Causal Security

Miranda Mowbray
Hewlett Packard Pisa Science Centre,
Corso Italia 115, Pisa, Italy
mjfm@hplb.hpl.hp.com

Abstract

This paper gives a new definition of Security, which
takes causal information into account. The new def-
inition can be used to determine the securily of non-
deterministic concurrent systems for which high-level
nformation may be either input inio the system dur-
ing its operation, or inherent in the original state of
the system. It is possible to have systems which are
secure under this definition which write to audit be-
fore performing each transition. The definition sat-
isfies several useful composition properties, including
one which gives it some protection from Trojan horse
attacks. ’

1 Introduction

In this paper I will give a new definition of Security,
which uses causal information. The main idea is very
simple; if there is a link between the states of two
objects in the system, then this indicates a breach of
security in the system only if the fact that one object
has the state that it has causes the second object to
have a related state.

This observation was made explicitly by John
McLean in [8], who used it to simplify a definition
of security using just the assumption that the partial
order of causality between substates is generated by
the causal relations between substates one time tick
apart, and that a substate cannot be influenced by
anything in the future. This assumption leads to a
good approximation of the real causal dependencies in
many cases, but causes problems for nondeterministic
systems in which there is a certain type of high-level
audit. Suppose that, before any transaction is per-
formed, a note of the transaction is first written to
a high-level audit file, (so that if the system crashes
during the transaction its entire state can be recov-
ered; this is called the audit-first requirement in [8])
and that while this audit happens all the low-level ob-
jects in the system remain unchanged. Suppose also
that there is a reachable state from which two trans-
actions are possible which result in different low-level
states. Then according to McLean’s definition FM the
system is insecure. This is because if ¢ 1s a computa-
tion which reaches the state, does the audit for one
of the two transactions, and then does the audited
transaction, the final values of the low-level objects
after ¢ can be deduced with probability 1 from the
history of the high and low-level objects up to and
including the audit step, but cannot be deduced with

Internal Accession Date Only

probability 1 from the history of the low-level objects
up to and including the audit step. However, it is
intuitively clear that the properties of the system de-
scribed should not in themselves constitute a security
violation. Although the low level state after ¢ can be
determined by the state of the high level audit file af-
ter the audit step, the state of the audit file is not a
cause of the low level state after ¢: instead, both are
effects of the decision taken before the audit step.

In John McLean’s model the system description
does not include any causal information. In contrast,
in this paper I assume that all the causal dependen-
cies between the states of different objects before and
after a transition of the system are observable in the
system view. This extra information is enough for a
definition of Security under which systems of the type
described above are not automatically insecure.

One of the most common definitions of Informa-
tion Flow Security is that of Nondeducibility [9]. A
system is Nondeducible gunder the instantiation de-
scribed by Sutherland) if there there are no compu-
tations of the system in which information flows from
high-level inputs to the low-level objects of the sys-
tem. Nondeducibility is simple and intuitively appeal-
ing but suffers from some drawbacks. One of these
is that only information which comes from high-level
inputs is protected. If a system contains high-level
information which is inherent in the initial state of
the system, rather than being input into the system
during its operation, then Sutherland’s instantiation
of Nondeducibility cannot protect it. Moreover, any
system can be made Nondeducible simply by internal-
izing all the high level-inputs.

It is possible to protect high-level information
which does not come from inputs by using an instan-
tiation of Nondeducibility different from the one rec-
ommended by Sutherland, so that information flow
is forbidden from any high-level object to the low-
level objects: however according to this instantiation
of Nondeducibility, any system with a high-level audit
file is insecure. (See [8] for a discussion.)

There have been several other definitions of security
using information flow, for instance [1, 2, 4, 6, 8, 10,
11). Many of these were motivated by the limitations
of Nondeducibility, but most only protect high-level
input.

The security definition given in this paper, Causal
Security, gives results corresponding to intuition for
systems with the audit system described above, satis-

fies several useful composition properties, and is able
to protect information which is not manifested as high-
level input. It is similar to Nondeducibility. A system
where the only high-level information is high-level in-
put is Causally Secure if and only if it is Nondeducible.

Causal Security suffers from some of the drawbacks
associated with Nondeducibility; for instance, it does
not detect possible security loopholes to do with tim-
ing or probability. Moreover, the definition of Causal
Security is relatively complicated. For a system where
the only high-level information is high-level input, or
where (for instance) it is important to detect proba-
bilistic attacks, it makes sense to use a different defi-
nition.

Causal Security has been used to analyse the secu-
rity of an implementation of the Pgpy protocol [3] for
electronic data interchange. This protocol is (like most
protocols) large and complicated, so the composition
results for Causal Security were crucial in making the
analysis tractable. In the implementation, which was
for most points the simplest implementation of the
protocol, there was some high-level information which
was inherent in the original state of the system rather
than being high-level input. The protocol requires au-
dit capabilities, and the implementation had the type
of high-level audit described above. Although Causal
Security was not designed with this protocol in mind,
it turned out to be a very useful tool for analysing se-
curity for this example, offering a combination of ad-
vantages that none of the other definitions mentioned
above could match.

