ﬂ, HEWLETT

PACKARD

Connecting Software Components
with Declarative Glue

Brian W. Beach

Software and Systems Laboratory

HPL-91-152
October, 1991

database,
distributed
systems
architecture,
module
interconnection
language,
software bus,
software glue,
software reuse

Internal Accession Date Only

We describe a software bus, called Bart, that addresses
the problem of maintaining flexibility in software
systems by supporting component independence.
Software components can be built independently of the
context in which they are used, allowing them to be
reused in many different situations.

The connections between software components are
described using a novel Software Glue language that
declaratively defines the connections between the data
models in heterogeneous components. This glue
language is compiled into an efficient procedural form
and, to reduce communication overhead, executed on the
machine where the data resides.

Bart is a software bus that handles message transport,
data sharing, and connections using Software Glue. It
operates in a distributed environment and can connect
components written in different programming
languages. We illustrate the use of Bart in supporting a
hypertext system.

Submitted to the 14th International Conference on Software Engineering, May, 1992
© Copyright Hewlett-Packard Company 1991

1 Introduction

Software systems, as they become larger and/or older, tend to become less flexible; the
components that comprise a system develop more interconnections and interdependencies. This is
a problem, especially if there is a need to reuse the components as part of a new system. A lack of
component independence is also a problem for the builders of reuse libraries. It is difficult to build
a software component independent of the context in which it is used. Bart!, the software bus
presented in this paper, is designed to support component independence, which will in turn allow
software systems to be more flexible and components more reusable.

Bart addresses both data and control integration of components in a distributed environment. By
doing so, it hides much of the inherent complexity of a distributed application from the
programmer. Components can send messages to one another, share data, and, through the use of
a glue language, share data represented in different data models. By remaining independent of any
specific %rogramming language, Bart allows components written in different languages to be easily
connected.

Connections between components are written in a declarative (non-procedural) glue language.
Because the connections are specified outside of the components, the components remain largely
independent of one another. To reduce the overhead of using a software bus, the glue language is
compiled into efficient procedural code that is run inside the address space of each component.

Data is shared between components using a publish/subscribe metaphor. A component can make
some data available (publish it), and any interested parties can use it (subscribe to it), without the
knowledge of the publisher. Because the publisher does not need to know how its data is used, it
can remain independent of context.

Databases provide a means for cooperating components to work with common data. The database
schema is the middleman that shields one component from another and allows one to be changed
without affecting others. For components that require a schema different from the one used in the
database, views allow data independence by showing a specially tailored view to each component.
Data independence means that the schema of the database can be changed, and as long as the same
views are provided to the components running on top of it, the components can continue to operate
unchanged.

Using a database to mediate between components is too inefficient for many applications,
especially those that are composed of many small components that interact a great deal. The idea of
data independence can still be used, though, to insulate components from changes in other
components. Bart uses its glue language to provide data independence, defining the relationships
between components, and bridging the gap when components have different data models. The
glue language is compiled for efficient execution.

The next section gives an overview of Bart as a software bus, as a precurser to describing each of
its three layers. The message transport layer is described briefly, followed by a discussion of the
mapping between objects in software components and relations on the bus. The most important
section is the one on Software Glue, which is the key to Bart, and gives four examples of different
ways to use Software Glue. We close with an overview of related work and a summary of Bart's
current status and future directions.

1Residents of the San Francisco bay area will recognize BART as the acronym for Bay Area Rapid Transit.

Glue: Declarative Connections Between Objects

Relations: Object Management ['T‘j

Message Transport

Figure 1: The three layers of the software bus.

2 The Software Bus

A software bus is a mechanism for connecting software components [Purt91a, Purt91b]. Software
buses have been used successfully to build large applications. Bart is novel in allowing
components to share object-oriented data directly, and in providing Software Glue to connect
components with different data models. The bus is composed of three separate layers, each
providing a higher level of component integration (see Figure 1).

The message transport layer delivers messages between components and allows for control
integration between components, with multi-cast messaging in both synchronous and
asynchronous styles.

The relational layer allows sharing of data between components. It translates between an object-
oriented view inside components and a relational view on the bus. Objects inside a component
correspond to tuples in a relation on the bus. A class of objects in one component can be
connected to a relation on the bus, which can in turn be connected to a class of objects in another
component. This allows the establishment of a one-to-one correspondence between objects in one
component and objects in another component. This is a useful facility, but is restricted to
connecting object classes with the same set of attributes and the same set of objects.

