Database Research at HP Labs

Marie-Anne Neimat and Ming-Chien Shan
Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

1 Introduction

Database research at HP Labs! has focused in the last
few years on the productive application development
and use of database systems. The approach centered
on developing a rich database model for expressing
the semantics and behavior of information. The [Iris
object-oriented database management system is the
result of that effort. Iris combines the advantages of
object-oriented concepts with database functionality.

The advent of open systems and fast networks has
fostered the belief that information is available at one’s
fingertips. Yet these advances have pointed to hetero-
geneity as the most serious challenge to programmer
and knowledge worker productivity. Heterogeneous
database systems must resolve the semantic discrep-
ancies between different databases, handle the con-
versions between multiple data models, schemas and
formats, etc., while preserving the autonomy of the
underlying systems. Preserving the autonomy of the
component databases is essential because they are sup-
plied by different vendors or are large systems that
took many years to develop, which makes modifying
them either impossible or impractical.

There is another class of data management systems
that database researchers have not attempted to in-
tegrate, and yet these systems manage the bulk of
data currently stored on computer systems. They are
the specialized database systems such as spatial, geo-
graphical and CAD/CAM DBMSs. These customized
systems were developed and optimized to meet the
performance requirements of their respective applica-
tions. A new challenge is to interoperate these hetero-
geneous database systems while preserving their per-
formance requirements. In integrating this class of
systems, preserving their autonomy is no longer the
primary requirement, but rather preserving the per-
formance of the integrated system. Exploiting par-
allel and distributed execution is essential for meet-
ing/exceeding the performance requirements for the
integrated systems. We view autonomy and perfor-
mance as two requirements of heterogenous databases
at two ends of a spectrum where one must be traded
to obtain the other.

This report describes the highlights of the Iris work
andntbmabAcoéssiombate ©sdgrch efforts in tradi-

1 This report describes the research of the Database Technol-
ogy Department of HP Labs, Palo Alto.

tional heterogeneous database integration as well as
the integration of customized data managers. The
Pegasus project addresses the integration of heteroge-
neous databases while preserving their requirements
for autonomy. The Papyrus project addresses the in-
tegration of customized data managers while preserv-
ing their requirements for performance. The Perseus
project is focused on the presentation and browsing of
heterogeneous data.

2 Iris

The goal of the Iris project was to develop a rich
database model for expressing the semantics and be-
havior of information. It was believed that such a
model would improve the productivity of database
programmers and accommodate the needs of newer
database applications such as office systems, engineer-
ing design, computer integrated manufacturing and
knowledge-based systems. It was decided early on that
in order for such a model to become successful, its im-
plementation could not compromise on the function-
ality of already existing database management sys-
tems. Thus, powerful non-procedural query facilities,
support for persistent data, multi-user access and up-
dates, and resilience to software and hardware crashes
were all requirements.

These efforts resulted in the Iris model and in a se-
ries of prototypes that were developed over a period of
four years. Iris is an object-oriented database manage-
ment system. The first Iris prototype was developed in
Lisp and demonstrated that a rule-based approach to
query processing was viable. Subsequent prototypes
were written in C and represented improvements and
enhancements to the earlier prototypes.

The following sections describe various aspects of
Iris. A general description of the Iris model and sys-
tem may be found in:

[FISH89] D. H. Fishman, J. Annevelink, E. Chow, T.
Connors, J. W. Davis, W. Hasan, C. G. Hoch,
W. Kent, S. Leichner, P. Lyngbaek, B. Mah-
bod, M.-A. Neimat, T. Risch, M.-C. Shan, W. K.
Wilkinson. Overview of the Iris DBMS. In Object-
Oriented Concepts, Databases, and Applications,
(ed.) W. Kim, F. H. Lochovsky, Addison-Wesley
Publishing Company, 1989. Also HPL-SAL-89-
15, January 1989.

2.1 Data Model

The Iris object model supports abstract types, inheri-
tance and encapsulation. Three basic constructs are at
the heart of the Iris model. They are objects, types and
functions. Objects are used to represent entities from
the domain being modeled. Each object has a unique
identifier. Objects can have multiple types and types
are organized in an inheritance graph. Functions are
defined over types and are used to define attributes
of objects and relationships among objects belonging
to those types. Stored functions maintain their exten-
sions in persistent tables while derived functions are
defined in the Iris query language and are computed
by executing their definition. Procedures are functions
with side-effects.

