:notify-if-circularity keyword argument has been called, the slots of the object that
is being referred back to will, of course, not be walked again. If :notify-if-circularity

}fm unspecified, the circularity resolution will proceed normally without calling any client
ction.

The keyword argument :fetch-slots-first determines when an object’s slot values will
be fetched to prepare the continuation of the walk. If it is non-NIL, the slot values are
fetched immediately when an object is encountered. This is done before the calls to
client-function and test. Otherwise, slot fetching is done at some convenient time,
but it is guaranteed that it will be called after the call to client-function in the case of
:obj-first being non-NIL. This can be used when the client-function will change the
slots of the object or will make access to them slower. An example is the recursive-uncache
operation: it is preferable to fetch the slots needed for the continuation of the walk before
fihe objects are uncached, because slot access will be slower once the uncaching has been
one.

The keyword argument :do-transient-slots controls whether the routine also walks
through subtrees accessible only through transient slots.

The apply-to-object function will find objects “hidden” in cons cells, lists, vectors and
structs.

Figures 2 and 3 show an example of how to use the walker.

Assume that root-obj and other-object are cached but not in write-through mode. A
program has caused modifications on the local copy of other-object and you want to
update the database as cheaply as possible to match the local copies of your objects. Let
us assume further that we do not ﬁnow which objects have been modified. This means
that we will need to look at each of the objects reachable from root-obj — in this example
only other-object — and we have to save out the ones that were changed. Figure 3 shows
how the object base may be updated with minimal work.

This will run through all the reachable objects and will write them back if needed. The use
of the keyword argument :affect-class-slots NIL is an efficiency trick: as described in
the 2.0 Manual, the write-back method will normally write back the object in question
and the class slots. Since we will potentially call write-back many times with different
objects, it is silly to apply this operation to the class every time. We therefore prevent
that and do it explicitly at the end.

26 Server-Independent Object Base Naming

Assiﬁn.ing names to object bases to identify them uniquely introduces a dilemma. On
one hand, it would be nice if it were possible to create and maintain object bases of the
same name on different servers. This, however, implies that a server name would have

62

(defclass FOO ()
(

(slot!l :initform <some-object-reference)
(slot2 :initform "Some info")

(slot3 :initform 20 :allocation :class)
)

(:metaclass pclos-class)

)

(setf root-obj (make-instance ’foo0))
(setf other-object (make-instance ’foo))
(setf (slot-value root-obj ’slotl) other-object)

Figure 2: A Class With Class-Allocated Slots

(apply-to-object root-obj
#’'write-back
(list :affect-class-slots NIL)
:test #’obj-dirty?)
(wvhen (obj-dirty? (class-named 'foo))
(write-back (class-named ’fo00)))

Figure 3: Updating the Database With Minimal Work

63

to be an integral part of the object base name. This would in turn introduce a different
restriction: PCLOS object slots may reference objects that reside in other object bases.
These references must obviously contain the identifying names of the target object bases.
Such references can potentially be stored in any number of persistent objects on any number
of object bases.

If servers were an integral part of object base names, every object base would have to
remain on the server on which it was created. This is because the references to its objects
coulfi otherwise not be resolved: the object base would not be found at the time of referenc
resolution. :

PCLOS therefore requires that names of object bases containing objects that are referenced
from objects in other object bases must be unique independent of which server an object
base resides on. With this policy, an object base may be moved to a different server. At run
time a protector can then be created for the object base. Whenever references to objects
in this object base are resolved, this protector will be found in the run-time environment.
It will know about the current location of the target object base.

27 Improved Dirtyness Management

PCLOS has always been quite careful to keep track of whether an object or its class-
allocated slots have been made inconsistent with the object base by local slot updates.
There have been two changes which are described below. In addition, a more detailed
explanation of the mechanism is presented.

27.1 Description of Changes

The obj-dirty? expression used to be a macro. It has been changed to be a method. This
has the advantage that it can be used whenever a function is called for as a parameter.
See section 25 for an example.

