
HEWLETT
PACKARD

An Expert System to Perform Functional
Diagnosis 01a Bus Subsystem

Chris Preist; Daryl Allerd; Ajay Gupta
Information Management Laboratory
HP Laboratories Bristol
HPL·91·16
January, 1991

diagnosis; expert system;
manufacturing;
electronics

Agatha is an expert system to help technicians
test and diagnose failures in Hewlett-Packard's
PA·RISC processor boards after their assembly.
This paper focuses on the cachebus slice, the
module in Agatha responsible for diagnosing
faults in a bus subsystem on the board.

The slice uses casual knowledge, and is able to
handle multiple and intermittent faults. By
separating test specific knowledge from board
specific knowledge, it can be easily updated to
handle new board types. It has been extensively
tested, and is in use at three sites within
Hewlett-Packard, It is currently able to handle
three different board types.

(c)Copyright Hewlett-Packard Company 1990

Internal Accession Date Only

1 The Agatha System
Agatha is an expert system to help technicians test and diagnose failures in

Hewlett-Packard's PA-RISC processor boards after their assembly. It is
integrated with the PRISM functional test system [Schuchard,Kohlhardt], a
Hewlett-Packard proprietary system which interfaces with the processor
board to be tested and runs a series of functional test programs. Agatha,
together with the PRISM system, provides a user friendly environment for
board test and diagnosis. It consists of several smaller co-operating expert
systems, called 'slices', capable of diagnosing different parts of a circuit
board. It has been successfully deployed at three sites within Hewlett
Packard. In this paper, we focus on the slice responsible for diagnosing the
cachebus subsystem, outlining its design and performance.

1.1 The board test process
The board test process consists of two phases; In-circuit testing, followed by
functional testing.
In-circuit testing is performed by the HP 306513070 board tester. It consists of
testing the components and connections on the board individually. It catches
misloaded or missing parts, and most of the shorts and opens.
Functional testing involves testing the behaviour of various subsystems on the
board, and verifying that they are behaving as they should. During functional
testing, the PRISM tester runs a suite of tests to verify the behaviour of
different subsystems on the board. When diagnosis is necessary, the
technician takes the output from these tests and uses it to work out possible
causes of failure. To gain further evidence for suspect causes, helshe can run
further tests on the PRISM tester, or can carry out manual tests, such as
probing parts of the circuit.
Boards can also be returned for diagnosis from any point in the production
line after test, or from the field. In such cases, diagnosis is normally done at a
PRISM board-test station.

Before the introduction of Agatha, the diagnostic process was not
straightforward, for the following reasons;

• The PRISM tester is designed primarily for test and diagnosis at the level
of integrated circuits. The data it produces for board diagnosis is of a low

1

level nature, and can be overwhelming in quantity. This means it is
difficult and time-consuming for the technician to deal with, and
important information can be missed among the large volume of less
relevant data.

• The repair recommended by the technician is not always correct. Several
may be attempted before the board is fixed.

• As this testing has taken place immediately after manufacturing, it is
unrealistic to assume that there can only be a single cause of failure.
Hence the technician must be able to deal with a limited class of multiple
fault possibilities.

• As manufacturing of PA-RISC boards spreads throughout the world, so
does the need for the diagnostic process. This means that technicians
with little or no experience of this task will need to perform it.

• The PA-RISC board family is continually updated to take advantage of
the latest technology. This means that a new board is released on a
regular basis, with basically the same test strategy, but with different
specific test details, and a different structure.

To overcome these problems, the Agatha expert system was developed. It
provides an easy-to-use interface with the PRISM tester and the diagnostic
data produced in the test process. It can make diagnoses rapidly and
accurately, and can be used by a technician inexperienced in PA-RISC
diagnosis. It runs further tests automatically, as necessary, and guides
technicians through any necessary manual testing if they so desire. As the
knowledge specific to the PRISM tester and the knowledge specific to the
board are kept separate, it is easy to update the system to deal with new board
releases.