Iris provides extensibility not only through abstract
data types, but also through foreign functions. For-
eign functions are defined in a general-purpose pro-
gramming language that is not known to Iris. They
are registered with Iris and may be invoked with other
functions whose implementation is understood by Iris.
Foreign functions may be used for a variety of appli-
cations such as arbitrary computations or data format
conversions. A useful application of foreign functions
was in providing access to other database management
systems.

Versioning is often a requirement of engineering sys-
tems to keep track of design changes. Iris objects may
be versioned. A versioned object has a generic object
and one or more distinct versioned objects.

Access control is supported through an authoriza-
tion scheme based on the single concept of control-
ling function evaluation. The granularity of access can
be controlled using subtyping, user-defined operations,
and function resolution.

[AHAD92] R. Ahad, J. W. Davis, S. Gower, P. Lyng-
baek, A. Marynowsky, E. Onuegbe. Supporting
Access Control in an Object-Oriented Database
Language. EDBT ’92, Vienna, Austria, March
1992 (to appear).

[ALBE91] J. Albert. Algebraic Properties of Bag Data
Types. Proc. 17th VLDB, Barcelona, Spain,
September 1991.

[BEEC88] D. Beech and B. Mahbod. Generalized Ver-
sion Control in an Object-Oriented Database.
Proceedings of IEEE Data Engineering Confer-
ence, Los Angeles, February 1988.

[CONNS88] T. Connors and P. Lyngbaek. Providing
Uniform Access to Heterogeneous Information
Bases. In Advances in Object-Oriented Database
Systems, Lecture Notes in Computer Science 334,
Springer-Verlag, September 1988.

[KENT89] W.Kent. The Many Forms of a Single Fact.
COMPCON 89, San Francisco, California, 1989.

[LYNGS88] P. Lyngbaek and V. Vianu. Relational
Translations of Semantic Models: A Case Study
Based on Iris. IEEE Database Engineering Bul-
letin, Vol. 11, No. 2, June 1988.

2.2 Query Language

OSQL (Object SQL) is the Iris query language. Like
SQL, OSQL is a declarative query language provid-
ing data definition and data manipulation capabilities
and set-oriented access to information. It supports
the Iris model while preserving many of the syntactic
constructs of SQL.

Abstract types and function invocation are the
main concepts in OSQL. OSQL manipulates objects
that are instances of abstract types. The properties
and behavior of objects are encapsulated by functions
defined over their types. Actual data is extracted
through function invocation, and although the OSQL
syntax is similar to that of SQL, the actual details of
data structures are hidden from users.

OSQL was extended into a general purpose
database programming language by embedding it into
a functional language. The Iris query evaluator was
modified to allow the invocation of an embedded in-
terpreter, thus extending OSQL with the power of a
general purpose programming language.

[ANNE91] J. Annevelink. Database Programming
Languages: A Functional Approach. Proceedings
of the ACM SIGMOD Conference, Denver, Col-
orado, May 1991.

[BEEC88] D. Beech. A Foundation for Evolution from
Relational to Object Databases. In Lecture Notes
. Computer Science 303, Advances in Database
Technology - EDBT 1988, J. W. Schmidt, S. Ceri,
M. Missikoff, Eds. Springer-Verlag, 1988.

[LYNGY1] P. Lyngbaek, et al. OSQL: A Language for
Programmaing Object Databases. HPL-DTD-91-4,
January 1991.

2.3 System Architecture

The Iris system implements the Iris model. Like the
Iris model, the main paradigm of the Iris architec-
ture is that of function evaluation. Furthermore, the
kernel is reentrant thus allowing system functions to
be implemented in terms of other system functions.
The kernel consists of several modules: the executive,
the query translator, the query interpreter, the object
manager, the cache manager, and the storage man-
ager.

The ezecutive manages the interaction between Iris
clients and the Iris system. It implements the main
entry point to the Iris kernel. The query translator
compiles an Iris functional expression into an opti-
mized relational algebra expression. The query in-
terpreter executes optimized expressions. The storage
manager is a relational storage manager supporting
the usual relation maintenance; tuple retrieval, inser-
tion and deletion; indexed maintenance and access;
concurrency control and recovery. The cache manager
keeps a cache of the most recently used system tuples
as well as some selected user tuples.

[LYNGY0] P. Lyngbaek, W. K. Wilkinson, W. Hasan.
The Iris Kernel Architecture. Proceedings of
EDBT, Venice, Italy, March 1990.

