
Causal Security

Miranda Mowbray
Hewlett Packard Pisa Science Centre,

Corso Italia 115, Pisa, Italy
mjfm@hplb.hpl.hp.com

Abstract
This paper gives a new definition of Security, which

takes causal information into account. The new def
inition can be used to determine the security of non
deterministic concurrent systems for which high-level
information may be either input into the system dur
ing its operation, or inherent in the original state of
the system. It is possible to have systems which are
secure under this definition which write to audit be
fore performing each transition. The definition sat
isfies several useful composition properties, including
one which gives it some protection from Trojan horse
attacks. .

1 Introduction
In this paper I will give a new definition of Security,

which uses causal information. The main idea is very
simple; if there is a link between the states of two
objects in the system, then this indicates a breach of
security in the system only if the fact that one object
has the state that it has causes the second object to
have a related state.

This observation was made explicitly by John
McLean in [8], who used it to simplify a definition
of security using just the assumption that the partial
order of causality between substates is generated by
the causal relations between substates one time tick
apart, and that a substate cannot be influenced by
anything in the future. This assumption leads to a
good approximation of the real causal dependencies in
many cases, but causes problems for nondeterministic
systems in which there is a certain type of high-level
audit. Suppose that, before any transaction is per
formed, a note of the transaction is first written to
a high-level audit file, (so that if the system crashes
during the transaction its entire state can be recov
ered; this is called the audit-first requirement in [8])
and that while this audit happens all the low-level ob
jects in the system remain unchanged. Suppose also
that there is a reachable state from which two trans
actions are possible which result in different low-level
states. Then according to McLean's definition FM the
system is insecure. This is because if c is a computa
tion which reaches the state, does the audit for one
of the two transactions, and then does the audited
transaction, the final values of the low-level objects
after c can be deduced with probability 1 from the
history of the high and low-level objects up to and
including the audit step, but cannot be deduced with

probability 1 from the history of the low-level objects
up to and including the audit step. However, it is
intuitively clear that the properties of the system de
scribed should not in themselves constitute a security
violation. Although the low level state after c can be
determined by the state of the high level audit file af
ter the audit step, the state of the audit file is not a
cause of the low level state after c: instead, both are
effects of the decision taken before the audit step.

In John McLean's model the system description
does not include any causal information. In contrast,
in this paper I assume that all the causal dependen
cies between the states of different objects before and
after a transition of the system are observable in the
system view. This extra information is enough for a
definition of Security under which systems of the type
described above are not automatically insecure.

One of the most common definitions of Informa
tion Flow Security is that of Nondeducibility [9]. A
system is Nondeducible (under the instantiation de
scribed by Sutherland) if there there are no compu
tations of the system in which information flows from
high-level inputs to the low-level objects of the sys
tem. Nondeducibility is simple and intuitively appeal
ing but suffers from some drawbacks. One of these
is that only information which comes from high-level
inputs is protected. If a system contains high-level
information which is inherent in the initial state of
the system, rather than being input into the system
during its operation, then Sutherland's instantiation
of Nondeducibility cannot protect it. Moreover, any
system can be made Nondeducible simply by internal
izing all the high level-inputs.

It is possible to protect high-level information
which does not come from inputs by using an instan
tiation of Nondeducibility different from the one rec
ommended by Sutherland, so that information flow
is forbidden from any high-level object to the low
level objects: however according to this instantiation
of Nondeducibility, any system with a high-level audit
file is insecure. (See [8] for a discussion.)

There have been several other definitions of security
using information flow, for instance [1, 2, 4, 6, 8, 10,
11]. Many of these were motivated by the limitations
of Nondeducibility, but most only protect high-level
input.

The security definition given in this paper, Causal
Security, gives results corresponding to intuition for
systems with the audit system described above, satis-

Internal Accession Date Only

fies several useful composition properties, and is able
to protect information which is not manifested as high
level input. It is similar to Nondeducibility. A system
where the only high-level information is high-level in
put is Causally Secure if and only ifit is Nondeducible.

Causal Security suffers from some of the drawbacks
associated with Nondeducibility; for instance, it does
not detect possible security loopholes to do with tim
ing or probability. Moreover, the definition of Causal
Security is relatively complicated. For a system where
the only high-level information is high-level input, or
where (for instance) it is important to detect proba
bilistic attacks, it makes sense to use a different defi
nition.