The major drawback of analysis using Causal Se-
curity as opposed to the other definitions of security
based on information flow is that because it uses in-
formation on causal dependencies in the system, it
requires a greater investment of time in understand-
ing the details of how the system behaves. In practice
the need to study the behaviour of the system closely
may bring advantages as well as disadvantages: the
analysis of the Pgp; protocol detected some strange
behaviour with regard to the causality in forward no-
tification.

2 The model for the system

This paper will use a system model which is similar
to, but not the same as, a model which is used in the
design of delay-insensitive circuits [5]. This section
describes the system model.

The system consists of a set of objects with asso-
ciated security levels. The specification of the system
says how the values of the objects can change in a
transition of the system, as in the specification of a
state machine. However the specification gives more
information than a state machine specification; it also
says for each possible transition which objects cause
the transition and which are the objects whose changes
of value are effects of the transition.

The system consists of objects indexed over a set
I. The possible states of the object O;, where i € I,
are in a nonempty set ;. There are two types of
objects, buffering objects and non-buffering objects. 1
will illustrate the difference between these two types
later. If O; is a buffering object then D; = A} for

some set A;. (Throughout this paper, B* denotes the
set of finite strings over B.) The state space D is the
Cartesian product of all the D;. There is a subset M
of D, which is the set of legitimate initial states of the
system.

If J is a subset of I, I will write v; to signify a
function from J to | J;¢; D; satisfying vs(j) € D; for
all j € J, and I will write v; as shorthand for v;(j).

Each statement in the system specification is a
quadruple

(J! v, I{| wK)

where J, K C I. Each quadruple represents a transi-
tion of the system; the transition of the system cor-
responding to the quadruple (J, vy, K, wg) is caused
by the objects {O; : j € J} and affects the objects
{Or : k € K}. An object may be a cause of a transi-
tion which affects it, so J N K may be non-empty.

In fact, a system specification will not usually list
all the quadruples, but will give schemata to obtain
them; for instance, a specification may contain the
schema

({1) 2, 3}) V{1,2,3}; {3' t}y w{S,i}) :

’02#0,113:0,1[)3:1)2,1.26

which is shorthand for a set (possibly an infinite set) of
quadruples. In order to make some definitions simpler
I will assume that the set of quadruples in the system
specification always contains the null quadruple

(8, vo, 0, wp)

where () denotes the empty set.

2.1 Behaviour of the system
Each quadruple

Q = (J, vJ.K,wK)

defines a partial function She associated transition)
on D. If uy € D then u;@ is defined if and only if
front(u;) = v; for all j € J, where front(u;) is u; if
O; is a non-buffering object and is the front value in
the queue of values u; if O; is a buffering object.

The behaviour of an object under the partial func-
tion depends on whether it is a buffering object or a
non-buffering object. I will describe the behaviour of
non-buffering objects first; it is simpler because non-
buffering objects have no memory.

If ur@ is defined and O; is a non-buffering object

then
(uIQ),' =u; if 21 € I\I(
(uIQ),' =w;ifie K

For example, if there are two non-buffering objects
Opaper and Onfiranda With appropriate sets of values,
I can say in the specification

If the paper is written, and Miranda is at
the office, these facts can cause Miranda to
go home.

This rule would be written as the quadruple
({paper, Miranda},v, {Miranda}, wipiranda})

where Wprirandaa=home, and v is the function
from {paper, Miranda} satisfying vpaper =written,
vMu‘anda—o_ﬁice

Notice that Opsirandq is both a cause and subject to an
effect of the associated transition, and that the values
of all other non-buffering objects (in fact, of all other
objects) are left unchanged by the transition.

In this example, the value of Opaper is still written
after the transition, and there is no memory in the
state of the system after the transition that Miranda
has ever been in the office. I would also like to model
objects that have a type of memory, and these are the
buffering objects. The existence of buffering objects
makes the model more complicated, but gives an ad-
vantage: following the ideas in [10], input and output
ports can be modelled with buffering objects, and if
this is done then it is only necessary to forbid infor-
mation flow from the initial states of objects.

A buffering object has a state which is a queue of
values. The immediate behaviour of the object is de-
termined entirely by the front value in the queue. If a
buffering object 1s one of the causes of a transition then
the front value in the queue is deleted in the course
of the transition. If a buffering object is affected by
a transition, then it is affected by having a new value
attached to the back of the queue.

Formally speaking, if u;@Q is defined and O; is a
buffering object then

(ur@)i = u; if i € I\N(JUK)
(urQ)i = z; if i € J\K,u; = z;.front(u;)
(wrQ)i = wi.u; if i € K\J
(urQ)i = wizi if i € J N K, u; = z;.front(u;)

For example, there can be a buffering object Oauthors
whose value is a list of the authors of e-mail messages
which I have received but not read, in chronological
order, and a buffering object Op,.s that records a list
of documents on which I ought to work. The specifi-
cation can have the rule

If the oldest e-mail message which I haven’t
seen is from Vladi, when I read the message
this can cause the addition to the list of doc-
uments of a reply to Vladi.

