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1 Introduction

Pseudo-random arrays have the property that each possible k1 x k2 subar
ray except the all zero one occurs exactly' once in the array. They are the
two-dimensional analogue of pseudo-random sequences. These sequences are
used, for example, in measuring the absolute position of automated guided
vehicles (Basran et al. 1989), and pseudo-random arrays could also be useful
in such applications. Another application for both the one and two dimen
sional cases is described in (Burns and Mitchell 1991). The problem is, given
a subsequence (or subarray), to determine its position in the sequence (or
array). Until recently, the only solution to this problem was the clever use of
a combination of look-up tables and generation of subsequent subsequences
(Basran et al. 1989). The idea was to keep a table of subsequences at
known positions spaced out through the sequence and, given a subsequence,
to generate the subsequences which follow it until one of the subsequences in
the table is found. Recently, however, Paterson (Paterson 1991) has solved
this problem in the one-dimensional case by reducing it to the well-known
one of computing discrete logarithms in GF(21c ) , where the length of the
pseudo-random sequence is 21c - 1. The discrete logarithm problem is that
of, given a primitive element Q and an element p, finding an integer r such
that f3 = o", In this paper, we present the extension to two dimensions of
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Paterson's method, again reducing the problem to that of computing discrete
logarithms in GF(2k ) , where the number of elements in the array is 2k - 1.

The remainder of this paper is organised as follows. In Section 2, we shall
describe the construction, due to MacWilliams and Sloane (MacWilliams
and Sloane 1976), of a pseudo-random array (PRA) from a pseudo-random
sequence (PRS). In Section 3, we look at these PRAs in more detail, and in
particular at the linear recurrences which generate them. We shall then, in
Section 4, describe an isomorphism between two finite fields which will enable
us to derive some further properties of these recurrences. The reduction of
the problem of finding the position of a subarray to that of discrete logarithms
is described in Section 5, and Section 6 is devoted to a small example which
illustrates the method.

2 Constructing a PRA from a PRS

The construction in this section is due to MacWilliams and Sloane (MacWilliams
and Sloane 1976). Let m = k1k2, and suppose that n =2m

- 1 is such that
nl = 2k1 - 1 and n2 = ,:: are relatively prime and greater than one. Let
~ = (aO,ab ... ,an-l) be a pseudo-random sequence of length n. Then ~ is
generated by a primitive polynomial h(x) = ho+h1x+...+hm_1xm-1+xm,

that is, for any t,

Then a pseudo-random array of size nl x n2 is constructed by putting ~ down
the main diagonal and continuing from the opposite side whenever an edge
is reached. So, for example, if m =4 =2 x 2, then n = 15 =3 x 5, and the
sequence (0,0,0,1,0,0,1,1,0,1,0,1,1,1,1) gives rise to the array

(~ ~ ~ ~. ~).° 1 001

It is known (Green 1985) that the construction of a PRA is equivalent to the
improper decimation of the PRS~. In other words, there exist integers R
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and T, defined below, such that the array can be written as

aR a2R . . . aT_I)
aT;R aT~2R . ~ • a2~-1 .

a2R-I aSR-I an-l

If t/J denotes Euler's phi function, then Rand T are defined by

R =nIx, T = n + 1 - R, X =nt<R2)-1 (mod n2).

Note that

R =0 (mod nl) , R =1 (mod n2)
T =1 (mod nl) , T =0 (mod n2)

These arrays have many properties (see, for example (MacWilliams and
Sloane 1976)). The property of most interest to us is the windowing property:
that, apart from the all zero array, every possible k1 x k2 subarray appears
exactly once in the array. The other property which will be useful to note is
that, apart from one column which is all zeros, the columns of the array are
all shifted copies of a pseudo-random sequence of length 2k1 - 1.