[WILK89] W. K. Wilkinson, P. Lyngbaek, W. Hasan.
The Iris Architecture and Implementation. IFEE

Transactions on Knowledge and Data Engineer-
ing, December 1989.

2.4 Query Processing

The Iris query processor uses a rule-based approach to
support extensibility - rules can be added or removed
to support new data types or operations without af-
fecting the rest of the system. Each rule consists of
a precondition, and a transformation to be performed
when the rule is applied; both are implemented as C
procedures.

Query optimization procedures are expressed as
rules and the entire query process is carried out in
a way analogous to the operation of production sys-
tems in Al. The rule system 1s actually compiled, thus
requiring no interpretation during query optimization.
Two kinds of rules are used: the first kind transforms
a query represented as an Iris functional expression,
into an equivalent, but simpler, extended relational
algebra expression; the second kind adds information
to the relational algebra representation to specify join
order and data access methods.

[DERRS89] N. Derrett, M. C. Shan. Rule-Based Query
Optimization in Iris. Proceedings of ACM Annual
Computer Science Conference, Louisville, Ken-
tucky, February 1989.

[SHANS88] M. C. Shan. Optimal plan search in a rule-
based query optimizer. Proceedings of EDBT,
Venice, Italy, March 1988.

2.5 Recursion

Iris was extended to support specific classes of recur-
sively defined functions. The most common recursive
queries are supported through this extension. The im-
plementation is based on a data access method that
allows the efficient computation of recursive functions.
The extensions to the Iris system provide a complete
treatment of recursion that spans extensions to OSQL,
the query processor and the storage manager.

[DESMO91] P. DeSmedt, S. Ceri, M.-A. Neimat, M.-C.
Shan, R. Ahmed. Recursive Functions in Iris.

HPL-DTD-91-7, February 1991.

[SHAN88] M.-C. Shan and H. Lu. A New Access
Method Supporting Least Fixpoint Computation
of Recursive Relations. Proceedings of the In-
ternational Computer Science Conference 1988,
Hong Kong, December 1988.

[SHAN91] M.-C. Shan and M.-A. Neimat. Optimiza-
tion of Relational Algebra Expressions Contain-
ing Recursive Operators. Proceedings of the 1991
ACM Computer Science Conference, San Anto-
nio, March 1991.

2.6 Active databases

Database monitors were introduced to continuously
observe modifications to the values of objects in a
database and to notify application programs of such
changes. Monitors are specified declaratively through
OSQL. The applicability of monitors can be localized
both in time and space, so that Iris clients can have
control over the amount of data being monitored and
how frequently it is monitored. Such localization pro-
vides for efficient implementation.

RISC89] T. Risch. Monitoring Database Objects.
g

Proceedings of the Fifteenth International Con-

ference on Very Large Data Bases, Amsterdam,

The Netherlands, 1989.

2.7 Applications

The Iris system was used in two different applications
to experiment with object-oriented database technol-
ogy and to take advantage of features of the Iris system
not found in other DBMSs. In the first case, Iris was
used to design the schema of a computer integrated
manufacturing application. The application’s schema
had been previously designed as a relational schema.
The Iris schema was easier to understand and was sub-
stantially smaller than the relational schema.

In the second application, Iris was used to man-
age the data for a physician’s workstation. The goal
of that project was to provide a physician access to
his/her own patients’ data and, in addition, to pro-
vide access to numerous other external information
bases. The external databases were accessed through
Iris’s foreign function facility. End-users and applica-
tions were given a single, logically centralized, object-
oriented database schema, and could use 1t to interro-
gate the various underlying databases.

[ANNE91] J. Annevelink, C.Y. Young, P.C. Tang. Het-
erogeneous Database Integration in a Physician
Workstation. Proc. 15th Annual Symposium
on Computer Applications in Medical Care, New
York, IEEE Computer Society Press, 1991.

[KETA90] M.A. Ketabchi, S. Mathur, T. Risch, J.
Chen. Comparative Analysis of RDBMS and
OODBMS: A Case Study. COMPCON 90, San
Francisco, California, March 1990.

3 Heterogeneous Information

Management

Advances in technology have produced an explosion
in available data and an expectation that information
is at one’s fingertips. New databases; varied informa-
tion bases and databases that evolved over the years
and were of interest to restricted organizations must
now be accessible to enterprise-wide decision makers.
While the technology has made the data accessible,
application developers are now faced with numerous

interfaces, conventions, protocols, semantics, schemas,
query languages etc. Research in heterogeneous data
management is not a new idea, but technological ad-
vances and business requirements are such that it has
become the most urgent database challenge.