1.2 The Project
The Agatha project was a collaboration between Hewlett-Packard Labs, UK,
(HP Labs) and Hewlett-Packard Integrated Circuit Business Division (ICBD).
The collaboration was designed to be of mutual benefit to both organisations
involved; ICBD was able to develop an expert system to aid technicians, and
also became a centre of expert system excellence, allowing it to tackle future
projects. HP Labs was able to gain further experience of technology transfer,
and develop a firm understanding of specific problems to guide a longer term
research program in model-based diagnosis.
The project consisted of several distinct development phases, with different
responsibilities within each clearly partitioned between HP Labs and ICBD.
Knowledge AcquisitionlFeasibility Prototype
Initially, we had to gain knowledge of the task performed, and produce a
rapid prototype to give us some confidence in it. Knowledge acquisition was
started by HPLabs, but devolved to ICBD staff as they gained experience of the
techniques used. As this was going on, the feasibility prototype was developed
to perform bus diagnosis only. It was written in PROLOG, and intended as a

2

DIP Slice Structural
Knowledge

Cachebus Slice Base- -Main Control Diagnose - -Manager

I TesterRuleBase

TopLevel Slice

'C' Interface

~ , ~ ~ ~ ~,, , r , r

UNIX X Windows - - USERPRISM - -

*Circuit Board

Figure 1 - Agatha Design

'throwaway'. The knowledge and algorithms it used formed a basis for the
final cachebus slice, but were significantly adapted and entirely
reimplemented. The prototype was not interfaced directly with the tester.
Proto I
For the first major prototype, it was decided to focus on three specific slices,
including the cachebus.
During this phase, responsibility for the design and development of the expert
system slices rested with HP Labs. ICBD was kept informed of all decisions,
and was responsible for critiquing the evolving slice designs. ICBD was also
responsible for all non-expert system parts of the system, in particular the
interfaces with the PRISM tester and the user. Test cases were used to check
the functionality of the system (See section 4).

3

Proto IT
On completion of Proto I, primary responsibility for the entire system passed
to ICBD. With consultancy from HP Labs where necessary, ICBD developed
further expert system slices, and enhanced the original three. The system
was released for in-situ testing to three HP manufacturing sites as trial
customers.
Refine
On the strength of customer feedback, Agatha was refined to meet the
customer's requirements more fully. This was done entirely by ICBD. When it
was felt that the system was adequately stable, it was 'manufacturing
released', making it available to other organisations within HP.

1.3 The Overall Design
As different parts of the diagnosis problem were found to require different
inference techniques, we decided to subdivide the problem, and write different
systems, the 'slices', to tackle each part. Hence Agatha is a suite of co
operating expert systems, each able to tackle a different aspect of the problem.
To give the flexibility required to do this, we opted for Quintus PROLOG as an
implementation vehicle.
These slices are integrated by another expert system, the 'Diagnose
Manager', which is responsible for passing control from one slice to another,
depending on previous test results and diagnostic hypotheses.
The slices and diagnose manager must communicate with the user, UNIX-,
and the PRISM tester. This is done via 'C' programs. The user interface was
developed in X windows.

The design is summarised in figure 1.
Further details about the project and overall design are given in [Allred,
Allred2].1n this paper, we focus on the cachebus slice.

2 Diagnosing the Cachebus subsystem

2.1 The Cachebus Subsystem
The cachebus subsystem on the processor board consists of several large VLSI
chips which communicate via a bus of around 150 lines. Each chip is
connected to a subset of these lines, and is able to transmit onto the bus by
driving values onto the lines. This can in turn be read off by the other chips.
The bus is pre-charged, so floats to high. When a chip drives a binary number
onto the bus, it does so by actively pn1Jjng certain lines to low (to give zeros),
and leaving others at high (to give ones).
At either end of each line in the bus is a termination resistor, which connects
the line to a voltage source. Physically, these are clustered together into
resistor packs, each holding about 6 resistors.

4

+2.85v

ChipI Cbip2

- -
- -- --

Figure 2 - A Simplified Version of the Cachebus Subsystem

+2.85v

A simplified version of this system is shown in figure 2.