3 Linear Recurrences

Since a PRA is formed by folding a PRS along the diagonals, the PRA
satisfies the recurrence which generates the original PRS along the diagonals.
It has been shown (MacWilliams and Sloane 1976) that this recurrence can be
converted into two recurrences, one for moving vertically and one for moving
horizontally. Let us write these recurrences as

kl-1

ai+kl'; - E Irai+r';
r=O

1c1 - l lc,- 1

ai';+lc, - E E 9r,.ai+r';+.
r=O .=0
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The reason that the recurrence for moving vertically is so much simpler than
that for moving horizontally is that, as mentioned above, each of the columns
of the array (except the all zero column) is a shifted copy of the same pseudo
random sequence of length 2k1 - 1. A method for deriving the values of the
fr and gr,,, from the coefficients of the generating polynomial h of the original
pseudo-random sequence is given in (Shi and Chen 1988).

We would like to write these recurrences as matrices, and we do this in
the following way. IT we write a k1 X k2 subarray of A as a vector of length
k1k2 by writing each of the columns out in turn so that

is written as

(

ai,j

ai+I,j

ai+k~-l,j

ai,j+I

ai+IJ+I

ai+kl-1,j

aiJ+I

ai+l,j+l

ai,j+k2-1

ai+IJ+q-l

ai,j+k2-1 )
ai+I,j+k2-1

ai+kl-~,j+q-l

ai+kl-l,j+k2-1

then each of the two recurrences can be written as a k1k2 x k1k2 matrix which
acts on these vectors. Let the matrix for the vertical recurrence be C and the
one for the horizontal recurrence be D. Now if we denote bY!!r,t the vector
corresponding to the subarray with top left hand corner at (r, t), we have

.11 = C"tr».=r,t ""U,O
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and we have the following result.

Lemma 3.1 The matrices C and D commute.

Since the columns are copies of a pseudorandom sequence, C in fact consists
of k2 copies of a k1 x k1 matrix F arranged along the diagonal:

(1
0

1)F
C=

0

where F is the matrix

0 1 0 0
0 0 1 0

F=
0 0 0 1
10 II 12 !kl-l

The matrix D is somewhat more complicated because, when we apply the re
currence to calculate the value of ai+IJ+k2' for example, weget terms ai+kl J+•.
We need then to apply the first recurrence to obtain ai+l,j+k2 in terms of
ai+rJ+. for 0 < r < k1 , 0 ~ s < k2. We get

kl-l k2-1

L L 9r••a i+ r +t J+.
r=O .=0
kl-2 ~-l ~-l

:L: :L: 9r,.ai+r+l.;+. + :L: 9kl-l,.ai+kIJ+1I
r=O 11=0 11=0
kl-l~-l ~-lkl-l

L L 9r-l,.ai+rJ+1I + L L 9kl-l,lI/rai+rJ+1I

r=l 11=0 11=0 r=O
~-l kl":'l k2-l

L 9kl-l,lI/oai,;+1I + L L (9r-l,1I +9kl-l,lI/r)ai+rJ+II.
11=0 r=l 11=0

If we write 9.i = (90,i' 91,i, ••. ,9kl-l,i) for i = 0,1, ... ,k2 - 1, then

9...iF = (/09kl-l,i,90,i + fl9kl-l,i, ••• ,9kl-2,i + Ikl-l9kl-l,i)
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and so

ai,i+~-l

ai+lJ+~-l

and so

11
11 Ikl(~-l)

D= 9.0 9..1 9..2 ~-l

9..oF 9..1 F 9..2F 9..k2 - 1F

9..oFk1-1 9..1 Fkl-1 9..2Fk1-1 ~-l Fkl-1

where IN denotes the identity matrix of size N x N.

4 The isomorphism

In this section, we shall describe an isomorphism between a set of pseudo
random sequences and GF(2R

) , which will be useful later on. In order to
do this, we need the concept of rings of polynomials modulo a particular
polynomial. .

Suppose that f is a monic polynomial of degree M with binary coeffi
cients, so that

f(x) = fo +Itx +...+ fM_IXM-1+xM

for some fo, It, ... , fM-l E GF(2). Let S be the set of polynomials in x
of degree at most M - 1 with binary coefficients. Then we may make S
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into a ring in the following way. The sum of two elements of S is defined
componentwise, so that if g(x) = go +glX +...+ gM_lxM-1, and h(x) =
ho+h1x + ... +hM_1xM- 1, then

Multiplication is performed by multiplying the two polynomials together
symbolically, and then substituting for higher powers of x using f(x) = o.
This procedure yields an element of S, since all powers of x higher than M -1
may be replaced. It is straightforward to show that, under these operations,
S is a ring (see, for example (Herstein 1964)). In fact, if f is irreducible,
then S is a field. The field GF(2m ) may be constructed in this way, where f
is a primitive polynomial of degree m.

