
Fli;' HEWLETT
a:~ PACKARD

A Kinematically Stable Hybrid
Position/Force Control Scheme

William D. Fisher, M. Shahid Mujtaba
Measurement and Manufacturing Systems Laboratory
HPL-91-154
October, 1991

hybrid control,
kinematic
stability, robot
manipulator,
Jacobian matrix,
projection matrix,
pseudoinverse

A correction to the position formulation of the hybrid
position/force control scheme is presented. In the
original position formulation, the derivation that uses
the inverse of the Jacobian matrix to map from
Cartesian space to joint space is shown to be
algebraically incorrect. This incorrect derivation causes
the kinematic instability attributed to the hybrid
position/force control scheme. The correct derivation
shows that the transformation between joint space and
Cartesian space involves both the selection matrix and
the Jocobian matrix, making the inverse mapping more
complex since the two matrix transformations can no
longer be treated independently. A sufficient condition
for system stability using only the kinematic
information is defined. With the corrected position
formulation, the hybrid position/force control scheme
demonstrates kinematically stable behavior and is
applied to an example that was previously shown to be
unstable. This correction generalizes the applicability of
the hybrid position/force control scheme by providing
system robustness for all robot manipulators.

This report is a shorter version of "Hybrid Position/Force Control: A Correct Formulation", to be
published in the International Journal ofRobotics Research, in 1992
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1 Introduction and Background

The hybrid position/force control scheme, also referred to as hybrid control, was first proposed over
ten years ago by Craig and Raibert [2]. The advantage of hybrid control was that the position and
force information are analyzed independently to take advantage of well-known control techniques
for each, and are combined only at the final stage when both have been converted to joint torques.
Hence, having one control scheme to handle both position and force information in an integrated
manner allowed the end effector to be moved more intelligently in nondeterministic environments.

We will use a simplified representation of the original hybrid control scheme shown in Figure 1
to review the basic concepts proposed by Craig and Raibert. The x's in the top half of Figure 1

Figure 1: Original Hybrid Control Scheme

are 6 X 1 vectors representing Cartesian position and orientation;' and the f's in the bottom half
are 6 x 1 vectors representing the Cartesian force and moment. In this paper, the term Cartesian
position includes both the position and orientation information. Likewise, the term Cartesian force
includes both force and moment information. The manipulator joint position and torque values are
represented by n X 1 vectors f) and T, respectively, where n is the number of manipulator joints.
All of the subscripts should be self-explanatory from the context in which they are presented. The
boldface upper case letters in the boxes are matrices of the appropriate dimensions to keep the
vector sizes consistent and will be explained later. The other boxes are labeled with generic terms
(e.g., position control law) due to their variability in any given implementation and have no direct
effect on the analysis in this paper.

About five years ago, An and Hollerbach [1] proved that some well-accepted force control methods,
including hybrid control, are unstable. Using the simplest assumption of positive definite constant
diagonal gain matrices K; and Kd in a PD position control law, they showed by example how the
position part of the hybrid control scheme for a two revolute joint manipulator produces an unstable

1 Since this paper is concerned only with the kinematic behavior of the hybrid control scheme, we have intentionally omitted
the Cartesian velocity and acceleration terms, while knowing their inclusion may be necessary for improved system performance.
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system. Zhang [10] also showed that the hybrid control scheme may become unstable in certain
manipulator configurations using revolute joints. He used a linearized state space approach to show
that the term J-1 S J results in an unstable system for certain manipulator configurations. In both
papers, only the position part of the hybrid control scheme was examined to reveal a kinematic
instability, which was claimed to be an inherent characteristic of the hybrid control formulation.
These results were derived from the equations that are represented by the block diagram shown in
Figure 1, that were defined in the architectural framework of the hybrid control scheme given by
Raibert and Craig [7].