The glue layer provides the real power in Bart, permitting components with different data models
to be connected. While the relational layer provides a one-to-one correspondence between objects,
allowing pairs of objects to be connected, the glue layer allows more complex relationships, with
any number of objects connected together. Also, an object in one component can be connected to
several objects in another component. The data required for each object in a component is
specified declaratively, and can come from other objects in other components, via direct or indirect
links. This means that the data required by a component can be delivered directly to where it is
needed, without complex access procedures.

Bart assumes that components have an event-based architecture, with a top-level loop waiting (or
polling) for inputs from a number of sources. This is the architecture of applications running
under X windows. When input arrives, it is dispatched to the appropriate handler routine in the
application. Bart takes care of fielding input from the bus and routing it to the correct place.

3 Message Transport

The message transport layer uses a multi-cast approach, where each component indicates which
messages it is interested in; when a message is sent it is delivered to all interested parties. This
approach was pioneered in Field [Reiss90], and is used today in HP's Broadcast Message Server
[Cagan90] (a key component of HP Softbench). A key feature of this approach is the fact that
messages are sent anonymously; the sender of a message does not name the recipient. We have
extended the model to include both synchronous and asynchronous messaging. The sender of a
message can choose whether or not to wait for an answer.

relation node is relation link is

key id: integer, key id: integer,

string name, from: node,

string text; from_oftset: integer,
to: node,
to_offset: integer,
string label;

Figure 2: Node and link relations.

Callbacks are used to service messages. When a component registers interest in a message, it
provides a callback function that is invoked whenever the message is received. For synchronous
messages, the answer returned by the callback function is sent back to the originator of the
message. Messages can have parameters that have one of a number of primitive types, or can be
object references (see section 5 below).

4 Relations

A relation is a table. Each row of the table is called a tuple and each column is called a column.
Relations form the structure used to communicate data between components connected to the
software bus. The shape and properties of a relation are defined by a schema. The schema defines
how many columns a relation has, which columns are keys, and which columns are required to
have values.

The key columns of a relation are guaranteed to be unique for each tuple in a relation and are used
to identify it and its corresponding object. The column types can be primitive types (such as
integer or string), or tuple references. A tuple reference identifies a tuple in some relation and is
stored as the key for that tuple.

Relations are the fundamental mechanism for communicating data between components connected
to the software bus. Each relation is exported by one component and imported by zero, one, or
many others. The component exporting the relation is responsible for letting the bus know when
tuples are added, updated, and removed. It is then the bus's job to forward the information to all
interested parties.

In some cases, as will be seen in later sections, it is useful to split the ownership of a relation
across several components. Bart provides a very simple mechanism for distributing a relation; a
special value type that identifies components, called component, is used as one of the keys for a
relation. This means that the component identified by the key is the one that owns a tuple. Since
we do not allow the modification of keys, tuples are not allowed to move from one components to
another.

We have used two test cases to drive the work on Bart. The first is the Physician's Workstation
(PWS) [Tang91], an information management system for physicians. The PWS was designed
from the beginning as a distributed application, so porting it to Bart did not involve any major
changes to the design. The second test case is Kiosk [CFG91], a hypertext system used to support
searching software libraries. Kiosk was originally developed as a single-process, single-user
system, and changing it into a distributed application will involve some major design changes.

Throughout this paper we will be using Kiosk as the driving example to illustrate the use of Bart.
In Kiosk, a hypertext document is a set of nodes connected by links. Each node contains text, and
each link connects some point in the text of one node to a point in the text of another node. Each

node node list node tree
manager presenter presenter browser

Figure 3: Hypertext components.

Application
Code

Bus Interface Library

Figure 4: Bus Interface

endpoint of a link is a reference to a node and an offset in the text of that node. These structures
have a natural representation as relations, shown in figure 2. Note than the from and to field of
links are references to nodes.

The hypertext system, Kiosk, is divided into four components, as shown in Figure 3. The node
manager maintains the repository of links and nodes. The other three components are presenters;
they present information to the user and allow it to be edited. The node manager exports the node
and link relations for use by the presenters.

The first presenter that we will look at is the node list presenter. It simply shows a list of all nodes
to the user, for which it needs the contents of the node relation. When the node manager and the
node list presenter are connected to the bus, the bus gives the node list presenter the contents of the
node relation, and keeps the presenter up to date as the relation changes. The job of the presenter,
then, is to present the information it is given.