Suppose that we have a pseudo-random sequence l! of length n =2m -1,
with associated polynomial h. Let H denote the set of PRSs generated
by h together with the all zero sequence. We may consider an element
of H as a polynomial in a variable x, simply by identifying the sequence
(bo, b1, ..• , bn- 1) with the polynomial bo + b1x + ... + bn _ 1xn - 1. Although
the set H does not contain all possible binary polynomials of degree at most
n - 1, we may still define addition and multiplication on elements of H in
the same way as above, taking f(x) = xn - 1. It turns out that, under these
operations, H is a field, and, since H has 2n elements, we have the following
theorem.

Theorem 4.1 (MacWilliams and Sloane 1976) H IS isomorphic to
GF(2n ) .

This theorem was stated without proof in (MacWilliams and Sloane 1976).
We shall need to use the construction in the proof, so we present the proof
in its entirety. In order to prove the theorem, we need first a simple lemma.

Lemma 4.2 Let p = aU for some integer u. Then

I: pi = {I if u =0(mod n)
i=O 0 otherwise

Proof
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If u =0 (mod n), then f3 = 1, and so

n-l n-l

L:f3i = L: 1 = 1,
i=O i=O

since n is odd. Otherwise, since f3n = 1 and f3 =I- 1, we have

n-l. (1 + f3n)
L:f3' = = O.
i=O (1 + f3)

Proof of Theorem 4.1
We shall exhibit the isomorphism between these two fields. Note first that
they have the same number of elements - the elements of H are just the n
circular shifts of any non-zero element of H together with the zero element.
There are therefore n+1 = 2m elements in H, the same number as in GF(2m ) .

To avoid confusion with elements of H, we shall denote elements of
GF(2m ) by polynomials in the variable a. We shall define the trace of an
element of GF(2m ) by

( )
2 2m - 1

Tr f3 = f3 + f3 + ... + f3 .

We define two functions 4> : H -t GF(2m ) and 1/J : GF(2m ) -t H as
follows:

if b(x) E H, then 4>(b) is b(a-1)

if, E GF(2m
) , then 1/Jb) is b(x), where b; = Trbai).

We shall show that 4>(1/Jb)) =, for all, E GF(2m ) . This will establish
a one to one correspondence between Hand GF(2m ) . Now

n-l

4>(1/Jb)) = L:Trbai)a-i
i=O
n-lm-l

- L I:ba i)2i a - i
i=O ;=0
n-l m-l

- L L ,V(aV-1)i
i=O ;=0
m-l n-l_ L ,v L(aV-1)i
;=0 i=O
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by Lemma 4.2.
We need only show that 4> and t/J are field homomorphisms and we will

be done. Now clearly

and

n-l n-l

t/J(-y + (3) = L: Tr«-y + (3)ci)xi = L:(Tr(-yai) +Tr«(3ai»xi = t/J(-y) + t/J«(3).
i=O i=O

Since a-I satisfies (a-1)n =1, we see that

Now

n-l n-l

t/J(-y) X t/J«(3) = (L: Tr(-y(i)xi) x (L: Tr«(3ai)xi)
i=O ;=0

where all higher powers of x are replaced using z" = 1. So the coefficient of
xk is

n-l n-l

dk - L: L: Tr(-yai)Tr«(3ai)

i=O i=O
i+i5k (mod n)

k n-l

- L:Tr(-yai)Tr«(3ak-i) + L: Tr(-yai)Tr({3an+k-i)

i=O i=k+l
k m-l m-l n-l m-l m-l

- L: L: L: (-yai)2r
({Jak-

i)2' +. L: L: L: ('Ya i )2
r
({Jan+k-i?'