This rule can be written as the quadruple
({AUthOT'S}a V{Authors}, {DOCS}, w{Docs})

where vauihors = Viadi and wp,es = ReplyVladi.

In a state of the system where the value of O4utho”
is Giangi.Cicei.Viadi and the value of Opges is
Competition, it is possible to apply this rule to obtain
a new state in which Qaytnors has value Giangi.Cicei
and Op,es has value ReplyVladi.Competition. (The
values of the other objects are unchanged.) T have
not forgotten the competition, and I have taken Viadi

away from the list of authors. Although the value
of 04,,“,0” changed in the course of the transition,
O authors 18 not counted as one of the effects of the
transition, because the change of value is just a side-
effect of the behaviour of a buffering object that is one
of the causes of a transition.

Notice that in general the behaviour of a system
from a given initial state under a specification like the
one described is non-deterministic.

Given a finite string S of quadruples there is a par-
tial function from D to D defined in the obvious way:

17 S.Q is defined if and only if both
a) urS i1s defined and
(urS)Q is defined.
Moreover, if u;S.Q is defined, it is equal to

(ur5)Q.

If X is the empty string then u;) is defined and equal
to ur for all uy € D. (Throughout the rest of this
paper A will denote the empty string or queue.)

2.2 Input and output ports

Input and output ports are modelled as buffering
objects. An input port is a buffering object and is
not an effect of any transition, and an output port is
a buffering object and not a cause of any transition.
They are assumed to behave in the way described in
[10], where the initial state of an input port is the
string of all the external inputs at that port, the initial
state of an output port is the empty string, and in the
course of an evolution of the system the length of the
string which is the state of an input port decreases,
and the length of the string which is the state of an
output port increases.

Suppose the object O; is an input port. I will as-
sume that O; has the following behaviour. O; is a
buffering object, and no new values are admitted to
the bufter during the course of any evolution of the
system. The set D; is A} where A, is the set of pos-
sible input values to the system. The initial value of
the input port will represent the string of inputs to
the system, as in [10] This is a simplification of the
general behaviour of input ports, because it assumed
that as soon as one input value has been used in a
transition, the next value is ready. I will also assume
that any state which differs from a valid initial state
Jjust by the value of O; is still a valid initial state. In
particular, every string of values in D; is valid as an
initial state of O;. This means that any strategy by
the external environment is valid, as far as this par-
ticular type of port is concerned.

Formally speaking,

o For each quadruple (J,v;, K, wk) in the specifi-
cation, 1 g K

o Ifd;eM,d; =d;forallj€ I\{:}, and d} € D;,
then d} € M

Output ports are assumed to have a similar be-
haviour; they are buffering objects O; for which

° Fof each quadruple (J, vy, K, wk) in the specifi-
cation, j & J

o Ifd; € M, thend; = A

3 Definition of causal security
This section defines what it means for a system to
be causally secure with respect to a given policy.

3.1 Security policy

A security policy is given by a set of ordered pairs
(H(a), L(a)) of nonintersecting subsets of I. (The let-
ters H,L stand for High-level and Low-level.) The se-
curity policy given by the set {(H(a), L(a)) : a € A}

where A 1s an indexing set, and for each a € A,
H{(a), L(a)) is a pair of non-intersecting subsets of I)
is satisfied if there is no information flow with a causal
link from the initial states of the objects in the set
{0; : i € H(a)} to the set of objects {O; : ¢ € L(a)}
for any a € A.

Since information flow is only forbidden from the
initial states of the objects in {O; : ¢ € H(a)}, I have
assumed that it is impossible to obtain high-level in-
formation without using some input from a high-level
input port or some information present in the initial
state of a high-level object. As McLean points out
(8], this is not generally true: for instance, any system
which generates cryptographic keys converts low-level
input seeds into high-level output. The justification
of the assumption 1s that the low-level users are ex-
pected to know not just the specification of the low-
level parts of the system, but the specification of the
entire system. In the cryptographic key example a
low-level user would know the algorithm used by the
key generator, although not the initial state of the ob-
Ject which performs the algorithm, if there are several
possibilities for this. There is also an assumption that
the low-level users have access to as much time and
computing power as the high-level users.

In most definitions of security using information
flow it is assumed that the objects {O; : i € H(a) U
L(a)} are all either input ports or output ports. This
assumption is not made here. In fact, Causal Security
with respect to a policy satisfying this assumption is
equivalent to Nondeducibility.