2.2 Possible failures within the subsystem
Chip Failure
The chips have been tested prior to board assembly, but it is possible that they
are damaged during the manufacturing process. Faults within chips
manifest themselves, within the cachebus test, in the following ways;

Bad Driver - A pin on the chip connected to a given line in the cachebus is
unable to drive the line as it should. It may be unable to drive at all, it may
only drive some of the time, or it may drive the line even when it is not
supposed to.
Bad Receiver - A pin on the chip connected to a given line on the cachebus is
unable to receive data off the line properly. It may permanently receive a
low value, permanently receive a high value, or may intermittently receive
a high value when it should have received low.

Line Failure
Faults on cachebus lines are of the following nature;

Line Open - A break somewhere on the line, which results in the inability to
communicate across it. When a chip actively pulls the line to low, only the
other chips on the near side of the open will receive it properly. The others
will receive it as high.
Open Pin on Chip - A break between a line and a chip. This stops any
communication between the line and the chip, but will not affect any other
communications.

5

Line Short to High • When a line is shorted to an active high, it will be
pulled permanently up. This means any attempts to transmit low values
along it will fail.
Line Short to Low . In this case, the line is permanently pulled down to low.
Hence it will be received as a 0, irrespective of what is transmitted on it.
Two Cacbebus Lines Shorted - When two cachebus lines are shorted
together, they act as a 'wired and'. If either of them has a low transmitted
on it, the other will be pulled down, and so will also be received low.

Resistor Pack Failure
When a resistor pack fails, it manifests itself as faults on several of the lines it
is connected to.
Multiple Faults
Due to the nature of the manufacturing process, certain kinds of multiple
fault are likely, and so should be considered as candidates. These include;

Bad chip - When a chip fails, it is common for several of the pins on it to fail
at once.
Bad driver/receiver - When a pin on a chip fails, it may fail both as a driver
and a receiver simultaneously.
Multiple short - A solder splash on the board would result in several
adjacent lines being shorted together.

Intermittent Faults
Most classes of faults described above can be 'hard' or 'intermittent'. Hard
faults always show up, whereas intermittent faults may show sometimes and
pass other times. An example would be a poorly soldered junction, with a
high resistance. Sometimes, a signal can pass through it, while at other
times it will be blocked.

2.3 The Cachebus Test
The cachebus test consists of a sequence of mini tests. In each mini test, one
of the chips broadcasts a binary number onto the cachebus, and all the chips
(including the broadcaster) read the number back off. Differences between the
broadcasted number and received numbers are output for diagnosis purposes.
For each chip driving, this is repeated with a 'walking 0' and 'walking l'
sequence across the cachebus. The 'walking 0' sequence consists of the chip
driving each line in turn to low, and leaving all the rest high. The 'walking l'
sequence is the converse; each line in turn is left high, while all the rest are
pulled low.
When the test fails, the technician uses the failing test patterns for diagnosis.
Each failing test pattern consists of the driving chip, the receiving chip, the
test pattern that was driven, and the bad received pattern. For a typical failing
test, there will be around 1000 such patterns. Of all the tests carried out by the
PRISM tester, the cachebus test is the one which produces the most data on
failure. Using this data, the technician must propose possible diagnoses. This

6

can be difficult and time-consuming, particularly when the technician has
little experience of this diagnostic task. It is the automation of this task that
we will discuss in the next section.

3 Design of the Cachebus slice

8.1 Design Decisions

8.1.1 Major Factors Influencing the Design
• The input received by the cachebus expert system is in the form of a very

large number of observations of the circuit behaviour.
• Multiple faults on the cachebus are not sufficiently rare as to be

negligible. Often, these will be 'single cause', such as the failure of a pin
which is used as both a driver and a receiver. However, they can also
appear at quite different places on the bus. For example, if several drops
of solder splash on the bus, it could result in several line shorts.

• Intermittent faults must be handled.
• Certain 'catastrophic' faults, such as a chip which randomly drives even

when it is not asked to, must be spotted.
• The system must be at least as fast and as accurate as an expert when

diagnosing faults on the cachebus.
• The system must be easily updatable to cope with new boards in the PA

RISC family.
• While initially the responsibility of the corporate labs, the system must be

maintained and extended by the division which is to have final
responsibility for it.