i=O r=O -=:0 i=k+l r=O .=0
m-lm-l k n-l- L: L: 'Y2r (32'(L:(ai)2r(ak - i)2' + L: (ai)2r(an+k-i)2')
r=O .=0 i=O i=k+l
m-lm-l k n-l_ L: L: -y2r p2'(a k2'L:(a i )2r -2' + a(n+k)2' L: (ai )2r -2')
r=O .=0 i=O i=k+l
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m-l m-l n-l

_ L L -r2r p2'o:k2' L{o:i)2r-2'

r=O .=0 i=O
m-lm-l n-l

- L L -r2r f32' o:k2' L (a2r-2')i
r=O .=0 i=O
m-l_ L ,2r f32ra k2r

r=O
- T rbf3ak

)

as required. Hence both 4> and t/J are field homomorphisms, and we have
established the isomorphism.

Note that, in H, shifting a sequence circularly to the right by R is
equivalent to multiplication by x-R • This in turn, therefore, corresponds to
multiplication by a R in GF(2n ) , under the isomorphism described above.
This fact allows us to deduce the characteristic polynomials of the linear
recurrence matrices C and D introduced in the previous section.

Theorem 4.3 Let f be the minimal polynomial of aT; then the characteristic
polynomial of C is equal to r-.
Proof
From the structure of C, we see that the characteristic polynomial of C is
equal to the k2th power of the characteristic polynomial of F. Now F is just
the matrix which shifts the pseudo-random sequence which forms the array
by T. As noted above, this means that multiplication by F corresponds
to multiplication by aT in GF(2n

) . So F certainly satisfies f, the minimal
polynomial of aT. But the degree of the characteristic polynomial of F is
equal tok1, which in turn is the degree of f. So the characteristic polynomial
of F is equal to f, and we have the desired result.

Corollary 4.4 The eigenvalues of C are aT, a'O, ••• , a 2•1
-

1T
, each with mul

tiplicity k2•

Theorem 4.5 The characteristic polynomial of D is equal to the minimal
polynomial of a R•

Proof
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As in the proof of Theorem 4.1, we see that multiplication by D corresponds
to multiplication by a R • The degrees of the characteristic polynomial of D
and of the minimal polynomial of a R are both equal to k1k2 , and so the
polynomials are equal.

Corollary 4.6 The eigenvalues of Dare a R, a 2R, ••• , a2klk2-1R, which are all
distinct and hence D is diagonalizable.

5 Reducing to discrete logarithms

We recall that ~,t = C'Dt~,o, where :1r ,t denotes the vector corresponding to
the kl x k2 subarray with top left hand corner at position (r, t). We shall use
the same method as in (Paterson 1991) to convert this into a matrix equation
which we may solve for C"D', Now, for any u with 0 ~ u ::; k1k2 - 1, we
have :1r ,t+ u = C"Dt~,u so we may construct matrices

and deduce that

Theorem 5.1 So,o is invertible.

Proof
The columns of So,o are ~,O'~.l"" ,~.klk2-1' Since ~.u = DU~.o, we see
that they are in fact equal to ~,o, D~.o, ... , Dklk2-1~.o' If they were linearly
dependent, then there would exist do,db' .. ,dklk2-1 E GF(2) not all zero
such that

(do + diD + ... + dklk2_1Dklk2-I)~,0 = D.

Apart from the all zero vector, any binary vector II of length kl k2 can be
written as C" Dt~.o for some integers rand t, since every possible subarray
appears in the array. Since C and D commute, this means that

(do+d1D+...+dklk2_1Dklk2-1)1l = C"Dt(do+dID+...+dklk2_1Dklk2-1)~.0= D
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and so (do + dID + ... + dklk-z_IDklk-z-I) must be identically zero. But D
satisfies an irreducible polynomial of degree k1k2 , so this means that all the
d, must be zero, and hence the columns of So,o must be linearly independent.
So So,o is indeed invertible.