We will show that the kinematic instability problem attributed to hybrid control is not funda­
mental, as the above published works conclude, but the result of an incorrect formulation and
implementation of the hybrid control scheme. It is not clear whether the originators of the hybrid
control scheme were aware of the subtleties in their approach or the ramifications it would have
on different manipulator kinematics. We intend to show that the hybrid control scheme as still
a very powerful, stable, and robust approach to robot manipulator control. The objective now is
to understand and explain why a kinematic instability problem arises in the position part of the
hybrid control scheme and to show theoretically why it should never happen. The crux of the
problem has to do with the mapping of Cartesian position errors to joint errors using the inverse
of the manipulator Jacobian matrix. The derivation of this equation will be analyzed in the next
section.

2 The Position Related Equations

For any given task in Cartesian space, the position constraints are separated from the force con­
straints by the selection matrix S shown in Figure 1. S is a 6 X 6 diagonal matrix with each diagonal
element being either a one for position control or zero for no position control for each degree of
freedom in the Cartesian reference frame of interest. The relevant or selected Cartesian position
errors are determined as

Xes = S x, (1)

where the Cartesian error vector x, is the difference between the desired and actual Cartesian
locations of the manipulator. The next step is to map the Cartesian error xes to a corresponding
joint error Bes for controlling the manipulator.

The manipulator Jacobian matrix J is the first order approximation for transforming differential
motions in joint space to differential motions in Cartesian space [6]. The following linearized
relationship

(2)

is used to map small joint errors Be to their corresponding Cartesian errors X e . A unique inverse
mapping exists in Equation 2 when J is a square matrix of maximal rank. Under this condition,
the joint errors are calculated from the Cartesian errors as

(3)

(4)

By the Craig and Raibert approach for the hybrid control scheme, the selected joint errors are
simply

when using the selected Cartesian errors determined in Equation 1. We will refer to Equation 4 as
the original position solution for Bes .

3



Clearly, when J is singular or even near a singularity, a more general and numerically stable method
is required to determine Bes in Equation 4. While this needs to be remembered, it is not the problem
we plan to address in this paper. The kinematic instability problem was shown to occur even when
the manipulator Jacobian matrix is well conditioned [1] [10], meaning it is far away from a singular
region in the numerical sense. Equation 4 is, however, an incorrect solution that causes the hybrid
control scheme to be kinematically unstable. We will show that Equation 4 is not the only solution
for 8es ' and that there is a general position solution from which a kinematically stable formulation
for the hybrid control scheme may be found.

3 A Correction to the Position Formulation

The kinematic instability of hybrid control has been shown to exist only in the position part of
the formulation. In this section, we will show how Equation 4 in Section 2 is actually an incorrect
derivation and that there is a general position solution for Bes• The derivation of Bes in Equation
4 happens to be only one solution out of an infinite number of possible solutions. A fundamental
assumption of maximal rank is made implicitly when the inverse of the manipulator Jacobian
matrix is used in Equation 3 to map the Cartesian errors to their corresponding joint errors. The
only Cartesian error vector of interest in the hybrid control scheme is xes in Equation 1, which is
incorrectly used in Equation 3. The problem with the original position control formulation is that
Equations 1 and 2 were treated as two independent mappings. When Equation 1 is combined with
Equation 2 the relationship between Cartesian space and joint space becomes

S'x; = (5J)Be (5)

This crucial step was omitted in the original position solution of the hybrid control scheme. The
significance of Equation 5 is that 5 reduces the Cartesian space on the left side of the expression,
while (8 J) maps a redundant number of manipulator joints onto this Cartesian subspace on the
right. In essence, there are now more joints than necessary to satisfy the Cartesian position con­
straints of the end effector. By substituting Equation 1 into Equation 5, the correct relationship
between the selected Cartesian errors and the joint errors is

Xes = (5 J) Be (6)

It should be noted that (5 J) is a singular matrix and does not have a unique inverse. The general
position solution for the selected joint errors in Equation 6 is2

(7)

where (5 J)+ is the pseudoinverse [8] of (5 J). The vector z in Equation 7 is an arbitrary n X 1
vector in the manipulator joint space. It should be obvious that the original position solution for Bes
computed in Equation 4 will not always produce the same results as those computed in Equation
7. The original position solution for Bes in Equation 4 is only one solution out of the infinite set
of possible solutions that could be generated using Equation 7. We will refer to Equation 7 as the
generol position solution for Bes •