Causal Security has been used to analyse the secu
rity of an implementation of the PEDf protocol [3] for
electronic data interchange. This protocol is (like most
protocols) large and complicated, so the composition
results for Causal Security were crucial in making the
analysis tractable. In the implementation, which was
for most points the simplest implementation of the
protocol, there was some high-level information which
was inherent in the original state of the system rather
than being high-level input. The protocol requires au
dit capabilities, and the implementation had the type
of high-level audit described above. Although Causal
Security was not designed with this protocol in mind,
it turned out to be a very useful tool for analysing se
curity for this example, offering a combination of ad
vantages that none of the other definitions mentioned
above could match.

The major drawback of analysis using Causal Se
curity as opposed to the other definitions of security
based on information flow is that because it uses in
formation on causal dependencies in the system, it
requires a greater investment of time in understand
ing the details of how the system behaves. In practice
the need to study the behaviour of the system closely
may bring advantages as well as disadvantages: the
analysis of the PE D f protocol detected some strange
behaviour with regard to the causality in forward no
tification.

2 The model for the system
This paper will use a system model which is similar

to, but not the same as, a model which is used in the
design of delay-insensitive circuits [5]. This section
describes the system model.

The system consists of a set of objects with asso
ciated security levels. The specification of the system
says how the values of the objects can change in a
transition of the system, as in the specification of a
state machine. However the specification gives more
information than a state machine specification; it also
says for each possible transition which objects cause
the transition and which are the objects whose changes
of value are effects of the transition.

The system consists of objects indexed over a set
I. The possible states of the object Oi, where i E I,
are in a nonempty set Di. There are two types of
objects, buffering objects and non-buffering objects. I
will illustrate the difference between these two types
later. If 0; is a buffering object then D, = Ai for

some set A;. (Throughout this paper, B* denotes the
set of finite strings over B.) The state space D is the
Cartesian product of all the D;. There is a subset M
of D, which is the set of legitimate initial states of the
system.

If J is a subset of I, I will write VJ to signify a
function from J to UjEJ D, satisfying vJ(j) E Dj for
all j E J, and I will write Vj as shorthand for vJ(j).

Each statement in the system specification is a
quadruple

(J,VJ,K,WK)

where J, K <; I. Each quadruple represents a transi
tion of the system; the transition of the system cor
responding to the quadruple (J, VJ, K, WK) is caused
by the objects {OJ : j E J} and affects the objects
{Ok : k E K}. An object may be a cause of a transi
tion which affects it, so J n K may be non-empty.

In fact, a system specification will not usually list
all the quadruples, but will give schemata to obtain
them; for instance, a specification may contain the
schema

({I, 2, 3}, V{1,2,3}, {3, i}, w{3,i}) :

V2 f. 0, V3 = 0, W3 = V2, i:::: 6

which is shorthand for a set (possibly an infinite set) of
quadruples. In order to make some definitions simpler
I will assume that the set of quadruples in the system
specification always contains the null quadruple

where 0 denotes the empty set.

2.1 Behaviour of the system
Each quadruple

defines a partial function (the associated transition)
on D. If Uf E D then UfQ is defined if and only if
f'T'ont(uj) = Vj for all j E J, where f'T'ont(uj) is Uj if
OJ is a non-buffering object and is the front value in
the queue of values Uj if OJ is a buffering object.

The behaviour of an object under the partial func
tion depends on whether it is a buffering object or a
non-buffering object. I will describe the behaviour of
non-buffering objects first; it is simpler because non
buffering objects have no memory.

If UfQ is defined and O, is a non-buffering object
then

(UfQ)i = U; if i E I\I<
(UfQ); = Wi if i E K

For example, if there are two non-buffering objects
Opaper and OMiranda with appropriate sets of values,
I can say in the specification

If the paper is written, and Miranda is at
the office, these facts can cause Miranda to
go home.

This rule would be written as the quadruple

({paper, Miranda}, v, {Miranda}, W{Mjranda})

where WMjranda=home, and v is the function
from {paper, Miranda} satisfying vpaper=written,
VMjranda=office.
Notice that OMjranda is both a cause and subject to an
effect of the associated transition, and that the values
of all other non-buffering objects (in fact, of all other
objects) are left unchanged by the transition.