8.1.2 Possible AI technologies
Heuristic Rule-based systems
A heuristic system, using a symptom/fault relationship, has often proved to
be a valuable and efficient way of solving a diagnostic problem (for example,
[Braunwalder]). However, they have not been particularly successful in
handling multiple and intermittent faults. Often they are unable to. When
they do deal with them, it can result in an explosion in the size of the
rulebase. Secondly, the muddling of the structural and diagnostic knowledge
in a heuristic system means it would be harder to update it to deal with new
board releases. In addition, in our trials with the expert, it was observed that
he employed predominantly causal knowledge to make predictions from his
current hypothesis.
Model-Based Diagnosis Technology
Model based diagnosis technology overcomes the problems associated with
heuristic expert systems. It provides a clean separation between the circuit
structure, the behaviour of the different components, and the diagnostic
process, SO is easily updatable to deal with new releases. Also, it is able to

7

handle multiple faults. However, at the time the decision was made, model
based diagnosis was not a mature technology. There were some concerns over
its efficiency. Also, little work had been done on processing large numbers of
separate observations efficiently in a model based way. Finally, faults
resulting in a change in the circuit structure, such as shorts between lines,
had not been dealt with in a principled way.
A Causal Rule-based approach
As model-based technology was not sufficiently mature, but heuristic rules
would be inadequate for the problem, we opted instead for an approach half
way between the two. Rules are used, but the knowledge behind them is
causal rather than heuristic. Structural knowledge referenced by the rules is
kept in a separate knowledge base, allowing the rules to deal with
observations on an abstract bus system. The rules are used to eliminate
impossible or highly unlikely hypotheses. Heuristic knowledge is not
discarded entirely; it is used to spot catastrophic failures, which could not
otherwise be incorporated into the rules. It is also used to order according to
importance the hypotheses the cachebus slice outputs (See 3.2).

8.1.8 Delivery Environment
The primary choice for the delivery environment was between a classical
expert system shell, or a PROLOG system. We opted to deliver the system
using Quintus PROLOG. The reasons for this decision are issues pertaining
to the whole of the Agatha system, and not specifically the cachebus slice, so
are covered in detail in [Allred2l.

8.2 The Design
The overall design of the system is shown in figure 3. Raw data from the
tester is parsed and preprocessed by a 'C' program. This is then put into a
more abstract form by the expert system, and split into 'batches' according to
the line in the bus which exhibits faulty behaviour. Hypotheses are then
generated for each batch, and the observations in the batch are used to refute
as many of these as possible. When this has been repeated for all batches,
hypotheses are 'linked' between batches, to give single hypotheses capable of
explaining observations on several lines. Finally, the hypotheses are ordered
according to importance, by using heuristic rules.
The structural knowledge referenced by the rules is held in a separate
database. It deals with the connections between chips and lines, the physical
adjacency of lines on the board, and the correspondance between bits in the
test patterns and lines on the board.
Observation Abstraction
Initially, the raw data output by the tester consists of a series of binary
numbers, which are each transmitted by one chip, and received incorrectly by
another. The first stage of abstraction, performed by 'C' routines, is to find the
position of the specific bits which are received incorrectly by each chip. This
information, together with the transmitter and transmitted binary number, is

8

PRISM data

••·•••-------------------------------

Repeat for each
batch.

------------------------------,••••••••••••••••••••••·•••••

Observation Abstraction and
Batehing

-_.......••.••.•...•. ..•.••.•••........••....

CheckBatchDataf{X' Seri-
ous Failures

I I
Hypothesis Genemtion

+

I

Hypothesis Elimination

I
•.•.......••••••..... _...--------------._.----

Hypothesis Linking

......••••••••••••••••••·••·•·••••••••••·••••••••••••••··••••••
~--_.-

Hypothesis Ordering

,,
Ordered list of

Hypotheses

Figure 3 - Design of the Cachebus Slice

9

converted into a PROLOG readable form, and output. Observations which are
received correctly are not represented in either the raw data or the abstract
form.
From this, and the structural knowledge specific to the board type being
diagnosed, the system is able to determine which lines are improperly
received by which chip. Each value received incorrectly gives a 'pattern';
pattem(DrivinLChip, Driven....binary_number, ReceivinLChip,