So we deduce that C' D' = Sr,tSo.J. Now it would be entirely possible
at this stage to consider this as a discrete logarithm problem in the group
of matrices generated by C and D, but this would be computationally un
wieldy, and so we use the same method as Paterson (Paterson 1991). In
the one-dimensional case, the analogous equation is C" = s.s;', and the
approach adopted is to diagonalize C and look at the first eigenvalue. Now
if P diagonalizes C, that is r-ver is diagonal, then certainly p-1crP is
also diagonal and, further, if Q is the first eigenvalue of C, then Qr is the
first eigenvalue of cr. So P may be determined beforehand, and then used
to diagonalize cr. Looking at the first entry on the diagonal of the resulting
matrix gives us o", and we have thus reduced the problem of determining r
to that of discrete logarithms in GF(2m ) . In the two dimensional case, we
need to diagonalize C and D simultaneously. This is possible because C and
D commute, and is particularly easy because D has distinct eigenvalues. We
first need a lemma on commutativity of matrices.

Lemma 5.2 Let I:::.. be a diagonal matrix with distinct entries on the diagonal.
Then the only matrices which commute with I:::.. are the diagonal ones.

Proof
Let A = (ai,j) be a matrix which commutes with 1:::.., and let the diagonal
elements of I:::.. be AO, ... , Am-I. Let 6iJ denote the Kronecker delta, that is

6.. _{I if i = j
'.3 - 0 otherwise·

So I:::.. = (Ai6i,j). Now the (i,j)th element of AI:::.. is Ei:Ol ai,lcAlc6lc,j and the
(i,j)th element of I:::..A is Ek::ol Ai6i,kalc,j, and so we have

m-l m-I

L: ~,lcAlc6k,j = :t Ai6i,lcalc,j
lc=O lc=O

for all i,j with 0 ~ i,j s m - 1. But
m-I
L: ai,lc Alc6k,j = Ajai,j and
k=O

12
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so we have
ai,;{Ai - Aj) = O.

Since the Ai are distinct, this forces aiJ = 0 if i :/:- j. In other words, A is
diagonal.

We are now able to prove the result on simultaneous diagonalization.

Theorem 5.3 Suppose that A and B commute, and that B has distinct
eigenvalues. Then there exists a matrix P such that p-1BP is diagonal.
Furthermore, p-lAP is also diagonal.

Proof
Since B has distinct eigenvalues, there exists a matrix P such that p-lBP
is diagonal, and has the eigenvalues of B down the diagonal. Now A and B
commute, so p-lAP and p-l BP commute. But, by Lemma 5.2, the only
matrices which commute with a diagonal matrix with distinct entries on the
diagonal are the diagonal matrices. Hence p-lAP is diagonal.

Corollary 5.4 There exists a matrix P such that p-lCP and p-l DP are
both diagonal.

Proof
By Lemma 3.1, C and D commute, and by Corollary 4.5, D has distinct
eigenvalues. Hence, by the theorem, we can simultaneously diagonalize C
and D.

Corollary 5.5 There exists a matrix P, independent of rand t, such that
p-lcrtr» is diagonal.

Proof
We take any P which diagonalizes D; then by the theorem, P also diagonal
izes C. Hence p-1crDtp = (P-lCPy(P-1DP)t is diagonal.

Lemma 5.6 IT P is such that the first diagonal element of p-lCP is o:T and
the first diagonal element of p-l DP is o:R, then the first diagonal entry of
r-c:tr» is o:rT+tR.

Lemma 5.7 If rT + tR = k (mod nln2), then r = k (mod nl) and t == k
(mod n2).
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Proof
This follows from the fact that T =1 (mod nd, T =0 (mod n2), R =0
(mod nd, R =1 (mod n2)'

We have thus established the reduction of the original problem of finding
the position of a subarray within a pseudo-random array to that of discrete
logarithms in GF(2m ) .

Theorem 5.8 Finding the position of a k1 X k-z subarray in a nl X n2

pseudo-random array is equivalent to solving the discrete logarithm prob
lem in GF(2kl~).

The procedure for doing this may be summarised as follows. We suppose
that we are given the linear recurrence matrices C and D, an initial subarray
written as a vector ~,O and the subarray J1r,t whose position we wish to
determine. Let a denote a root of h(x) = O.