4.1 Object Management

The messages regarding changes to relations, and the relations themselves are invisible to the
application programmer, who sees only objects inside the component that s/he constructs. A bus
interface layer is provided to insulate components from the details of interacting with the bus (see
Figure 4).

Though relations are an excellent way to model the data shared by a number of components, they
are not the way most components are built internally. Objects are a more convenient way to
represent data inside a component, so some way is needed to connect relations and views to
objects. Barsalou and Wiederhold have explored the connection between objects in a running
program and tuples in a relational database [BW86]. We use a similar approach on both ends of a
connection between two components. Objects in one component are mapped into tuples on the bus
and then back into objects in another component.

classnode{ ... };

node::node() {
// initialize the object
port_register_object(node_port, this, my_id, my_name, my_text);

void node::set_text(...) {
// update the text in the node
port_register_update(this, "TEXT", my_text);
}.

node::~node() {
port_unregister_object(this);
// cleanup

k
Figure 5: Publishing data

To do this, the bus interface layer establishes a one-to-one relationship between the tuples in a
relation and objects inside a component. There is not room to go into the details here, but a brief
outline is given below.

4.2 Local Objects

Components that export information to the outside world have what are called local objects. These
objects are owned by the component and exported for use by other components.

Components with local objects are responsible for telling the bus when they create new objects,
modify objects, or destroy objects so that the bus can transform them into relational form and
transmit them to other components. They are also responsible for creating, updating, and
destroying objects when requested to do so by the bus.

In our hypertext example, the node manager component is responsible for maintaining the entire
collection of nodes and links, which are stored internally as C*+ objects. The bus interface library
maintains the mapping between the Ct+ objects and the tuples in the relation on the bus.

A data port takes care of the connection between one object class and one relation on the bus. The
connection to the bus for nodes is illustrated in the code shown in Figure 5. When a new object is
created, it is registered with the data port, which sends out an announcement on the bus that a tuple
has been added. When a node is modified, the change is registered with the data port. And, when
a node is destroyed, the port is informed so that it can broadcast an announcement.

The external appearance of an object as a tuple in a relation need not match its internal data
representation. While some of the values in the tuple may be represented by the object directly as
instance variables, others may be computed from instance variables or attributes of related objects.
All that is required of an object is that it notify the bus of its existence, and keep the bus apprised of
any changes to its externally visible attributes, however they might be obtained.

main()

m...
node_port = create_remote_data_port("NODE?", ..., create_shadow_node, ...);

}

create_shadow_node(int id, char* name, char* text)

/// build the shadow object.
}

Figure 6: Subscribing to data

4.3 Remote Objects

Components that import information have remote objects. These objects are managed by the bus
interface, and are shadows of objects exported by some other component.

The node list presenter from our hypertext example needs to import information about nodes. To
do this it creates a data port connected to the node port in the node manager, and provides callback
functions that manipulate shadow objects. When nodes are created in the node manager, the bus
interface will invoke the callback function to create shadow nodes in the node list presenter. Figure
6 shows an outline of the code.

The bus maintains the relationships between the nodes, tuples, and shadow nodes so that when a
node is updated, the corresponding shadow object is notified.

5 Glue

Software Glue is the key to Bart's ability to maintain component independence. The most sensible
way to organize data may be different in each component. It is the job of the Software Glue to
bridge the gap between these different data models and allow the components to communicate
effectively with each other. The relational layer of the bus can form a simple connection between
two object classes, represented on the bus by two relations, that have the same schema. The glue
layer provides much more power by supporting much more complex connections, involving any
number of objects.

Our glue language is a logical language similar to Prolog. It expresses derived relations in terms of
base relations. For example, if there are two relations, a and b, exported by two of the
components connected to the bus, a third relation € can be defined to include those things that are
in both a and b using the following glue statement:

¢(X) <- a(X) and b(X);

Glue can be used to do many different things. The following sections describe some of its more
common uses: renaming relations, filtering data, summarizing data and collecting data.

5.1 Renaming
In its simplest form, a glue statement can rename a relation, as in:
foo(X) <- bar(X);

Renaming is useful when two components agree on the structure of data but not on what to call it.

relation np-interest is

component pres key,

integer node-id;
relation np-text is

component pres key,

string text;

relation np-inlink is
component pres key,

integer link-id key,

string label;
relation np-outlink is

component pres key,

integer link-id key,

string label;

Figure 7: Schema for the node presenter.

np-text(Presenter, Text) <-
np-interest(Presenter, Node) and node(Node, ?, Text);

np-outlink(Presenter, Link, Label) <-
np-interest(Presenter, Node) and link(Link, Node, ?, ?, Label);

np-inlink(Presenter, Link, Label) <-
np-interest(Presenter, Node) and link(Link, ?, Node, ?, Label);

Figure 8: Glue for the node presenter.