Bad_Received_Line, Bad_Received_Bit).
When a receiving chip receives a given binary number incorrectly on several
different lines, it gives rise to several patterns.
Observation Batching
The process of hatching is central to the handling of multiple faults by the
system. Rather than considering the system as a whole, it is split up into
many semi-autonomous subsystems, namely each individual line on the bus.
This allows us to make the 'single fault per line' assumption, rather than the
'single fault' assumption (Though, as is explained later, we also consider
certain multiple faults on a single line).
To be able to deal with each line independently, it is necessary to split the
observations up according to which line they are relevant to, namely the line
which is received badly. Hence the patterns are sorted into different lists,
according to the 'Bad_ReceivecLLine' field. These lists are referred to as
'batches', and are referenced according to the line with which they deal.
In the implementation, the process of abstraction and batching takes place
concurrently.

Find Serious Failures
This rulebase is used to spot serious faults with behaviours so extreme that
they invalidate the assumptions behind the rules used elsewhere in the
system. It uses a heuristic match to filter these out. This provides the ability to
spot the 'catastrophic' faults mentioned in section 3.1.1. Currently it only
contains one rule, which detects a chip driving when not requested to. The
rules used elsewhere in the system implicitly assume that there is no such
chip.

Hypothesis Generation
Hypothesis generation takes place in a simple way, using almost no
knowledge. For each batch of results, all hypotheses considered by the system
are asserted as possible causes of the observed had values. This is done by
taking a template of hypotheses, and instantiating the information specific to
the batch. This information consists of the line name, and the driving and
receiving chips involved in the bad pattems. The instantiated hypotheses
provide a list of hypotheses, each of which may explain the results in the
hatch.

10

Hypothesis EUmjnatioD

After generating all hypotheses for the observed behaviour on a given line, the
system attempts to eliminate as many as possible, by firing the elimination
rules. By using the observations and the structural knowledge, these
eliminate those hypotheses which contradict with the observed behaviour on
the line. These are derived by taking a causal relationship given by the expert,
and converting it into it's contrapositive.
Hence, if Hypothesis1 => Observation1, we use the rule
not Observation1 => not Hypothesis1 to eliminate the hypothesis if the
observation it predicts is contradicted by what is actua1ly observed.
A simple example ofthis would be :
IF '1' is observed on the line at some time that '0' was expected
ELIMINATE bridge to ground and bridge to a cachebus line
BECAUSE these faults can only pull a line actively down.

Each rule has a 'because' field associated with it. These are not used in the
inference process, but aid maintainers in understanding the system's
behaviour.

Some rules require the use of 'pass' information. In these cases, any test
which has no associated failure pattern on a given line is assumed to have
been received correctly off this line.
The majority of knowledge is coded in the form of elimination rules. These are
fired, in turn, for each batch of results.
Hypothesis I.jnking
Up to this stage, each line has been considered as an independent subsystem.

However, lines are not completely independent. Some faults manifest
themselves across lines. For example, the failure of a resistor pack, a bridge
between cachebus lines, or a chip with several faulty drivers. It is the job of
the linking rules to handle these.
After elimination, each batch has a small set of hypotheses which remain
associated with it. The linking rules attempt to combine several hypotheses in
different batches together to form a single hypothesis capable of explaining
the observed behaviour of several lines. They also access the structural
knowledge base when necessary. For example:
LINK.: Bridge to cachebus on Line1 WITH: Bridge to Cachebus on Line2
IF: Line1 and Line2 are adjacent somewhere on the board

TO GIVE HYPOTHESIS: bridge between Line1 and Line2
Hypothesis Ordering
After linking, the remaining hypotheses are ordered using heuristic rules.
These rules reflect the symptom coverage each fault provides and the relative
likelihood of the different faults. The rules are, in order of priority;

1. Favour hypotheses which explain the largest number of batches.

11

2. Favour single-fault hypotheses over multiple fault hypotheses.
3. Favour non-intermittent hypotheses over intermittent hypotheses.
4. When none of the above apply, order the hypotheses according to the a

priori relative likelihood of the two faults.
The final output of the cachebus slice is thus an ordered list of the hypotheses
which remain for each given fault. This entire list is presented to the user, via
the Agatha user interface, and the user is left with the decision of which of
these to pursue first. The user will not necessarily opt for the one that Agatha
has suggested is most likely, as others lower on the list may be far easier to
test for.
Initially, each batch has 14 hypotheses (including intermittent and multiple
faults) associated with it. On output, the system has 3-4 hypotheses remaining
in total. From this, the technician can usually easily identify the problem.