The obj-dirty? method may now be used both for instances and for class objects. The
latter can be used to find out whether the class-allocated slots are dirty.

27.2 Some Helpful Details

Every object or class returns T or NIL to the predicate:
(obj-dirty? <instance-or-class-object>)

If an object was clean at the beginning of a transaction and its slots are modified within
that transaction, the object will be dirty. But if the transaction is aborted, the object will
again be clean.

An object is marked as dirty when one of its slots is written into while the object or some
individual slot are cached, but not in write-through mode. An object will be marked clean
by an uncache, recache, abort-cache or write-back operation.

64

This dirtyness management may be used to make an object base consistent with the in-
memory state of modified objects with a minimal amount of object base traffic. This can be
particularly useful in conjunction with the apply-to-object operation described earlier.
Note, however, that PCLOS does not notify clients when the object base copies of objects
are modified by other clients. This means that an object could look clean, even though
someone else has modified the object base copy of the object. Dirtyness is managed for all
activities that happen locally. Some mechanisms for maintaining global consistency have
been listed earlier.

In the context of consistency management the methods get-cached-objects and get-
cached-classes are useful to remember. These are both methods on protectors, and they
return a list of objects or classes that are under the protector’s control and are cached.

28 Test Suite

A fully automatic, object-oriented test suite has been developed for PCLOS regression
testing. It performs more than 100 individual tests and does not require programmer
attention. It allows the introduction of :before and :after function hooks which cause
debugging functions to be called before or after individual tests. While this set of tests
will by no means find all the bugs, it does help with preliminary regression testing. The
details are described in a separate document.

29 Clearing An Environment

It is often useful to start over with a clean slate, but without having to leave and reenter a
run-time environment. Achieving this in the context of PCLOS is a very tricky problem,
and while this release has improved this aspect, cleanup of an arbitrarily messy environment
is still one of PCLOS’ weaker points. No new capabilities have been added for this release.
But here is an attempt to give guidance for what to use when. It is based on practical
experience. Since by definition, the respective environments are in more or less bizarre
states, empirical evidence must, and often can suffice.

There are varying degrees of PCLOS resets:

o The local copies of objects or classes may be invalidated. The associated object base
itself is not affected.

e A given protector may be reset. This will invalidate all the objects and classes
managed by it, and it will reset the object base interface object. A subsequent
find-protector operation will return the same protector. The associated object
base itself is not affected.

e A given protector may be destroyed. This will invalidate all objects and classes
managed by it, and will reset the interface to its associated object base. A subsequent
find-protector operation will return a new protector object. The associated object
base itself is not affected.

e An object base may be destroyed.

65

To invalidate an object or class means to cut its connection with the object base on
which it is persistent. Slot values will be set to *invalid-data*, unless this is specifically
inhibited in the call to the invalidating method (see below). In that case the slot values
will in general be undefined. If your environment is still healthy enough to cache objects,
you can do that and then invalidate these objects. This will make them look like regular
unprotected objects with the proper slot values.

Individual objects or classes may be invalidated by:

(abandon <instance-or-class-object>
&¢key (invalidate-slots T))

(recursive-abandon <object>
tkey (invalidate-slots T))

This destroys everything the object’s or class’ protector and its object base interface know
about the object’s or class’ in-memory copy. The object base itself remains untouched. For
objects, this can be rolled back with a transaction abort. For classes it cannot be rolled
back. An attempt to execute this method on a class while in a transaction will cause an
error to be signaled.

(abandon-known-objects <protector>
&optional (invalidate-slots T))

This invalidates all objects known to the specified protector and the operation cannot be
rolled back. This method signals an error when attempted while in a transaction.

(destroy-protector (<master-protector>
protector
&optional (invalidate-slots T)))

This will not destroy the associated object base. But it will cause the master protector
to forget that the given protector exists. The protector’s cached information — and con-
sequently the object base interface’s cached information are destroyed. All objects and
classes associated with the protector are invalidated.