5.2 Filtering

In Kiosk, the node presenter puts a window on the screen showing the text contained in one node
and a list of the links coming into and going out of the node. It exports one piece of data, the
identifier of the node that it is interested in, and imports the data concerning that node. The schema
that the node presenter sees is shown in figure 7. Note that the presenter interested in the
information (pres) is explicitly named in the schema. This means that there can be several
different node presenters active at one time, and that each can have its own view of the data.

The np-interest relation is exported by the node presenter and names the node it wants to see.
Software Glue is used to define the contents of the other three relations, based on np-interest and
on the node and link relations exported by the node manager. The glue acts as a filter to extract
only the node and link information required by the node presenter and ignore the rest; it is shown
in Figure 8.

The first glue statement takes the identifier of the node to be viewed from the node presenter,
which it exports via the np-interest relation, and uses it to look up the text for that node in the
node relation. The resulting text is then placed in the np-text relation to be imported by the node
presenter. The second and third statements select the links entering and leaving the node and
extract their labels.

relation tb-interest is
component pres key,
node node-id key;

relation tb-node is
component pres key,

node node-id key,
string name;

relation tb-link is
component pres key,
node from required,
node to required;

tb-node(Presenter, NodelD, Name) <-
tb-interest(Presenter, NodelD) and node(NodelD, Name, ?);

tb-link({ Presenter, From, To) <-
unique(tb-interest(Presenter, From) and
link(?, From, To, ?,?) and
tb-interest(Presenter, To));

Figure 9: Schema and glue for tree browser

5.3 Summarizing

The last presenter we will look at is the tree browser, which shows a graphical representation of a
collection of nodes and their interrelationships. This presentation is a summarization of the
connections between the nodes shown. Even if there is more than one link between a pair of nodes
shown on the screen, a single line is drawn between them.

As with the node presenter, the tree browser exports a relation containing the set of nodes it is
interested in, in this case using the tb-interest relation. While the node presenter was interested in
only one, the tree browser is interested in an arbitrary number. The tree browser needs to show
node names and their interconnections, so it imports this information via the tb-node and tb-link
relations. The schema and glue for the tree browser are shown in Figure 9.

The first glue statement selects the nodes of interest and finds their names. The second glue
statement is the interesting one. It finds all of the links between the nodes of interest and then
summarizes the results, finding all of the unique combinations for (Presenter,From,To).
Because the glue expresses this summarization, the bus manager can assign this task to be done in
the node manager process, greatly reducing the amount of information that must be transmitted
across the bus. This is an example where the performance benefits of a customization to the node
manager can be had without making any changes to it.

5.4 Collecting

A use of glue which is not illustrated by the hypertext example, because all of the information
about nodes and links is stored in the same place, is collecting information stored in various places.
As a hypothetical example, suppose that the node manager were split into two pieces, one of which
stores the names of the nodes, while the other stores the text for each node. The first would export
a relation node-name and the second would export a relation node-text. The information in
these two relations can be collected together into the one node relation using this glue statement:

node(ID, Name, Text) <- node-name(ID, Name) and node-text(ID, Text).

This is another example of component independence in action. If we happen to have the presenters
discussed above that expect nodes to have both a name and text, we can combine these two
separate sources of information and use the presenters as-is.

5.5 Updating

The views described by the Software Glue can be modified as well as inspected. The techniques
used for updating views in relational databases [Furt84,Kell85] have been used in Bart to allow
updates to derived relations. In the Kiosk example, the various presenters that show information
to the user can let the user modify the information, and then store the changes as updates to their
views. Bart takes care of translating these updates into updates on the underlying relations stored
by the node manager.

6 Related Work

Most proposals and existing systems for connecting components in a distributed environment are
based on control integration rather than data integration. Components communicate by sending
messages, with interfaces defined to say which messages and parameter types are allowed. In
distributed systems, these interfaces are explicitly stated in an interface description language
[OMG91a, OMG91b].

Some systems have taken a step toward component independence by introducing a mediator
between the two components being connected [Sull90]. Contracts have been proposed for single-
address-space systems [Helm90]. ANSA [ANSA91] uses a trader to provide anonymity between
components. A request is sent to the trader, who knows which components can do what; the
trader then forwards the request to the component that knows how to handle it. The “agent-based
software engineering” [Sho90, Gen90] paradigm places an agent between the components to
mediate between them.