In this example, the value of Opaper is still written
after the transition, and there is no memory in the
state of the system after the transition that Miranda
has ever been in the office. I would also like to model
objects that have a type of memory, and these are the
buffering objects. The existence of buffering objects
makes the model more complicated, but gives an ad
vantage: following the ideas in [10), input and output
ports can be modelled with buffering objects, and if
this is done then it is only necessary to forbid infor
mation flow from the initial states of objects.

A buffering object has a state which is a queue of
values. The immediate behaviour of the object is de
termined entirely by the front value in the queue. If a
buffering object is one of the causes of a transition then
the front value in the queue is deleted in the course
of the transition. If a buffering object is affected by
a transition, then it is affected by having a new value
attached to the back of the queue.

Formally speaking, if UfQ is defined and OJ is a
buffering object then

(UfQ)j =Uj if i E I\(1 U K)

(UfQ)j = Xj if i E J\K, Uj = xj.front(uj)

(UfQ)j = Wj.Uj if i E K\J

(UfQ)j = Wj.Xj if i E J n K, Uj = xj.front(uj)

For example, there can be a buffering object 0.4uthors
whose value is a list of the authors of e-mail messages
which I have received but not read, in chronological
order, and a buffering object 0 Docs that records a list
of documents on which I ought to work. The specifi
cation can have the rule

If the oldest e-mail message which I haven't
seen is from Vladi, when I read the message
this can cause the addition to the list of doc
uments of a reply to Vladi.

This rule can be written as the quadruple

({Authors}, V{.4uthors}, {Docs}, W{Does})

where V.4uthors = Vladi and WDoes = ReplyVladi.
In a state of the system where the value of OAuthors
is Giangi.Cicci.Vladi and the value of Oos«, is
Competition, it is possible to apply this rule to obtain
a new state in which 0 Authors has value Giangi.Cicci
and Oos-, has value ReplyVladi.Competition. (The
values of the other objects are unchanged.) I have
not forgotten the competition, and I have taken Vladi

away from the list of authors. Although the value
of 0.4uthors changed in the course of the transition,
oAuthors is not counted as one of the effects of the
transition, because the change of value is just a side
effect of the behaviour of a buffering object that is one
of the causes of a transition.

Notice that in general the behaviour of a system
from a given initial state under a specification like the
one described is non-deterministic.

Given a finite string S of quadruples there is a par-
tial function from D to D defined in the obvious way:

UfS.Q is defined if and only if both
(a) UfS is defined and
(b) (ufS)Q is defined.
Moreover, if UfS.Q is defined, it is equal to
(UfS)Q.

If X is the empty string then UfA is defined and equal
to ut for all Uf E D. (Throughout the rest of this
paper A will denote the empty string or queue.)
2.2 Input and output ports

Input and output ports are modelled as buffering
objects. An input port is a buffering object and is
not an effect of any transition, and an output port is
a buffering object and not a cause of any transition.
They are assumed to behave in the way described in
[10], where the initial state of an input port is the
string of all the external inputs at that port, the initial
state of an output port is the empty string, and in the
course of an evolution of the system the length of the
string which is the state of an input port decreases,
and the length of the string which is the state of an
output port increases.

Suppose the object OJ is an input port. I will as
sume that OJ has the following behaviour. OJ is a
buffering object, and no new values are admitted to
the buffer during the course of any evolution of the
system. The set D, is Ai where Aj is the set of pos
sible input values to the system. The initial value of
the input port will represent the string of inputs to
the system, as in [10]. This is a simplification of the
general behaviour of input ports, because it assumed
that as soon as one input value has been used in a
transition, the next value is ready. I will also assume
that any state which differs from a valid initial state
just by the value of OJ is still a valid initial state. In
particular, every string of values in D, is valid as an
initial state of OJ. This means that any strategy by
the external environment is valid, as far as this par
ticular type of port is concerned.

Formally speaking,

• For each quadruple (1, vJ , K, WK) in the specifi
cation, i rt. K

• If df EM, dj =dj for all j E I\{i}, and di E Di,
then di EM

Output ports are assumed to have a similar be
haviour; they are buffering objects OJ for which

• For each quadruple (1, VJ, K, WK) in the specifi
cation, j rt. J

• If d/ EM, then dj = oX

3 Definition of causal security
This section defines what it means for a system to

be causally secure with respect to a given policy.