S.S Handling multiple faults
The Agatha Cachebus slice is able to deal with several different classes of
multiple fault hypotheses;
Faults on Several Lines
The most common multiple fault during manufacturing is the appearance of
faults on several different lines of the cachebus. Such cases are handled
through the process of batching of observations according to line, and making
the 'single fault per line' assumption in the reasoning process.
Independent Faults on the same line
Two faults are 'independent' if the behaviour of one cannot mask the
behaviour of the other. For example, if two driving chips are 'stuck at 1', and
unable to drive a low value when requested. As they will never be requested to
drive at the same time during the test process, their faults will manifest in
different observations, and not mask each other. Hence they are independent
faults.
This is a rather less common occurrence than faults on different lines, and
would not be handled by the single fault per line assumption. Where they are
to be considered, they must be explicitly entered by the hypothesis generation
process for a batch. For example, if a line batch contains observations of bad
received values by both Chip1 and Chip2, it would be pointless to assert 'bad
receiver on Chip1' as a possible hypothesis. It would be unable to explain all
the observations in the batch. Hence it is necessary to assert the multiple fault
hypothesis, 'bad receivers on Chip1 and Chip2', instead.
The rulebase does not need to handle such multiple fault hypotheses
explicitly. The work is done by the inference engine; When one of the
component faults of a multiple fault hypothesis is eliminated, the entire
hypothesis is considered to be eliminated.

12

Dependent Faults on the Same Line
Two faults are 'dependent' if one is able to mask the behaviour of the other.
For example a chip with a driver stuck high, and another chip with a receiver
stuck low. When the driver is asked to drive low, it fails to do so. But the
second chip receives the line low anyway, so the test passes, despite the
existence of the faults.
Dependent multiple faults cannot be handled using the method described in
the previous section. As they mask each other, the 'good' observations will
eliminate them as possible hypotheses. Instead, they must be explicitly
generated, and eliminated by the rule base. In other words, they are treated
as separate single faults, and so require additional knowledge acquisition.
Currently, the only dependent multiple fault represented in the system is a
bad driver/receiver pin on one chip. Because this fault has a single cause
(namely a fault on that particular chip), it is significantly more likely to occur
than other dependent multiple faults, and so must be dealt with.

3.4 Explanation
A disadvantage of a rulebase based on the elimination of hypotheses, rather
than confirmation, is that it is harder to provide meaningful explanation
facilities. It is difficult to answer questions such as 'why do you believe this?',
as it is simply because it hasn't been ruled out as a possibility.
We had initially planned to provide an explanation facility that would be of use
to the user of the system. However, user feedback in the initial stages
suggested that this was a less important consideration than we had first
thought. This was backed up by the experience at our alpha and beta test sites.
However, we did still feel that it was necessary to provide some form of
explanation for the use of the maintainer.
As it was to be used by the maintainer, rather than the user, it was acceptable
(indeed, preferable), to allow it to include some 'inference'information. Hence
we opted for a very simple approach; a trace of the firing of the high level
rules. As the rules were fired, their result was written to a file; whether they
failed or passed and what their result was on the list of possible hypotheses.
The lower level rules behind these, such as the data and structure abstraction
predicates, were not output. During the design stage, we decided that any
more sophisticated explanation facility could take this file as an input, and
provide a neater interface to it. Currently, we have not found a need for this.