2The reasons for the change in notation of the joint error ee to ee. are both to signify that these are the selected joint errors
computed from the selected Cartesian error X e• and to be consistent with the notation used in the original position solution
formulation.
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4 A Comparison to the Original Position Solution

To fully appreciate the relationship between the original position solution for Bes given in Equation 4
and the general position solution for Bes in Equation 7, we use the properties of projection matrices
for linear systems [3]. All selected joint errors may be projected into the sum of two orthogonal
vectors using the (8 J) transformation matrix given in Equation 6 as

(8)

where (8J)+(8J) and [I - (8J)+(8J)] are the joint space projection matrices for the system.
Substitute the original position solution for ()es from Equation 4 into Equation 8 to get

(9)

The projected vector (8 J)+ (8 J) J-l Xes in Equation 9 may be simplified by realizing J J-1 = I
and 8 Xes = Xes to obtain

(10)

It is important to note that the first projection term in Equation 10 is the minimum norm solution
part of the general form for ()es in Equation 7. Equation 10 explicitly shows that the traditional
approach of using the inverse of the manipulator Jacobian matrix to solve for Bes in Equation 4 will
inadvertently add an orthogonal vector [I - (8 J)+(8 J) jJ-l Xes to the minimum norm solution.
For the general position solution in Equation 7 to behave the same as the original position solution
in Equation 4, compare the orthogonal projection terms in Equations 10 and 7 to immediately see
that one obvious choice for the arbitrary vector z would be

J - 1
Z = Xes (11)

Our claim is the projection of this unbeknown choice for z in Equation 11 onto the null space of
(8 J) causes the kinematic instability in the original hybrid control scheme. We will justify this
assertion in the next section by giving a sufficient condition for system stability using just the
kinematic information.

5 A Stable Hybrid Control Scheme

It may be argued that the orthogonal vector [1- (8 J)+(8 J)] z in Equation 7 adds flexibility to the
solution for ()es and may be used to optimize ()es based on some desired criterion (e.g., to minimize
joint energy or to keep the joints in the middle of their operating range). It is important to keep
in mind that the general position solution given in Equation 7 was derived without taking into
account the rest of the hybrid control scheme. The orthogonal vector contribution is from the joint
space that is not available to the minimum norm solution, which is the space potentially used by
the force control part of the formulation. To avoid any conflicts with the force part of the hybrid
control scheme, we will not use the orthogonal vector defined in the general position solution for Bes
by assigning the arbitrary vector to be z = 0 and use only the minimum norm solution as follows

(12)

We will show that the minimum norm solution for ()es guarantees that the linear transformation from
Cartesian space to the manipulator joint space will never generate a vector that would be considered
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Figure 2: A Stable Hybrid Control Scheme

in the opposite direction to the joint error vector ()e when 8 = I and never cause an increase in
the joint error vector norm, resulting in always maintaining a kinematically stable system. Figure
2 shows a kinematically stable version for the hybrid control scheme using just the minimum norm
solution for ()es given in Equation 12. The dotted outline shown in Figure 2 is the only difference
from the original block diagram shown in Figure 1. Although the difference may seem small, it
has a tremendous impact on the stability and robustness of hybrid position/force control. Some
explanation is needed to fully appreciate and agree with the results of the block diagram shown
in Figure 2. One observation is the transformation from x, to xes using the selection matrix in
Equation 1 is missing. It can be shown that both (8 J)+ 8 and (8 J)+ satisfy the four Moore­
Penrose properties of a pseudoinverse [4] and since the pseudoinverse of a matrix is unique, means
that (8 J)+ 8 = (8 J)+. The change in the force part is only for maintaining symmetry in the
diagram. The two blocks shown in Figure 1 representing the matrix transformations for mapping
Cartesian forces to joint torques have been combined into the one block shown in Figure 2 using
standard matrix operations [5] [8].