3.2 The set of causes

In this subsection I will define a set causes{cs, S)
which is the set indexing the objects whose initial
states are the causes of the evolution of the system
with initial state ¢; and transitions S. It is an ex-
tension of the idea that if S is given by the quadru-
ple (J,vs. K, wk), the causes of S are the objects
{Oj RS J}

Informally, & is in causes(cs, S) if the fact that O
initially has value ¢;, affects the course of the compu-
tation indicated by the pair (¢;,5). The formal def-
inition uses some supplementary sets causesn(q, S)_,
where k is in causes,(cs, S) if the computation is af-
fected by the n'* entry (reading from right to left) of
the string ¢, which is the initial value of O.

The formal definition of causes is as follows. It
is the function from pairs (uy, S) such that S is a fi-
nite string of quadruples in the specification and u;S
is defined, to subsets of I, satisfying the following.
(length(u;) denotes the length of the string u;.)

o causes(uy, S) = |J,>, causesy(ur, S)

o causes,(us, A) = 0 for all uy and n > 1

e If Q is the quadruple (J,vs, K,wk), urQ.S is
defined, and O; is a non-buffering object, then
i € causesp(ur,@Q.S) if and only if n = 1 and
i € JU (causes; (ur@, S)\K)

o If Q is the quadruple (J,v;, K, wKI), ur@.S is de-
fined, O; is a buffering object, and length(u;) < n
then ¢ & causes,(ur, Q.S)

e If Q is the quadruple (J,v;, K, wk), ur@.S is de-
fined, O; is a buffering object, and length(u;) >
n > 1, then i € causes, (uy, @.5S) if and only if ei-
thern=1and i€ J, ort € (causesn_1(us@, S)N
J), or i € (causes, (ur@, S)\J)

The element ¢ of I is in causes(uy, S) if and only if the
action of S on uy is influenced by the initial state of O;.
It is in causesy (uy, S) if and only if the action of S on
uy is influenced by the n'® entry (reading from right
to left) in the string u;. Notice that if u;S is defined,
and u} is such that u} = u; for all 7 € causes(uy, S),
then u}S is defined.

If O; is a buffering object, then it follows from the
definitions that 7 is not a cause of any valid computa-
tion starting from a state in which O; is empty. This
is because it is assumed that the causal dependence
in the system is achieved through the transfer of data,
and an empty buffering object has no data to transfer.

3.3 Definition

What can low-level users see during a sequence of
transitions of the system? The answer for this model is
that they can see all the values of the low-level objects
during the computation. They can see if two low-level
objects change their values at the same time, as the
result of the same transition. But if there is a transi-
tion which does not change any low-level value, they
cannot tell whether or not this transition has taken
place; from the point of view of a low-level user there
is no discernible difference between such a transition
and the idle transition (represented by the quadruple
(@, vg, 0, wp)) which does nothing at all. I will write
“(er,S') simulates (ar,S) on L”, if a user who can
only see the values of objects in {O; : i € L} cannot
distinguish the evolution with initial state ¢y and se-
quence of transitions S’ from the evolution with initial
state ay and sequence of transitions S. For fixed L,
the relation given by simulation on L is an equivalence
relation.

The formal definition is as follows. Suppose that
there are two specifications with sets of quadruples
Quadl, Quad2, possible initial states M1, M2, and
index sets I1, I2, and suppose that L is a subset of 11N
I2. Given a finite string S = @1, . . ., @, of quadruples
in Quadl and a state aj; € M1 such that a;; S is
defined, say that a pair consisting of a state ¢;2 € M2
and a string ' = Q},...,Q), € Quad2* simulates
(ar1,S) on L if and only if ¢;25" is defined, and there
are 0 =14(0) < i(1) <i(2) < ... <i(k) = m, i(k+1) =

m+ 1, such that for each » and s such that 0 < r <k
and #(r) < s < i(r+ 1), and for each £ € L,

(cra@) .. @) =(an1Q1... Q)2

Finally, here is the definition of security which will
be used in this paper.

A system is causally secure with respect to the se-
curity policy {(H(a), L(a)) : a € A} (where A is an
indexing set, and for each a € A4, (H(a),Lga)) is a
pair of non-intersecting subsets of T) 1f and only if it is
causally secure with respect to the policy (H(a), L(a))
for each a € A.

A system is causally secure with respect to the secu-
rity policy (H, L) if and only if whenever u;,d; € M
and S is a finite string of quadruples of the system
such that u;S is defined,
then there is some ¢; € M and a string 5’ of quadru-
ples of the system, such that

e ¢;5 is defined
® (¢7,5’) simulates (u7,S) on L
o ¢, = dy for all k € causes(cy,S')NH.

I will write CS(H, L) as shorthand for “causally
secure with respect to the security policy (H, L)”.

3.4 Causal security and Nondeducibility
A non-causal definition of security based on Nond-
educibility would say

Given a valid initial state d g of the high-level
objects, and a valid evolution of the system,
(which may start from any valid initial state,
not just dg) there is another valid evolution
of the system for which the initial state of
the high-level objects is dg, such that a low-
level user cannot distinguish this new evolu-
tion from the original evolution.