By contrast, Bart is unique in its ability to support data integration. Components need not send
messages to request needed information; Software Glue is used to describe what information is
needed, and provide it when needed.

Database systems have used rules for a variety of purposes [Stone90], including constraint
maintenance, views, security, and referential integrity. The rules in Bart's Software Glue are used
to define views. Some database systems have used object-oriented interface specifications to
connect heterogeneous databases [Bert89].

Cox has proposed [Cox91] a hierarchy of interconnection mechanisms for software, ranging from
variables and assignment statements up through processes and streams. We are proposing a more
declarative mechanism for interconnection, where the components interact through shared data
rather than streams of values. This facilitates reuse by leaving the interaction style open until two
components are connected together, rather than building it into the components.

APS5 [Cohen85] is the language used in the FSD system to glue things together. As with our glue
language, it expresses the relationships in data in a declarative way. In APS, though, the
relationships are represented as constraints, and the programmer must write down explicit
instructions on what to do when the constraints are violated.

The notion of a policy, proposed by Garlan [Garl90], is a form of Software Glue for control
integration. The procedural interfaces to components are defined, and then the glue is used to
connect them. This is similar to our approach for data integration.

7 Status and Future Work

Bart is written in C** and can connect components written in C, C++, and Xlisp. It is currently
being used to support a Physician's Workstation [Tang91], and work has begun in changing
Kiosk from a single-process application to a multi-process distributed application running on Bart.
We will be closely examining the performance characteristics of Bart, and how it supports these
two applications2.

The original version of the Physician's Workstation (PWS) was built on top of HP's Broadcast
Message Server; we ported it to run on Bart. Initial indications are that the performance of the two
platforms is comparable. Once the work on Kiosk is well under way we will start investigating one
or two other systems, looking for different ways to stress Software Glue.

We have encountered some rather mundane problems in connecting different applications to the
software bus. One of the more persistent is the problem of “who is in charge”. The X11 Motif
toolkit insists that applications use its top-level loop (XtMainLoop), and InterViews, used by
Kiosk, has a similar requirement. This means that Bart must be adaptable enough to exist with
many different top-level loops. The fact that Bart is multi-lingual exacerbates the problem; many
Lisp implementations also insist on using their own top-level loop.

These problems with top-level loops are what might be called micro-engineering issues: how to
design components so that they fit into the bus architecture. These contrast with the macro-
engineering issues of building a complete application from large-scale components. We plan to
study exactly how much change is required to take an existing software component and package it
so that it works with Bart.

The current version of Software Glue does not support negation or recursion. We plan to correct
this deficiency, although it will still be necessary to have stratification requirements on the rules,
disallowing recursion through negation.

As Bart evolves we want to incorporate it into a complete module interconnection language (MIL)
[Prie86]. Bart provides data independence between components, but does not have any high-level
mechanism for describing control structure. CDL [OMG91a] is an interface specification language

that provides enough information to automatically generate C*+ stubs for accessing remote

facilities. Bart could benefit from this approach, allowing C*++ classes to be connected directly to
the bus without programmer intervention.

The relational approach may make it simpler to connect relational databases into applications. The
fact that all information is transmitted in a relational form means that a client would not need to
know whether the information is being provided by a database or by another component. Thus,
the database can be just another component; it needs no special connection mechanism.

Our approach so far has been inspired by a relational view of the world. Object-oriented database
technology may prove to be even better at providing data independence between object-oriented
software components [Lor84].

One of the initial goals of Bart was to support a variety of different implementation strategies for
implementing Software Glue. So far, only one has been built, based on sending messages across
socket connections where each component is connected via a socket to the bus manager. In the
future it would be nice to extend Bart to include more communication media, including direct

2 The results of this analysis will be available in the final version of this paper.

10

socket connections between components that communicate a lot, and shared memory for
components executing on the same machine.

8 Summary

We have described the software bus Bart, and the three layers composing it: message transport,
relations, and Software Glue. Bart allows components in a distributed environment, written in
different languages, to be easily connected using high-level Software Glue that bridges the gap
between different data models. The two key ideas are: (1) the mapping between an object-oriented
view inside software components and a relational view on the bus, and (2) the use of a high-level
declarative glue language to define the sometimes complex connections between components. Bart
is being tested on two medium-scale software projects at HP labs.