3.1 Security policy
A security policy is given by a set of ordered pairs

(H(a), L(a)) of nonintersecting subsets of 1. (The let
ters H,L stand for High-level and Low-level.) The se
curity policy given by the set ((H(a), L(a)) : a E A}
(where A is an indexing set, and for each a E A,
(H(a), L(a)) is a pair of non-intersecting subsets of 1)
is satisfied if there is no information flow with a causal
link from the initial states of the objects in the set
{OJ : i E H(a)} to the set of objects {OJ : i E L(a)}
for any a EA.

Since information flow is only forbidden from the
initial states of the objects in {O; : i E H (a)}, I have
assumed that it is impossible to obtain high-level in
formation without using some input from a high-level
input port or some information present in the initial
state of a high-level object. As McLean points out
[8], this is not generally true: for instance, any system
which generates cryptographic keys converts low-level
input seeds into high-level output. The justification
of the assumption is that the low-level users are ex
pected to know not just the specification of the low
level parts of the system, but the specification of the
entire system. In the cryptographic key example a
low-level user would know the algorithm used by the
key generator, although not the initial state of the ob
ject which performs the algorithm, if there are several
possibilities for this. There is also an assumption that
the low-level users have access to as much time and
computing power as the high-level users.

In most definitions of security using information
flow it is assumed that the objects {OJ : i E H(a) U
L(a)} are all either input ports or output ports. This
assumption is not made here. In fact, Causal Security
with respect to a policy satisfying this assumption is
equivalent to Nondeducibility.

3.2 The set of causes
In this subsection I will define a set causes(ct , S)

which is the set indexing the objects whose initial
states are the causes of the evolution of the system
with initial state c/ and transitions S. It is an ex
tension of the idea that if S is given by the quadru
ple (J,VJ,I<,WK)' the causes of S are the objects
{OJ:jEJ}.

Informally, k is in causes(C/, S) if the fact that Ok
initially has value Ck affects the course of the compu
tation indicated by the pair [cj , S). The formal def
inition uses some supplementary sets causesn(c/, S),
where k is in causes., (c/ , S) if the computation is af
fected by the nth entry (reading from right to left) of
the string Ck, which is the initial value of Ok.

The formal definition of causes is as follows. It
is the function from pairs (u/, S) such that S is a fi
nite string of quadruples in the specification and u/S
is defined, to subsets of I, satisfying the following.
(length(Ui) denotes the length of the string Ui.)

• causes(u/,S) = Un~lcauseSn(u/,S)

• causesn(u/, oX) = 0 for all ui and n::::: I

• If Q is the quadruple (J,VJ, I<, WK), u/Q.S is
defined, and 0; is a non-buffering object, then
i E causesn(u/, Q.S) if and only if n = I and
i E J u (causesl (u/Q, S)\I<)

• If Q is the quadruple (J, VJ. I<,WK), u/Q.S is de
fined, 0; is a buffering object, and tength(u;) < n
then i ~ causesn(u/, Q.S)

• IfQ is the quadruple (J, VJ, I<,WK), UfQ.S is de
fined, 0; is a buffering object, and length(u;) :::::
n ::::: I, then i E cauees., (u/, Q.S) if and only if ei
ther n = I and i E J, or i E (causesn_l(u/Q,S)n
J), or i E (causesn(u/Q, S)\])

The element i of I is in causes(u/, S) if and only if the
action of Son u/ is influenced by the initial state of 0;.
It is in ccuses., (u/, 5) if and only if the action of 5 on
u/ is influenced by the nth entry (reading from right
to left) in the string U;. Notice that if ui S is defined,
and uI is such that ui = U; for all i E causes(u/, S),
then uI5 is defined.

If 0; is a buffering object, then it follows from the
definitions that i is not a cause of any valid computa
tion starting from a state in which 0; is empty. This
is because it is assumed that the causal dependence
in the system is achieved through the transfer of data,
and an empty buffering object has no data to transfer.

3.3 Definition
What can low-level users see during a sequence of

transitions of the system? The answer for this model is
that they can see all the values of the low-level objects
during the computation. They can see if two low-level
objects change their values at the same time, as the
result of the same transition. But if there is a transi
tion which does not change any low-level value, they
cannot tell whether or not this transition has taken
place; from the point of view of a low-level user there
is no discernible difference between such a transition
and the idle transition (represented by the quadruple
(0, V0, 0, W0)) which does nothing at all. I will write
"(c/, 5') simulates (a/, S) on L", if a user who can
only see the values of objects in {Oi : i E L} cannot
distinguish the evolution with initial state c/ and se
quence of transitions S' from the evolution with initial
state a/ and sequence of transitions S. For fixed L,
the relation given by simulation on L is an equivalence
relation.