66

(destroy-database <protector>
&¢key (invalidate-slots T))

This will physically destroy the object base and will reset the protector. Do think before
using this operation.

Experience has shown that the destroy-protector operation — possibly in conjunction
with abandon on at least some of your classes will yield the best results. The destroy-
protector operation will cause the protector to abandon all the classes it knows about.
But sometimes the state of the environment can get messy enough for the protector to
miss some classes.

30 Miscellaneous

30.1 Dualism Of Operations

It is worth a reminder that just about all of the PCLOS operations may be applied both
to instances and to their classes. Operating on classes will affect all class-allocated slots,
while the same operations affect the instance-allocated slots when applied to instances.
Class objects may be cached, put into write-through mode, recached, written back, etc.
Unprotecting a class will unprotect all instances and will remove all traces of the class’
representation in the object base. This operation, like all the others, can be rolled back
when executed within a transaction.

30.2 Class Names

In the PCLOS 2.1 release, symbol packages were not considered when comparing class
names. This meant that no two classes could have the same print name, even if they were

in different packages. This has been fixed.

30.3 New Method to Find Protectors

The find-protector operation will create a protector object and will open an object base
if a protector matching the caller’s specification does not exist yet. A new method allows
a search for such a protector with the guarantee that no protector will be created:

(find-protector-if-present <master-protector>
db-type-and-name)

The value NIL is returned if no matching protector is found. The db-type-and-name
parameter is the same as for the find-protector operation.

67

30.4 New Method On Finders

It is now safe to close a finder any number of times. The method:
(open? <finder>)

has been added to the finder class.

30.5 Little Hints and Errata

Operations like protect, which cause a lot of data traffic to and from an object base, may
be sped up considerably when done in a transaction which is committed when the work
has been done. The reason for this is that multiple slot accesses will be done in memory
only, if the system is in a transaction. Writing the final result back to the object base at
the end — when the transaction is committed — will minimize network data traffic.

When unprotecting a set of objects it is safer if you can use recursive-unprotect or
the unprotect method on a class object. The reason is that these operations will resolve
references among the objects they unprotect. When done one at a time, you may end up
trying to unprotect an object which has a reference to a no-longer persistent object. When
the object’s slot values are pulled out of the object base as part of the unprotect, there
will be an error because that reference cannot be resolved. The recursive-unprotect
and unprotect on classes will try to do the unprotecting in a safe sequence.

Correction in the PCLOS 2.0 Manual: The index of the document should list page 14 as
relevant to the after-retrieve method.

31 Conclusion

PCLOS now contains a large amount of functionality. It has grown in response to customer
experiences and feedback. It is clear beyond doubt that object persistence is not an easy
problem. I once read about a technique for building inner-city parks: the approach is to
construct the park without pathways. After a while, the grass will be gone along the trails
that are used by most people. The paved pathways are then added along those trails.
PCLOS is in a somewhat similar state in that it contains many concepts and operations.
Usage alone can show which of these are superfluous or plain wrong. What is then left will
hopefully be of use.

32 Acknowledgments

Mike Creech has developed the conventions that unify the procedures for configuring,
loading and distributing all of the modules in the system PCLOS was originally integrated
in. In addition, he has provided many test cases and has made suggestions that have
significantly shaped this PCLOS 3.0 release.

Bob Leichner, Vicki O’Day and Shari Jackson have helped to find many problems that
arose when multiple machines shared data through the Workspace.

68

Brian Beach has provided many fixes and improvements of his Workspace server. Many
new capabilities would not be available without his continued support.

Thanks also to Vicki O’Day for reading and improving the first draft of this document.