On the other hand, Causal Security uses the causal
information present in the system model. The differ-
ence is that T don’t insist that the initial state of all
the high-level objects in the simulating computation
is dy. I only insist that the initial state of each object
in H which is a cause of the new computation is as
in the state dg. The point is that I don’t care about
the original state of the objects which are not causes,
because the values of these objects cannot influence
the low-level objects in the course of the computa-
tion. An example is an audit file, which is high-level
but influences nothing and so does not cause security
problems.
So the definition of Causal Security says

Given a valid initial state dg of the high-level
objects, and a valid evolution of the system,
there is a valid evolution of the system for
which the initial state of each high-level ob-
ject O; which is a cause of the computation
is d;, such that a low-level user cannot dis-
tinguish this new evolution from the original
evolution.

Clearly, if a system satisfies the non-causal defi-
nition of security for some security policy, then it
is causally secure with respect to the same policy.
There is a tempting, but erroneous, argument that
the converse is also true, which goes like this. Sup-
pose that (uy, S) is a valid computation in a system
which is CS(H,L), and d; is a valid initial state.
Then there is some valid computation (¢y, S’} which
simulates (ur,S) on L such that ¢, = d; for all
k € causes(cy,S’). For each i € I, let ¢/ = ¢; if
t¢ H, ¢, =d;ifi € H. Then ¢}5 is defined, (¢}, 5’)
simulates (ur,S) on L, and ¢); = dy. This is true,
but it does not follow that tge system satisfies the
non-causal definition, because in general ¢} is not a
possible initial state of the system. In fact there are
many systems which are CS(H, L) but which do not
satisfy the non-causal definition with respect to the
policy (H, L).

However, if all the objects in H UL are either input
or output ports, then the indexed set ¢j in the argu-
ment above is a possible initial state of the system,
and so the system satisfies the non-causal definition
if and only if it is is CS(H,L). Moreover, in this
particular case the non-causal definition is equivalent
to Nondeducibility. The subtlety of the definition of
Causal Security lies in the fact that it can deal with
systems where there is high-level information given by
the original value of objects which are not input ob-
jects.

3.5 Example

Consider the following system, which is a very sim-
plified version of the encryption part of the User Agent
in the Pgpy implementation.

The system consists of three objects, a buffering
object Omessage, an output object Ooutpur, and a non-
buffering object Og.y. There is a function encrypt
from Anessage X Akey t0 Aouipur. The quadruples are
given by the following schemata.

(@s Vg, {message}y w{message})

(0; Vg, {lcey}, w{key})
({message, key}, V{message,key}> {output}, w{omlmt}) :

Woutput = encrypt(vmessage; vkey)

In other words, the User Agent may add a message to
the list of messages ready to send, may change the key,
or may encrypt the oldest message in the list with the
key and send it. The set of initial states consists of
all functions v{message,output ey} SAISTYINE Vmessage €
A:nessage! Voutput = /\7 and Vkey € Akey~

Notice that Op,es50ge is DOt an input port. One rea-
son for this is that the list of messages is not “ready
input”, that is, it may be necessary to wait between
the sending of one message and the appearance of the
next in the message list. Another reason is that ac-
cording to the protocol, the User Agent is able to
add to the message list (for example, for automatic
acknowledgements) without any interaction from the
human user. The quadruple describing possible addi-
tions to the message list describes both such action by

the User Agent and additions by the user. The fact
that the key can be changed in the system at random
may seem strange: this is a result of the fact that only
one User Agent is being modelled here. In the model
of the whole protocol the changes to the key are syn-
chronized with the receiving User Agent, and there
is a general result ensuring that the system given by
synchronizing the key changes of secure User Agents
is secure.

This system is CS({message, key}, {output}) if
and only if for every ¢ € Ajuipur and m € Apmessage,
there is some k € A,y such that encrypt(m, k) = z.
This is seems to be a sensible result.

However, some definitions of security which were
developed for systems described just in terms of input
and output ports do not perform so well on this ex-
ample. For example, any system without input ports
satisfies Nondeducibility [9{ Generalized Noninterfer-
ence {6], Nondeducibility on Strategies [11], Forward
Correctability [4], and Feedback Non-Deducibility on
Views [10], so in particular the system above with the
encryption function encrypt(m,k) = m is secure ac-
cording to all these definitions, even though it sends
the high-level messages straight out as low-level out-
put. (Obviously, it is silly to even try to apply these
definitions to a model where there is high-level infor-
mation which does not come from high-level inputs.)