The formal definition is as follows. Suppose that
there are two specifications with sets of quadruples
QuadI, Quad2, possible initial states MI, M2, and
index sets Il, 12, and suppose that L is a subset of Iln
12. Given a finite string S = Ql, ... , Q£ of quadruples
in Quadl and a state all E M I such that all S is
defined, say that a pair consisting of a state C/2 E M2
and a string 5' = Qi, ... , Q' E Quad2* simulates
(all, S) on L if and only if C/2S' is defined, and there
are 0 = i(O) < i(I) ~ i(2) ~ ... ~ i(k) = m, i(k+I) =

m + 1, such that for each rand s such that 0 < r < k
and i(r) S s < i(r + 1), and for each f E L, - -

(CI2Q~ ... Q:), = (anQl" .Qr)'

Finally, here is the definition of security which will
be used in this paper.

A system is causally secure with respect to the se
curity policy {(H(a), L(a)) : a E A} (where A is an
indexing set, and for each a E A, (H(a), L(a)) is a
pair of non-intersecting subsets of 1) if and only if it is
causally secure with respect to the policy (H(a), L(a))
for each a E A.

A system is causally secure with respect to the secu
rity policy (H, L) if and only if whenever UI, dI EM
and S is a finite string of quadruples of the system
such that uIS is defined,
then there is some CI EM and a string S' of quadru
ples of the system, such that

• CIS' is defined

• (CI,Sf) simulates (UI, S) on L

• Ck = dk for all k E causeeicj , S') n H.

I will write C S(H, L) as shorthand for "causally
secure with respect to the security policy (H, L)" .
3.4 Causal security and Nondeducibility

A non-causal definition of security based on Nond-
educibility would say

Given a valid initial state dn of the high-level
objects, and a valid evolution of the system,
(which may start from any valid initial state,
not just dH) there is another valid evolution
of the system for which the initial state of
the high-level objects is du , such that a low
level user cannot distinguish this new evolu
tion from the original evolution.

On the other hand, Causal Security uses the causal
information present in the system model. The differ
ence is that I don't insist that the initial state of all
the high-level objects in the simulating computation
is dn I only insist that the initial state of each object
in H which is a cause of the new computation is as
in the state dn The point is that I don't care about
the original state of the objects which are not causes,
because the values of these objects cannot influence
the low-level objects in the course of the computa
tion. An example is an audit file, which is high-level
but influences nothing and so does not cause security
problems.

So the definition of Causal Security says

Given a valid initial state dn of the high-level
objects, and a valid evolution of the system,
there is a valid evolution of the system for
which the initial state of each high-level ob
ject O, which is a cause of the computation
is di , such that a low-level user cannot dis
tinguish this new evolution from the original
evolution.

Clearly, if a system satisfies the non-causal defi
nition of security for some security policy, then it
is causally secure with respect to the same policy.
There is a tempting, but erroneous, argument that
the converse is also true, which goes like this. Sup
pose that (UI' S) is a valid computation in a system
which is C S(H, L), and dI is a valid initial state.
Then there is some valid computation (CI' S') which
simulates (UI, S) on L such that Ck = dk for all
k E causes(cI, S'). For each i E I, let c: = c, if
i ¢ H, c: = di ifi E H. Then cIS' is defined, (cI'S')
simulates (UI, S) on L, and c'p = dn . This is true,
but it does not follow that the system satisfies the
non-causal definition, because in general cI is not a
possible initial state of the system. In fact there are
many systems which are CS(H, L) but which do not
satisfy the non-causal definition with respect to the
policy (H, L).

However, if all the objects in H UL are either input
or output ports, then the indexed set cI in the argu
ment above is a possible initial state of the system,
and so the system satisfies the non-causal definition
if and only if it is is CS(H, L). Moreover, in this
particular case the non-causal definition is equivalent
to Nondeducibility. The subtlety of the definition of
Causal Security lies in the fact that it can deal with
systems where there is high-level information given by
the original value of objects which are not input ob
jects.
3.5 Example

Consider the following system, which is a very sim
plified version of the encryption part of the User Agent
in the PE D I implementation.