69

33 Appendix: Methods

and Globals

allov-persistent-class-redefinition
database-trace
field-length-limit
ignore-long-information-problems
master-databasex
master-protector

pclos

abandon
abandon-known-objects
abort-cache
abort-transaction
add-adapter-missing-action
add-adapter-missing-action
add-customer-db-to-prog-converter
add-customer-prog-to-db-converter
add-database-native-type
add-facet
add-facet-missing-action
add-protocol-adapter
after-protect
after-retrieve

all

all-facets

all-operations
all-protectors
all-protocol-adapters
apply-to-object
associated-operations
before-protect
begin-transaction

cache

cache-slot

cached?
close-all-databases
close-all-finders
close-all-finders-by-class
close-database
close-finder
database-active?
database-name
database-type

describe
destroy-all-classes
destroy-class
destroy-database
destroy-protector

end-transaction

explain-all
explain-all-facets
explain-all-protocol-adapters
explain-facet
explain-protocol-adapter
explain-yourself
find-adapter-missing-action
find-adapter-missing-action
find-all
find-customer-db-to-prog-converter
find-customer-prog-to-db-converter
find-facet
find-facet-missing-action
find-facets-by-operation
find-one

find-protector
find-protector-if
find-protector-if-present
find-protocol-adapter

finder

get-cached-classes
get-cached-objects
in-transaction?

load-database

lock

make-protected-instance

more?

next

obj-dirty?

open-database

open?

protect

protected?

protector

recache

recache-slot
recursive-abandon
recursive-abort
recursive-abort-cache
recursive-cache
recursive-recache
recursive-uncache
recursive-unprotect
recursive-unwrite-through
recursive-write-back
recursive-write-through
remove-adapter-missing-action
remove-adapter-missing-action
remove-customer-db-to-prog-converter
remove-customer-prog-to-db-converter

70

remove-database-native-type
remove-facet
remove-facet-missing-action
remove-protocol-adapter
restore-from-archive
save-to-archive
slot-cached?

slot-values

uncache

uncache-slot

unlock

unprotect
unprotect-all-data
unprotect-instances
unwrite-through
unwrite-through-all
write-back

write-through
write-through-all
write-through?

71

Index

:return 39
:where 39
:with 39

abandon 18

abandon-known-objects 30
abort-cache 22, 23

abort-transaction 27
add-adapter-missing-action 35
add-customer-db-to-prog-converter 33
add-customer-prog-to-db-converter 32
add-database-native-type 34
add-facet 36

add-facet-missing-action 37
add-protocol-adapter 35

after-protect 9, 17

after-retrieve 9

all 29

all-facets 36

all-protectors 15
all-protocol-adapters 35
associated-operations 37

before-protect 9, 17
begin-transaction 26

cache 20, 22
cache-slot 22
cached? 24
caching 8, 9, 20, 22
and rollback 26
classes 22, 23, 25
predicate 24
maintenance 8, 24, 25
objects 9, 20, 21, 22, 24, 25
and rollback 26
predicate 24
slots 20, 22
and rollback 26
limitations 22
class definition 11
inheritance 28, 49
recursive 49
redefinition 49
close-all-databases 15
close-all-finders 29
close-all-finders-by-class 29
close-database 30
close-finder 29

72

database 38
database-active? 30
database-name 30
database-type 30
describe 24
destroy-all-classes 31
destroy-class 31
destroy-database 31
destroy-protector 15
dirt management 8, 24, 25
display 38
display-all-tables 38
display-one-table 38
display-table-names 38

end-transaction 26

equality 27, 28, 29, 50
explain-all 35

explain-all-facets 36
explain-all-protocol-adapters 35
explain-protocol-adapter 35
explain-yourself 36, 37

facets (see also protocol adapters) 10
find-adapter-missing-action 36
find-all 28
find-customer-db-to-prog-converter 34
find-customer-prog-to-db-converter 33
find-facet 36
find-facet-missing-action 37
find-one 28
find-protector 13