(1) Find a matrix P such that p-lDP is diagonal.

(2) Construct the matrix So,o = (~,o, D~,o, . . . ,D"1"2-1~,o) and calculate
its inverse.

(3) Construct the matrix Sr,t = (J1r ,h DJ1r,t' ... , D"1k2-1J1r,t) and calculate
X = Sr,tSo.J.

(4) Compute the first diagonal element, x say, of the matrix p-lX P.

(5) Find k such that x = 0:". Then r =k (mod nl) and t =k (mod n2)'

6 Example

Let n = 15, nl = 3, n2 = 5, k1 = k2 = 2. ·Then R = 6 and T = 10. We shall
use the array from (MacWilliams and Sloane 1976), with h(x) = x· + x + 1.
This array is

(

0 1
o 0
o 1

~ ~ ~)
001
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The matrices for moving in the horizontal and vertical directions respectively
are as follows.

C-(~- 0
o

and

~ ~ n
D=u~ rn

We first calculate P such that p-1DP is diagonal. The eigenvalues of Dare
0.6,0.12,0.24 = 0.9,0.18 = 0.3, and satisfy the equation x4 +x3 +x2 +X +1 = O.
If we denote 0.6 by {3, then the matrix P is equal to

and from this, we calculate p-1 to be

We now calculate p-lCP, and may check that it is indeed diagonal.

We may check that aT = 0.10, the first eigenvalue of C, is equal to /32 +{33.

Suppose that the initial state of the pseudo-random array is the vector
(0010), and that the state whose position we are trying to find is (1001). Re-

call that, although these correspond to the subarrays (~ ~) and (~ ~)
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respectively, in the original pseudo-random array, in order to apply our
method, we write them as vectors as described in Section 3.

We must now construct the matrices So0 and Sr t.• •

SM=(!
1 1

i)0 1
1 1
1 1

and

S.,= U0 0

1)1 0
0 0
0 1

So we have

X =S"So.~ =(!0 1

n1 0
0 0
1 1

The first column of X P is therefore

( P+l ),83 +,8 + 1
,82 +,8
,83 + 1

which means that the first element :t of p-lX P is equal to

We must therefore find Ie such that ale = 1 + a 2 + a3. At this stage,
any discrete logarithm algorithm may be used. For purposes of illustration,
we shall use the Pohlig-Silver-Hellman method. Of course, in this case the
field is so small that simply listing all the powers of a and looking among
them for 1 + a 2 + a3 would be the way to do it, but obviously, in any real
system, the fields would be larger, and this step would form the bulk of the
computation. The Silver-Pohlig-Hellman algorithm would be suitable for
fields of reasonable size with the property that 2m

- 1 splits into the product
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of small primes. A full description of the algorithm, together with other
algorithms for the discrete logarithm problem, may be found in the excellent
survey paper by Odlyzko (Odlyzko 1985). The idea is that if 2m - 1 =
np?i, then k may be determined modulo each p?i in turn, and the results
combined by the Chinese Remainder Theorem. In this case, the size of the
field is 15 = 3 x 5, so we determine k modulo 3 and 5 respectively. The
method consists of a precomputation phase, where the Pith roots of unity are
calculated and stored. In our example, we must compute the cube roots of
unity and the fifth roots of unity. The cube roots of unity are 1, as = a+a2,

and a l O = 1 + a + a2• The fifth roots of unity are 1, a3 , a6 = a2 + a3,

a9 = a + a3
, and a l 2 = 1 + a + a 2 + a3

•

In the next phase of the algorithm, for each prime Pi, we raise x to the
power (2m

- 1)/Pi to obtain a Pith root of unity, which we may then look up
in the precomputed table. In this case, we first compute y = x3 to obtain
k (mod 5). Now x3 = (1 + a 2 + ( 3

) 3 = a + a3
, so we deduce that k = 3

(mod 5). Similarly, we compute z = x5 = (1 + a 2 + ( 3
)5 = a + a2

, and so
k == 1 (mod 3). We deduce that r = 3 and t = 1, so we have found the
position of the vector (1001) to be (3,1), which may be checked by reference
to the array.
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