Restrictiveness (the state-machine definition given
in [6]) looks promising, because its systems model in-
cludes transitions which are neither inputs nor out-
puts. However, the system described above does not
satisfy Restrictiveness, no matter which encryption
function is used. To show this, pick m € A,, and
k € Aj and consider the two states v, w of the system,
where Umessage — M, Wmessage = Voutput = Woutput =
A, Vkey = Wgey = k. These two states correspond to
the same low-level state. From the state v it is pos-
sible to perform a transition giving low-level output
encrypt(m, k). There are no transitions of the system
from any state which give high-level output. There-
fore, for Restrictiveness to hold, it should be possible
to perform a transition starting at w, giving low-level
output encrypt(m,k). But there are no transitions
giving output which are immediately possible from w,
so the system is not Restrictive. The problem arises
because Restrictiveness requires outputs to be simu-
lated with sequences of outputs, rather than arbitrary
sequences with the correct low-level part.

Since this system is nondeterministic, its security
cannot be analysed using Noninterference [2] or Bieber
and Cuppens’ causality [1].

McLean’s FM [8] gives a sensible answer for this
system, and in fact can detect probabilistic attacks,
which Causal Security cannot. However, FM was un-
suitable for the analysis of the Pgp; implementation
because the implementation had the type of high-level
audit described in the introduction, and there were
reachable states from which transitions with differ-
ent effects on the low-level objects were possible, and
so the implementation was automatically insecure ac-
cording to FM.

In the rest of this paper, I will describe how to add
the audit behaviour described in the introduction to

an unaudited system without losing causal security,
and I will give several ways of composing causally se-
cure systems to produce a more complicated system
which is still secure. The results will be stated with-
out proof. The proofs are generally easy, although
sometimes fiddly.

4 Audit files

As mentioned in the introduction, Causal Security
behaves sensibly with respect to systems satisfying au-
dit behaviour described there.

This section describes a way to add a high-level
audit output to a causally secure system in such a
way that the resulting system has the audit behaviour
described and retains causal security. This involves
adding a special object to the system which ensures
that the transitions are taken in the right order, as
well as the audit output port.

Suppose that the system Systeml is CS(H, L). De-
fine System?2 as follows.

e The index set of System2is I2 = I1U{a, b}, where
I1 is the index set of Systeml; a ¢ I1 will be the
index of the audit file, which will be a buffering
object, and b ¢ Il will be the index of a non-
buffering object which ensures that the audit is
done first

e The domain D, is as in the previous subsection,
viz. the set of finite strings whose entries are ei-
ther possible initial states of System1 or quadru-
ples of System1. The domain D, is Quadl U {e},
where Quad] is the set of quadruples of System1,
and e € Quadl. If i € I1 then the domain D; is
as in Systeml

e The set M2 of possible initial states of System?2
is the set of states ujjufa,s; for which u, = e

and u, is equal to ur1uqa,s} |71 (the restriction of
%y10{a,p} to I1), and moreover u, € M1, the set
of possible initial states of System1

o The set Quad2 of quadruples for System? is
{({6}, v, KU {b}, wrugey) -
wy = e,vp = Q = (J,vs, K, wgusy |x) € Quadl}
U{(J U {b}, vsuqey, {a, b}, wap)

vp = €, Wy = wp = (J, vyu{s} |7, K,wg) € Quadl}

System?2 has the audit behaviour as described in the
introduction. It is straightforward to prove that it is

CS(H U{a,b},L).

5 Composition properties

Although some important security properties are
not easily composeable, if a security property can be
captured with a definition which satisfies some com-
position results then this makes it much easier to work
with. This is because the proof that a large system is
secure can be performed in stages, where first small
subsystems are proved secure and then composition

rules are used to show that the system built from these
subsystems is also secure. In this section I will describe
several ways in which a causally secure system can be
changed while still retaining some security.

5.1 Parallel composition of systems

Given two causally secure systems with disjoint ob-
ject sets, the system which is the parallel composition
of these two (without communication) is causally se-
cure.

Formally speaking, suppose that the two systems
Systeml, System2 have index sets I1, I2 (with I1 N
I2 = @) and sets of quadruples Quadl and Quad2.
Let the sets of initial states for these be M1 and M2.
Define Systeml || System2 to be the system such that

o The indexsetis I = J1UI2
e The set of quadruples is Quadl U Quad2
o The set of initial states is M = M1 x M2

Notice that the operator || is associative, so that
Systeml || SystemQﬂ Systern3 is well defined.

If H, L are subsets of 11U 2, and System1 and Sys-
tem2 are causally secure with respect to the policies
(HNI1,Ln1I1) and (HNI2, LN 12) respectively, then
Systeml || System2 is CS(H, L).

5.2 A feedback property

The following lemma is concerned with a property
of the type described in [10]. The idea of the feedback
property is that output from an output port in a secure
system can be fed back as input to an input port,
without causing a breach of security.

For the feedback property described in this section
a value is only present in the queue of values to the fed
object if it has been released from the feeding object;
in other words, the initial state of the fed object is
A. This assumption will be lifted later in this paper,
where there is a treatment of “open feedback”; under
open feedback a fed object may be fed values from
the environment as well as values released from the
feeding object.