While one may be tempted to limit heteroge-
neous data management to the interoperability of
autonomous general-purpose DBMSs, there exists a
plethora of customized data managers that have been
developed to solve very specific problems. They are
typically narrow in scope, optimized to meet a spe-
cific need and are often driven by a high perfor-
mance requirement. The interoperability of such data
managers may be needed to construct new applica-
tions. For example a Geographic Information System
may be constructed using attribute, vector and im-
age data managers. The interoperability of specialized
data managers may also be used to export specialized
functionality to a more general framework. For ex-
ample, one may want a general-purpose DBMS and
a text retrieval system to interoperate. Specialized
data managers are not typically guardians of corporate
data. Because of their specialization, they are smaller
and simpler than general-purpose DBMSs. Thus,
the problem of integrating specialized data managers
is not dominated by an autonomy requirement but
rather by a performance requirement. In that context,
parallelism and distribution are exploited to achieve
high performance.

The current database research effort is divided be-
tween 3 complementary projects: Perseus, Pegasus
and Papyrus. Perseus is focused on the graphical pre-
sentation and browsing of heterogeneous data. Pe-
gasus 1s focused on the integration of heterogeneous
data models, schema and semantics while preserving
the autonomy of the underlying systems. Papyrus is
focused on the integration and parallelization of spe-
cialized data managers that are unconstrained by an
autonomy requirement. Both Pegasus and Papyrus
are addressing different but complementary aspects of
distributed and parallel query processing.

The Perseus project is focused on developing a
graphical user interface that conveys to users the
semantics of the underlying information bases. To
achieve this goal, various presentation views are made
available to users. Built on top of X-windows and the
InterViews toolkit, 1t supports the graphical presen-
tation of type hierarchies and function/type relation-
ships, forms for browsing and querying specific object
instances, and graphical query composition facilities.
Exten51b111ty is provided through customizable presen-
tations so that it can be easily tailored to reflect the
needs of specific users and applications

The goal of the Pegasus project is to provide a
seamless and integrated information environment from
which users can easily and naturally obtain informa-
tion and carry transactions. The data repositories are
heterogeneous and distributed databases. Pegasus de-
fines a common object model for unifying the data
models of the underlying systems. It allows transpar-
ent as well as explicit access to multiple information
systems in a declarative manner.

The goal of the Papyrus project is to provide tools

and an infrastructure to facilitate the integration of
specialized data managers. Data managers operators
may be built using the Papyrus infrastructure or may
be built independently of Papyrus. Special emphasis is
placed on the performance of the integrated special-
ized data managers. In particular, parallel and dis-
tributed query execution is exploited to obtain high
performance from the integrated systems. We do not
target these integrated systems to one specific parallel
computer configuration, but instead aim at benefiting
from the various configurations available in computer
installations ranging from tightly coupled multipro-
cessor systems to distributed systems. This is done
by defining a language that permits the invocation
and composition of data manager operators in a way
that is independent of the computer configuration; and
then providing a query optimizer and processor that
can transparently target the execution to a variety of
computer configurations.

The following sections describe some of the specific
aspects of our research.

[AHME91] R. Ahmed, P. DeSmedt, W. Kent, M.
Ketabchi, W. Litwin, A. Rafii, M.-C. Shan. Pe-
gasus: A System for Seamless Integration of Het-
erogeneous Information Sources. COMPCON 91,
San Francisco, California, March 1991.

[CONN91] T. Connors, W. Hasan, C. Kolovson, M.-
A. Neimat, D. Schneider, K. Wilkinson, The Pa-
pyrus Integrated Data Server. HPL-DTD-91-15,
May 16, 1991. Abstract to appear in Proc. Ist
International Conference on Parallel and Dis-
tributed Systems, Miami Beach, Florida, Decem-
ber 1991.

[RAFI91] A. Rafii, R. Ahmed, P. DeSmedt, W. Kent,
M. Ketabchi, W. Litwin, M.-C. Shan. Multi-
database Management in Pegasus. Proceedings
of the First International Workshop on Interop-
erability in Multidatabase Systems, Kyoto, Japan,
April 1991.

[SHAN89] M.-C. Shan. Unified Access in a Hetero-
geneous Information Environment. Newsletter of
IEFEE Office Knowledge Engineering, Vol. 3, No.
2, August 1989.