Stability of a system is determined by the interaction among the kinematics, dynamics, and the
control law. The notion of a system being kinematically unstable in hybrid control is not very
meaningful. The real issue is how the selection matrix influences system stability. Naturally, the
system is assumed stable when in pure position control (i.e., S =I) so that the Be's corresponding
to the xe's under these normal conditions do not produce any system instabilities. The purpose
of the selection matrix is not to stabilize an inherently unstable system or to cause an inherently
stable system to become unstable. The issue then becomes one of "comparing" the selected joint
position errors ()es for arbitrary 8 to the stable joint errors ()e that would have been calculated
under normal conditions with 8 = I. We do this by defining the following sufficient condition for
system stability using inner products of the joint error vectors as
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Sufficient Condition for System Stability:

(13)

It is important to note that both ()e and ()es are computed using the same Cartesian position error
X e , making any solution for ()es always related to ()e' The lower bound in Equation 13 does not
allow the projection of ()es onto ()e be in the opposite direction of Be, thereby eliminating any
potentially unstable conditions of introducing positive feedback into the system. The upper bound
in Equation 13 restricts the projection of ()es onto ()e to be no larger than ()e, so that the end effector
will not overshoot its destinations and cause uncontrollable system oscillations. The system may
still be stable when the value of ()eT ()es is outside the bounds given in Equation 13; determining
how far outside the bounds before the system becomes unstable is not straightforward. We will
show in the next section a situation where the lower bound in Equation 13 may become negative
and still maintain a stable system, reinforcing the fact that Equation 13 is only a sufficient and not
a necessary condition for stability.

To determine the relationship between ()e and ()es for the position control formulation shown in
Figure 2, we combine Equation 12 with Equation 6 to get

(14)

Since (S J)+(S J) is a projection matrix [3], it satisfies the definition of a positive semidefinite
matrix [8], meaning the following quadratic expression

(15)

(16)

is true for all vectors ()e' When ()es in Equation 14 is substituted into Equation 13, the inner
product is exactly Equation 15 and hence, the minimum norm solution for ()es will always satisfy
the lower bound in Equation 13. Another property of a projection matrix is that the norm of a
projected vector is bounded by the norm of the original vector [3], meaning the norm of (Jes given
in Equation 14 is bounded by

and so, the upper bound in Equation 13 is also satisfied for all ()e when using the minimum norm
solution for ()es' This proves that the minimum norm solution for ()es in Equation 12 will always
satisfy the sufficient condition for system stability as defined in Equation 13.

6 A Test Case: The An and Hollerbach Example

In the original hybrid control formulation, the relationship between (Je and (Jes is easily determined
by combining Equations 4, 1, and 2 to get

(17)

An and Hollerbach [1] showed by example that the position part of the system could become
unstable and that the cause was somehow related to the interaction between the kinematic J-l S J
transformation matrix and the system inertia matrix. They used a linear state space model of
the position part of the system to test for the instability by doing a root locus plot of varying
manipulator configurations. We argue that it is the J-1 S J term that causes the system poles to
migrate into the unstable right half plane for various end effector motions.
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(~8)

By using the same example, we will show that the J-l S J term is clearly responsible for causing
an unstable system when applying the sufficient condition test in Equation 13. In Case 2 of their
paper, S = diag[O,l] and the Jacobian matrix for the two revolute joint manipulator was given as

J = [ -It 81 - 12 8 12 -12 8 12 ]

It Cl +12 C12 12 C12

where 8i = sin(Oi), Ci = COS(Oi), 812 = sin(OI + 82 ) , and C12 = COS(OI + 82 ) . The link lengths
were It = 0.462 m and 12 = 0.4445 m. The inner product of Oe with Oell using Equation 17 is
OeT (J-l S J) Oe. To test this inner product against the bounds set forth by the sufficient condition
in Equation 13, we will consider the situation where 01 = 0° and 82 varies from -180° to 180° with
8e = [0, ±1 JT. A plot of the results is shown in Figure 3. For comparison, a plot of the inner

8, = O·

8. = [o,±lf

/'
/.

1

8;(r' SJ) 8. 8;(SJt(SJ) 8.

_-----L __ //
----...