Clearly the feedback cannot be done arbitrarily.
For instance, if a system is C'S(H, L) then feeding
back output from an object not in L into an object in
L may cause a breach of security. Therefore there is a
restriction on the security status of the pair of objects
between which the feedback takes place. Moreover,
the values which are fed back must be acceptable to
the object which receives them. This gives the follow-
ing condition.

Condition on 1, j
O; is an output port and O; is an input port of a
system such that the value sets A;, A; satisfy A; C A;.
Moreover, the system is CS(H, L) and either i € H or
5, € L.

Given Systeml satisfying the condition on i, j, de-
fine a new system, feed(j,1,Systeml), as follows.

o The index set is I\{j}, where I is the index of
System1

e The set Quad2 of quadruples is obtained by sub-
stituting ¢ for j wherever it occurs in the set
Quadl of quadruples for Systeml

e The object O; is a buffering object. The other
objects are buffering objects if and only if the ob-
ject with the same index in Systeml1 is a buffering
object

e A state usy(;} is in the set M2 of possible initial
states if and only if u; = XA and there is some vy €
M1 (the set of possible initial states of System1)
such that v, = uy for all k € I\{i, j}

Then feed(j,i,System1) is CS(H\{j}, L\{s}).

It is easy to check that if Systeml is such that
System2 = feed(j(1),i(1), feed(j(2),4(2) Systeml)
is defined, (where 1(1),1(2),](), 7(2) are all different
then System?2 is equal to

feed(7(2),4(2), feed(j(1),4(1), Systeml))

For ease of notation I will write feed(L,System),
where L = {(j(1),4(1)),...,(j(n),i(n}))}, to denote

feed(j(1),i(1),..., feed(j(n),i(n), System))...).

5.3 A hookup property

Suppose that Systeml and System?2 are systems
whose objects are indexed by the disjoint sets 11, 12
respectively, and whose sets of possible initial states
are M1, M2. Let I{out) = {j(1},...,j(m)} be a
set of output ports of System1 || System?2, (in other
words, let each j(r) be either an output port of Sys-
teml or an output port of System2) and let I(in) =
{i(1),...,i(m)} be a set of input ports of System1 ||
System? "Form the hookup system System3 by feeding
the output at j(r) for 1 < r < m into i(r). Formally,
the System3 is

feed(L, Systeml || System?2)

where L = {(j(1),i(1)), ..., (j(m),i(m))}. Let H1, L1
and H2, L2 be nomntersectlng subsets of I1 and of
12, such that Systeml is CS(H1, L1) and System?2 is
CS(H2,L2). Suppose that for each 1 < r < 'm,

® Ajry C Aigr)

e Either i(r) € H1U H2, or i(r) € L1 U L2 and
j(r) e LYU L2

Then it follows directly from the previous two proper-
ties that System3 is

CS((H1U H2)\I(out), (L1 U L2)\I(out))

This hookup property is not the same as the com-
position used in [6], under which data which is fed
into an input node must then be used as a cause of a
transition. In contrast, in the composition described
here it is possible for data to be fed into an input node
and then never used. Nondeducibility is not preserved
under the composition of [6] but it is preserved under
the composition described here.

5.4 Two very simple systems

In order to build more complicated systems it is
useful to introduce an interleaver and a doubler, which
are very simple systems which can be used for flow
control inside larger systems. ‘

An interleaver \/(i(1),4(2), 0) has input ports Oy(1),
Oi(2), a single output port O,, and no other objects.
The sets Ao, Aj1), and Ay(2) are equal. The quadru-
ples for this system are given by the schemata

({i(D)}, vy {o} wio}) : vig) = wo

({2}, vii@)y- {0}, wyoy) : vi(2) = wo

A doubler \(7,0(1),0(2)) has output ports Oy 1),
O,(2), a single input port O;, and no other objects.
The sets Ay1), Ao2) are both equal to A;. The
quadruples for this system are given by the schema

({5}, v4iy, {o(1), 0(2)}, Wio(1),0(2)}) © Vi = Wo(1) = Wo(2)

The following results hold for these two systems:
V(#(1),4(2),0) is CS({(H(a), L(a)) : a € A}) if and
only if there is no a € A such that (H(a), L(a))
is the pair {(}Sz(l)w(?)}, {o}).({i(1)}, {#(2),0}), or
({i(2)}, {i(1), 0}).

A, 0(1),0(2)) is CS({(H(a), L(a)) : a € A}) if and
only if there is no @ € A such that i € H(a) and
L{a) #£0.

5.5 An open feedback property

If System1 is a system such that feed(J. ¢, System]1)
is defined, there is no object with index j in
feed(j, i, Systeml), because the object O; in System1
disappears when its values are fed back. I\/ioreover, the
object with index ¢ in feed(j, i, Systeml) no longer
accepts input from the environment, because the only
values which it receives are those fed back. An alterna-
tive way of turning Systeml into a more complicated
system with feedback from O; to O; is to output all
values arriving at O; as well as feeding them back, and
to allow values to reach O; from the environment as
well as from O;.