4 Testing of the Cachebus Slice
Initial testing of the cachebus slice in the Proto 1 system was performed by
using a suite of example outputs from the PRISM tester, each generated from
a known fault. These were prepared using a 'poison board'. This is a board
which can have faults of different types artificially induced on it. For
example, a short could be induced by connecting a wire between two lines on
the cachebus. The suite was designed to span all the different classes of fault

13

the slice covers, including multiple and intermittent faults. Similar suites
were developed for the other slices in Proto 1.
When the system was stable, it was released to customers as an alpha
version, and statistics about its performance were gathered. These were used
to further debug the system, where required.

5 Updating the Oaehebus Slice
To ease the problem of updating, the cachebus slice was designed with a clear
distinction between the tester-specific rulebase and the board-specific
structural knowledge base. This means that when a new board is released
which is tested with the PRISM tester, only the structural knowledge base
needs to be changed.
This updating process is automated. 'C' routines access design data files
which are used by the PRISM tester, extract the structural knowledge
required by the cachebus slice, and convert it into PROLOG clauses. The only
intervention needed by the maintainer is to make minor alterations to these
routines, if the design data files change format. The test-specific rules do not
need to be altered.
The cachebus slice has been successfully updated to deal with 3 different
board families.

6 Benefits of the Caehebus Slice
As the Cachebus Slice is part of the Agatha system, it is difficult to provide
independent data about it's specific benefits. The benefits of the entire system
are discussed in [Allred2]. However, it is possible to point to certain
advantages provided by the cachebus system specifically.

• It provides faster diagnosis of cachebus tests. Agatha takes between 1
second and 3.5 minutes to perform diagnosis of the cachebus, averaging
around 30 seconds. The expert averages around 4 minutes to perform the
same task.

• It has improved the accuracy of cachebus diagnosis. There is no data for
the Cachebus slice independent of the rest of the system. However,
customer feedback confirms that diagnosis of faults in the cachebus has
indeed been improved.

• Easily updatable to deal with new board families.
• As a part of the AGATHA expert system, it can now be easily deployed at

new sites, and can be used by technicians not used to dealing with these
board types.

• It has provided a good impetus for research into model based diagnosis at
HP Labs. [Eshghi, Preist]]

14

7 Conclusions
While heuristic expert systems can be too simple to tackle a diagnostic task
properly, and model-based approaches are not able to cope with certain
complexities, a causal rule-based approach can yield good results. They can
provide a system able to deal with multiple and intermittent faults, and allow
separation of different types of knowledge for easy upgrading and
maintenance.
By developing the system as a joint project between HP Labs and the final
system owners (ICBD), we were able to transfer the expertise effectively from
one party to the other. This freed the labs from any long-term maintenance
commitment, and established a centre of excellence in expert system
technology at ICBD. It also gave HP Labs experience of real problems, thus
allowing them to focus their longer term research program in model-based
diagnosis on areas which would be of particular use to HP divisions.

Acnowledgements
Thanks to Rick Butler, our expert, and Caroline Knight, for help with
knowledge acquisition.

References
[Schuchard] Schuchard and Weiss. 'Scan Path Testing of a Multichip

Computer' in ISCC'87 Digest
[Kohlhardt] Kohlhardt, Gaddis, Halperin, Undy and Schuchard,

'Design, Verification and Test Methodology for a VLSI Chip Set' in HP
Journal, Sept '87

[deIOeer] deIOeer,J and Williams,B 'Diagnosing Multiple Faults' in
Artificial Intelligence 32

[Preist] Preist,C and Welham,R 'Modelling Bridge Faults for Diagnosis in
Electronic Circuits' in Proc. 1st International Workshop on Principles of
Diagnosis

[Eshghi] Eshghi,K 'Diagnoses as Stable Models' in Proc. 1st International
Workshop on Principles of Diagnosis

[Allred] Allred, 'The Agatha Project - The Development of a Diagnostic
Expert System. 'HP ICBD Intemal Report

[Allred2] Allred, Lichenstein, Preist, Gupta 'Agatha, An Integrated Expert
System to Test and Diagnose Complex PC Boards' Submitted to Innovative
Applications of Artificial Intelligence, 1991

[Braunwalder] Braunwalder, K and Zaba,S. 'RBEST: an expert system for
disk failure diagnosis during manufacturing' in Practical Experience in
Building Expert Systems, ed Bramer, M. John Wiley 1990.

15