3.1 Interoperability

The term interoperability vaguely refers to the ability
of different systems to operate with each other. This
term is clearly overloaded as numerous factors either
hinder or contribute to interoperability. We consider
several factors and oversimplify them by grouping
them under semantic interoperability and operational
wnteroperability. In the first category, we broadly
group the problems associated with domain, seman-
tic and schema mismatch. In the second category,
we group the operational or system components that
contribute to interoperability such as factors that con-
tribute to performance of the integrated system, the
ability of different components to communicate with

each other, the conversions required to pass data from
one system to the other, etc.

3.1.1 Semantic Interoperability

Research in this area is directed towards the ulti-
mate goal of being able to easily express meaningful
queries that span heterogeneous databases. Thus, one
should be able to map the schemas of the underlying
databases to a common schema that a user can subse-
quently use to interrogate the integrated databases. It
1s not uncommon that one will encounter semantic dis-
crepancies when doing such a mapping. We are explor-
ing the use of rules to reconcile schematic and semantic
discrepancies of integrated databases. In construct-
ing such mappings, one may need to interrogate the
schemas of the underlying databases. We are also ex-
ploring the use of higher order expressions and higher
order views to be able to interrogate database schemas
by using variables that range over the schemas.

Uniform and declarative access to multiple hetero-
geneous databases is provided through a unifying data
definition and data manipulation language, HOSQL.
HOSQL is a functional object-oriented language that
is an extension of Iris’s OSQL query language. By us-
ing an object-oriented paradigm, the unified schema of
multiple databases can easily model conceptual enti-
ties that span the underlying databases. HOSQL pro-
vides non-procedural statements to manipulate mul-
tiple databases. It allows for both transparent and
explicit access to participating databases.

[AHME90] R. Ahmed and A. Rafii. Relational Schema
Mapping and Query Translation in Pegasus.
Workshop on Multidatabases and Semantic Inter-
operability, Tulsa, Oklahoma, November 1990.

[KENT91] W. Kent. Solving Domain Mismatch and
Schema Mismatch Problems with an Object-
Oriented Database Programming Language.
Proc. 17th VLDB, Barcelona, Spain, September
1991.

[KRIS91a] R. Krishnamurthy, W. Litwin, W. Kent. In-
teroperability of Heterogeneous Databases with
Schematic Discrepancies. Proceedings of the First
International Workshop on Interoperability in
Multidatabase Systems, Kyoto, Japan, April 1991.

[KRIS91b] R. Krishnamurthy, W. Litwin, W. Kent.
Language Features for Interoperability of Data-
bases with Schematic Discrepancies. Proceedings
of the ACM SIGMOD Conference, Denver, Col-
orado, May 1991.

[NEUH91] E. Neuhold, W. Kent, M.-C. Shan. Object
Identification in Interoperable Database Systems.
Proceedings of the First International Workshop
on Interoperability in Multidatabase Systems, Ky-
oto, Japan, April 1991.

[RAFI92] A. Rafii, R. Ahmed, P. DeSmedt, W. Du.
Integration Strategies in Pegasus Object Oriented
Multidatabase System. HICSS, January 1992 (to
appear).

3.1.2 Operational Interoperability

While HOSQL captures the behavior of abstract data
types, it does not capture their operational properties.
Describing the operational properties of functions is
essential to optimizing their usage. Such properties
describe the cost of executing functions and how they
interact with other functions. The Papyrus Interface
Language (PIL) is a functional language with built-in
optimizable constructs for handling data sets. Its pri-
mary purpose 1s to invoke data managers’ operators,
provide mechanisms for processing and communicat-
ing data among operators, and to permit optimization
and parallelization. PIL places emphasis on the char-
acteristics of data manipulation algorithms through
operator properties. Operator properties may be ex-
plicitly declared or the operator may be declared to
match a template whose behavior is well-understood
by the optimizer. Examples of such templates are pick
an element from a bag, scan a bag, or apply a filter
to an atom. Through these properties and templates
the optimizer can gain an understanding of the opera-
tional characteristics of functions and exploit them to
come up with better execution plans. Similar proper-
ties and templates can be used to capture the potential
for parallelism between functions and within individ-
ual functions.