Given Systeml, a system which has this behaviour
is System2, where System?2 is

feed(L,(\/(i(1),i(2), o(3)) || System1

Il AGB3), o(1), 0(2))))

where L = {(0(2),i(2)), (0(3),7),(4,i(3))}, none of
i(l),i(2),i(3),{cg(l(),)o(g),))o(g)(a%e)ln(thg 1)12(}iex set for

ystem1, and A,’(l) = Aizy = A0(3) = A;, Ao(l) =
Ao(2) = Ai(3) = 4j-

Now suppose that Systeml is CS(H, L) and either
i€ Hori,j € L. Let H2, L2 be the sets obtained from
H, L by adding i(1) and #(2) if H (resp.L) contains i,
and replacing j if it occurs by the pair (3), o(1). It is
straightforward, but tedious, to show that System2 is
CS(H2,L2).

5.6 Protection against high-level Trojans

Finally, I will describe a composition property
which gives some protection against Trojan horse at-
tacks. The connection between composition and pro-
tection against Trojans was first noticed by Millen [7].
The sort of attack against which the property gives
protection is a machine which can intercept input be-
fore it reaches the system, read output from the sys-
tem, and combine these two to give new input to the
system in place of the input from the external envi-
ronment. This is the type of attack described in [7].
The threat of such an attack is that high-level infor-
mation may reach low-level objects as the result of this
interference. The security condition which I will de-
scribe will assign high-level security to all the objects
of the Trojan; the idea is that the Trojan should not
influence the low-level operation of the system. I will
assume that the Trojan can only input to high-level
input ports. This ensures that it cannot, for instance,
feed high-level output directly back into a low-level
input port.

Let System1 be a system with index set [, contain-
ing elements 7,j such that O; is an input port and
O; is an output port. Let T be a system with in-
dex set J which has an empty intersection with I and
contains elements (1), 7(2), o(3) such that the objects
Oi(1) and Oj(ay are input ports in 7', O,(3) is an output
port, A]' C A,’(z), and Ao(3) C A;. Let o(1),0(2),1(3)
be elements not in I U J and define Ay1y, Ay(2), and
Aj(3) to equal A;. Then System2 behaves as the com-

posite system consisting of System1 and the Trojan T,
where System?2 is

feed(L, System1 || T || \(i(3), 0(1), 0o(2)))

where L = {(o(3), 1), (j, i(3)). (2(2),1(2))}.

Suppose that Systeml is CS(H, L), where 1 € H.
Let H2, L2 be the sets obtained from H, L by replacing
J by {0(1),4(3)} wherever it occurs. It can be proved
that System?2 is CS((H2UJ)\{o(3)}, L2), as required.

Acknowledgements

I would like to thank the anonymous referee who
pointed out several errors in a previous version of this
paper, and Fabio Gadducci, who did the analysis of
the Pgpr protocol.

References

[1] P. Bieber and F.Cuppens, “A Definition of Se-
cure Dependencies using the Logic of Security,”
in Proc. Computer Security Foundations Work-
shop IV, pp.2-11, 1991.

[2] J. A. Goguen and J. Meseguer, “Security Policies
and Security Models,” in Proc. IEEE Computer
Society Symposium on Research in Security and
Privacy, pp.11-20, 1982.

[3] R. Hill, EDI and X.400 using Pgp;, Technology
Appraisal Ltd., Middlesex, 1990.

[4] D. M. Johnson and F. J. Thayer, “Security and
the Composition of Machines,” in Proc. Com-

puter Security Foundations Workshop, Franco-
nta, NH, 1988. :

[6] Alain J. Martin, “Programming in VLSI: From
Communicating Processes to Delay-Insensitive
Circuits,” UT Year of Programming Instituie
on Concurrent Programming, ed. C.A.R. Hoare,
publ. Addison-Wesley, 1989.

[6] D. McCullough, “Noninterference and the Com-
posability of Security Properties,” in Proc. IEEE
Computer Society Symposium on Research tn Se-
curity and Privacy, pp.177-186, 1988.

{7] Jonathan K. Millen, “Hookup Security for Syn-
chronous Machines,” IEEE document TH0315-
2/90/0000/0084, pp.84-89, 1990.

[8] John McLean, “Security Models and Informa-
tion Flow,” in Proc. IEEE Computer Society
Symposium on Research tn Security and Privacy,
pp-180-187, 1990.

[9] D. Sutherland, “A Model of Information,” in

Proc. of the 9** National Computer Security Con-
ference, Gaithersburg, MD., September 1986.

[10] Viadimiro Sassone and Vijay Varadharajan, “A
Unifying Petri Net Model of Non-Interference
and Non-Deducibility Security,” Technical Re-
port, HP Labs Bristol, submitted to the Journal
of Computer Security.

[11] J. Todd Wittbold and Dale M. Johnson, “Infor-
mation Flow in Nondeterministic Systems,” in
Proc. IEEE Computer Society Symposium on Re-
search in Security and Privacy, pp.144-161, 1990.