examples 13
find-protector-if 15

examples 16
find-protocol-adapter 35
finder 29

get-cached-classes 25
get-cached-objects 24, 25

husk objects 9

In-core database 8, 46
archiving 13, 46
limitations 26, 46, 51

in-transaction? 27

internal-representation 38

internalize 9, 28, 46
undo 30, 31

Iris database 39
limitations 44
log file size 13

load-database 15

loading 11
problems 11

long-string-gc 45

make-protected-instance 18
master-protector 9, 13
more? 29

next 29

obj-dirty? 24
open-database 30

PCLOS 8
debugging 38
examples 11, 13, 16, 28, 33, 40, 47
limitations 49
loading 11
examples 11
problems 11
necessary code changes 11, 50, 51
persistent 8
objects 8
see protect/unprotect 8
protect 9, 17, 19
and rollback 26
classes 19
predicate 24
objects 17, 18
predicate 24
protected? 24
protector 9, 14, 24, 30
destroying one 15
getting one 13, 15
examples 16
protocol adapters 10, 35
action when missing 10, 35, 36
examples 10
facets 10, 36
action when missing 10, 37
associated operations 10, 37
examples 10
self-documentation 10, 35, 36, 37
rationale 10
self-documentation 10, 35
protocol, core 10

73

recache 20, 23

recache-slot 22

recursive-abandon 18
recursive-abort-cache 22

recursive-cache 20

recursive-recache 20

recursive-uncache 21

recursive-unprotect 18
recursive-write-back 21
remove-adapter-missing-action 36
remove-customer-db-to-prog-converter 34
remove-customer-prog-to-db-converter 34
remove-database-native-type 34
remove-facet 36
remove-facet-missing-action 37
remove-protocol-adapter 35
restore-from-archive 46

save-to-archive 46
schema generation 9, 17
searching 28, 39
complex queries 39
:return 39
:where 39
:with 39
examples 40
core-level queries 28
examples 28
for all 28
for one 28
limitations 28
operators 28
through scans 29

transactions 8, 26
aborting 27
beginning 26
committing 26
predicate 27
transient 8
objects 8
see protect/unprotect 8
slots 11, 26
types 31, 32
conversion customization 31, 32, 33,
34
examples 33
database-native 34
supported 31
typing 41, 50

uncache 21

uncache-slot 22
unprotect 18, 19, 30
classes 19, 31
objects 18, 19, 31
problems with 18
unprotect-all-data 31
unprotect-instances 19

write-back 21, 23

74

34 References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

Andreas Paepcke. PCLOS: A Flexible
Implementation of CLOS Persistence.
In S. Gjessing and K. Nygaard, edi-
tors, Proceedings of the European Con-
ference on Object-Oriented Program-
ming. Lecture Notes in Computer Sci-
ence, Springer Verlag, 1988.

Andreas Paepcke. PCLOS: A Critical
Review. In Proceedings of the Confer-
ence on Object-Oriented Programming

Systems, Languages and Applications,
1989.

Andreas Paepcke. PCLOS: Stress
Testing CLOS - Experiencing the
Metaobject Protocol. In Proceedings
of the Conference on Object-Oriented
Programming Systems, Languages and
Applications, 1990.

Andreas Paepcke. User-level lan-
guage crafting — introducing the CLOS
metaobject protocol. Technical Re-
port HPL-91-169, Hewlett-Packard
Laboratories, 1991.

D. Fishman et al. Iris: An object-
oriented database management sys-
tem. ACM Transactions on Office In-
formation Systems, 5(1):48-69, April
1987.

Brian Beach and James Kempf.
Doom: Permanent objects for com-
mon lisp. Technical Report STL-TM-
86-09, HP Labs, September 1986.

James Kempf, An-
dreas Paepcke, Brian Beach, Joseph
Mohan, Brom Mahbod, and Alan Sny-
der. Language Level Persistence for an
Object-Oriented Programming Plat-
form. Technical Report STL-87-05,
Hewlett-Packard Labs, October 1987.

7