3.2 Transaction Management

Transaction management poses a serious problem
when integrating heterogeneous databases. Some
databases may have a transaction manager, others
may not. Among the databases that do have a trans-
action manager, their transaction model may not all
be the same. The problem faced by heterogeneous
database systems is how to reconcile these differences.
Even if all the integrated systems abide by a two-
phase commit protocol, the fact that the underlying
databases may be distributed can pose a severe perfor-
mance degradation if one participating database does
not respond to the request to commit for any of a
multitude of reasons. We have explored alternatives
to the two-phase commit protocol.

A challenge in integrating special-purpose data
managers is that they may have very diverse trans-
action management requirements. Assuming that au-
tonomy can be sacrificed, we explore the extent to
which they can participate in global transactions while
preserving their individual requirements.

[LITW91] W. Litwin and M.-C. Shan. Value Dates
for Concurrency Control and Transaction Man-
agement in Interoperable Systems. Proceedings
of the First International Workshop on Interop-
erability in Multidatabase Systems, Kyoto, Japan,
April 1991.

[NEIM90] M.-A. Neimat, W. K. Wilkinson. Extensi-
ble Transaction Management in Papyrus. HICSS),
Jan 1990.

3.3 Parallelism and Distribution

Parallel and distributed execution of queries will play
an essential role in improving the performance of in-
tegrated systems. Autonomous legacy databases are
likely to be distributed in an enterprise’s computer
network. The execution of queries that span the legacy
databases should be executed in parallel on the dis-
tributed nodes to achieve reasonable response time.
For the specialized, highly-tuned data managers, inte-
gration can mean loss in performance. We focus on the
parallelization of such integrated data managers and
on the retargetability of their executions to a variety
of parallel and distributed computer architectures.

An important class of queries is the Select-Project-
Join queries so commonly found in relational database
systems. We have researched various ways of optimiz-
ing their execution on shared memory multiprocessor
architectures. We are also exploring their optimiza-
tion on more general parallel architectures.

To process queries that span heterogeneous data
managers and can execute on parallel and distributed
architectures, one needs an execution framework that
can accommodate such requirements. We have de-
signed an execution engine that supports efficient in-
teraction among data managers and their operators
regardless of the internals of the operator and of the
hardware and processor configuration. Operators are
only understood through their interface and proper-
ties. Some may be implemented as iterators? and some
may not. A program may execute in several address
spaces in the same machine or on different machines.
Some of these machines may be multiprocessors. One
of the challenges we have imposed on the execution en-
gine is that i1t be efficient on both single-processor and
multiprocessor architectures. Unlike most query pro-
cessors, the execution engine supports some advanced
constructs, such as loops and conditionals. Parallelism
depends on many factors that are only known at run-
time. For example, the effective number of processors
available at any time is dependent on the workload.
The execution engine automates much of the cloning
of operators, data partitioning and data passing be-
tween operators, to adjust the level of parallelism to
the runtime environment.

Parallel and distributed query processing is not
limited to the server, as client workstations are as-
sumed to have sufficient processing power to reduce
contention on the server and thus contribute to over-
all improvements in performance. We have addressed
one aspect of client participation in query processing,
namely the maintenance of a consistent cache on client
workstations. We have also explored the use of main
memory data structures on the client to improve per-
formance.

[CONN90] T. Connors and D. Schneider. Query Pro-

cessing in Papyrus. Submitted for publication.

?Iterator functions perform only a partial computation for
each invocation of the function. Traditionally, at least three
entry points are defined for each function, open, next and close.

[MASA91] W. Hasan and S. Chaudhuri. Pipelined Fze-
cution in an Extensible DBMS. HPL-DTD-91-10,
February 22, 1991.

[LITW91] W. Litwin and T. Risch. Efficient Process-
g of an OO0 Query Language through Datalog
with Foreign Predicates. HPL-DTD-91-17, June
19, 1991.

[LU90] H. Lu, K.-L. Tan, M.-C. Shan. Hash-Based
Join Algorithms for Multiprocessor Computers
with Shared Memory. Proc. 16th VLDB, Bris-
bane, Australia, August 1990.

[LU91] H. Lu, M.-C. Shan, K.-L. Tan. Optimization of
Multi-Way Join Queries for Parallel Execution.
Proc. 17th VLDB, Barcelona, Spain, September
1991.

[MURP91] M. Murphy and M.-C. Shan. Execution
Plan Balancing. Proc. 7th Data Engineering
Conference, Kobe, Japan, April 1991.

[WILK90] W. K. Wilkinson and M.-A. Neimat. Main-
taining Consistency of Client-Cached Data. Proc.
16th VLDB, Brisbane, Australia, August 1990.