Even the early versions of Bart, with very simple Software Glue, have proven to be very effective
at connecting software components. We expect that the full implementation will be useful in a
wide range of applications.

Acknowledgements

Martin Griss has been my mentor for many years, providing innumerable insights. Many thanks
to Mark McAuliffe, for putting up with early implementations and for pointing out better ways to
use the bus. Kevin Wentzel, Jon Gustafson, and Mark McAuliffe have participated in many
lengthy discussions mapping out the territory of software buses. Finally, Mike Creech and Mark
Gisi shared their knowledge of Kiosk and provided many useful ideas.

References

[ANSA91] “ANSAware 3.0 Implementation Manual.” Document RM.097.00, Architecture
Projects Management Limited, Cambridge, 1991.

[Bert89] Bertino, Negri, Relagatti and Sbatella. “Integration of Heterogeneous Database
Applications Through and Object-Oriented Interface.” Information Systems, 14(5),
1989, pp. 407-420.

[BW86] Barsalou, T. and G. Wiederhold. “Complex Objects for Relational Databases.”
Computer Aided Design, 22(8) October 1990.

[Cagan90] Cagan, M. “The HP Softbench Environment: An Architecture for a New Generation
of Software Tools.” Hewlett-Packard Journal, June 1990, pp 36-47.

[CFG91] Creech, M. and D. Freeze and M. Griss. “Using Hypertext In Selecting Reusable
Software Components.” Accepted for publication in the Third ACM Conference on
Hypertext.

[Cohen85] Cohen, D. “APS Manual”. ISI technical report, 1985.
[Cox91] Cox, B. “TaskMaster.” Stepstone technical report, 1991.

[Furt84] Furtado, A. “Updating Relational Views.” In Query Processing in Database
Systems, Springer-Verlag, 1984.

[Garl90] Garlan, D. and E. Ilias. “Low-cost, Adaptable Tool Integration Policies for
Integrated Environments.” In Proceedings of ACM SIGSOFT90: Fourth
Symposium on Software Development Environments, pp. 1-10, December 1990.

11

[Gen91]

[Helm90]

[Kell85]

[Lor84]

[OMG91a]

[OMG91b]

[Prie86]

[Purt91a]

[Purt91b]

[Reiss90]

[Sho90]

[Stone90]

[SullS0]

[Tang91]

Genesereth, M. Knowledge Interchange Format Version 2.1 Reference Manual.
Stanford University Computer Science Department report Logic-90-4.

Helm, R. and I. Holland and D. Gangopadhyay. “Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems”, SIGPLAN Notices 25(10), 1990, pp.
169-180 (OOPSLA/ECOOP '90).

Keller, A. Updating Relational Databases Through Views. Ph. D. thesis, Stanford
University, 1985.

Lorie, R. “Supporting Complex Objects in a Relational System for Engineering
Databases.” In Query Processing in Database System, Springer-Verlag, 1984, pp.
145-155.

Hewlett—Packard Company and Sun Microsystems, Inc. “Class Declaration
Language Specification.” OMG report 91.1.4.9.

Hewlett—Packard Company and Sun Microsystems, Inc. “Distributed Object
Management Facility Core Specification.” OMG report 91.1.4.10.

”

Prieto-Diaz, R. “Module Interconnection Languages.
Software, 6(4) 1986, pp. 307-334.

Journal of Systems and

Purtilo, J. “Software Bus Organization: Reference Model and Comparison of
Existing Systems.” Draft, April 1991.

Purtilo, J. “The Polylith Software Bus.” To appear in acm Transactions on
Programming Languages and Systems.

Reiss, S. “Connecting Tools Using Message Passing in the Field Environment.”
IEEE Software 7(4), July 1990, pp. 57-66.

Shoham, Y. “Agent-Oriented Programming.” Stanford University Computer
Science Department report STAN-CS-90-1335.

Stonebraker, M. “The POSTGRES Rule Manager.” IEEE Transactions on
Knowledge and Data Engineering, 2(1) March 1990, pp. 125-142.

Sullivan, K. and D. Notkin. “Reconciling Environment Integration and Component
Independence.” In Proceedings of ACM SIGSOFT90: Fourth Symposium on
Software Development Environments, pp. 22-33, December 1990.

Tang, P., J. Annevelink, D. Fafchamps, W. Stanton, and C. Young. “Physician
Workstations: Integrated Information Management for Clinicians.” Accepted for the
Symposium on Computer Applications in Medical Care, 1991.

12