<,
~

-180·

Figure 3: The Sufficient Stability Test for both Position Formulations

product using the minimum norm solution for 8ell is also shown in Figure 3. It should be clear
from Figure 3 that the original position solution for 8ell violates the sufficiency condition for system
stability when 118211 ::; 90°. The point marked with an x in Figure 3 was identified by An and
Hollerbach as the value of 82 where the system transitions from the stable region to the unstable
region. Even though the inner product is negative for the values of 82 from x to 90°, the system is
still stable. The sufficient condition in Equation 13 does not imply the system will be unstable for
values outside the stated bounds; it only indicates that an unstable situation could occur.

We have included for reference the equations from Section 2.1 of the An and Hollerbach paper
regarding the stability analysis of hybrid control. It was stated that the closed-loop system described
as

Me = [ _M-l:
p

J-1 S J _M-l ~v J-l S J ] 6x (19)

must have negative real parts for the eigenvalues of the matrix to guarantee local stability at the
equilibrium points. The inertia matrix was

(20)
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(21)

with
mn = It +h +m2lt l2c2 + Hml1~ +m21n+ m21~

m12 =m21 =12+ ~m21~ + ~m2lt12c2

m22 = h + ~m21~

The inertia values used were II = 8.095 kg . m2 and 12 = 0.253 kg· m 2 • The mass values were
ml = 120.1 kg and m2 = 2.104 kg. To maintain a stable system under normal conditions the
gain matrices were chosen as K p = diag[2500,400] and K, = diag[300, 30]. A root locus plot of
Equation 19 was shown with 01 = 0° and O2 varying from 90° to 70° with the transition of the
system poles into the unstable right half plane occurring at approximately O2 = 79°. We used all of
the information presented in this section to program in Mathematica™ [9] the above equations and
definitions to verify their instability result. Our implementation produced a similar root locus plot
as in Figure 4 of their paper. We expanded the limits of O2 to vary from -180° to 180° for a more
complete plot and show the results in Figure 4 with all of the singularity points removed. The root

-180· ~ 82 ~ -90·

90· ~ 82 ~ 180·

<== i==> _90· ~ 82 ~ 90·

I 1m

I
I 10

f:\
x I X
X I X

Re
-eo -70 -eo -60 .-.0 -30 -20 ,-10 10 20 30 40 60 10 70 10

X I X

X I X

V-10
I
I

Figure 4: Unstable Root Locus Plot using J-1 S J

locus plot shown in Figure 4 confirms our assertion in Figure 3 that the original position formulation
for Oes can cause the system to become unstable when the sufficient condition in Equation 13 is
negative.

For comparative purposes, we repeated Case 2 replacing the J-l 8 J expression in Equation 19 with
the solution of (8 J)+(8 J) from Equation 14. The resulting root locus plot is shown in Figure 5
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Figure 5: Stable Root Locus Plot using (S J)+ (S J)

with (Jl = 0° and (J2 again varying from -180° to 180°. Clearly, there are no roots in the unstable
right half plane for any value of (J2 when using the minimum norm solution for (Jes.

7 Summary and Conclusion

We have presented a correction to the hybrid position/force control scheme for robot manipulators
that will enable researchers in the field to exploit fully the power and capability of this control
technique. Our efforts and results focused on the basic kinematic equations of the hybrid con­
trol scheme to show an error in the original position formulation. The inverse of the manipulator
Jacobian matrix was shown to be an incorrect and inappropriate mapping from Cartesian space
to joint space. We showed how the original position solution for the joints was only one solution
out of an infinite set of possible solutions and named this formulation for the joints the general
position solution. From the general position solution, only the minimum norm solution was cho­
sen for the control scheme, since it was fundamental to all possible joint position solutions and
avoided any possible conflicts with the force control part of the formulation. We also defined a
sufficient condition for system stability that uses only the kinematic information. With the mini­
mum norm position solution, the hybrid position/force control scheme demonstrates kinematically
stable behavior and was applied to an example that was previously shown in the literature to be
unstable. This correction generalizes the applicability of the hybrid position/force control scheme
by providing system stability and robustness for all robot manipulators.
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