The system consists of three objects, a buffering
object Omessage, an output object Ooutput, and a non
buffering object Okey' There is a function encrypt
from Amessage x A k ey to Aoutput. The quadruples are
given by the following schemata.

(0. V0, {message}, W{message})

(0, V0, {key}, W{key})

({message, key}, V{message,key}, {output}, W{ output}) :

Woutput = encrypt(Vmessage, Vkey)

In other words, the User Agent may add a message to
the list of messages ready to send, may change the key,
or may encrypt the oldest message in the list with the
key and send it. The set of initial states consists of
all functions V{message,output,key} satisfying Vmessage E
A::nessage, Voutput = .x, and Vkey E A k ey'

Notice that Omessage is not an input port. One rea
son for this is that the list of messages is not "ready
input", that is, it may be necessary to wait between
the sending of one message and the appearance of the
next in the message list. Another reason is that ac
cording to the protocol, the User Agent is able to
add to the messa&e list (for example, for automatic
acknowledgements) without any interaction from the
human user. The quadruple describing possible addi
tions to the message list describes both such action by

the User Agent and additions by the user. The fact
that the key can be changed in the system at random
may seem strange: this is a result of the fact that only
one User Agent is being modelled here. In the model
of the whole protocol the changes to the key are syn
chronized with the receiving User Agent, and there
is a general result ensuring that the system given by
~ynchronizing the key changes of secure User Agents
IS secure.

This system is eS({message, key}, {output}) if
and only if for every x E Aoutput and m E Amessage,
there is some k E A key such that encrypt(m, k) = x.
This is seems to be a sensible result.

However, some definitions of security which were
developed for systems described just in terms of input
and output ports do not perform so well on this ex
ample. For example, any system without input ports
satisfies Nondeducibility [9J, Generalized Noninterfer
ence [6], Nondeducibility on Strategies [11], Forward
Correctability [4], and Feedback Non-Deducibility on
Views [10], so in particular the system above with the
encryption function encrypt(m, k) = m is secure ac
cording to all these definitions, even though it sends
the high-level messages straight out as low-level out
put. (Obviously, it is silly to even try to apply these
definitions to a model where there is high-level infor
mation which does not come from high-level inputs.)

Restrictiveness (the state-machine definition given
in [6]) looks promising, because its systems model in
cludes transitions which are neither inputs nor out
puts. However, the system described above does not
satisfy Restrictiveness, no matter which encryption
function is used. To show this, pick m E Am and
k E Ak and consider the two states v, W of the system,
where Vmessage = m, Wmessage = Voutput = Woutput =
A, Vkey = Wke = k. These two states correspond to
the same low-level state. From the state v it is pos
sible to perform a transition giving low-level output
encrypt(m, k). There are no transitions of the system
from any state which give high-level output. There
fore, for Restrictiveness to hold, it should be possible
to perform a transition starting at w, giving low-level
output encrypt(m, k). But there are no transitions
giving output which are immediately possible from w,
so the system is not Restrictive. The problem arises
because Restrictiveness requires outputs to be simu
lated with sequences of outputs, rather than arbitrary
sequences with the correct low-level part.

Since this system is nondeterministic, its security
cannot be analysed using Noninterference [2] or Bieber
and Cuppens' causality [1].

McLean's FM [8] gives a sensible answer for this
system, and in fact can detect probabilistic attacks,
which Causal Security cannot. However, FM was un
suitable for the analysis of the PE D I implementation
because the implementation had the type of high-level
audit described in the introduction, and there were
reachable states from which transitions with differ
ent effects on the low-level objects were possible, and
so the implementation was automatically insecure ac
cording to FM.

In the rest of this paper, I will describe how to add
the audit behaviour described in the introduction to

an unaudited system without losing causal security,
and I will give several ways of composing causally se
cure systems to produce a more complicated system
which is still secure. The results will be stated with
out proof. The proofs are generally easy, although
sometimes fiddly.

4 Audit files
As mentioned in the introduction, Causal Security

behaves sensibly with respect to systems satisfying au
dit behaviour described there.

This section describes a way to add a high-level
audit output to a causally secure system in such a
way that the resulting system has the audit behaviour
described and retains causal security. This involves
adding a special object to the system which ensures
that the transitions are taken in the right order, as
well as the audit output port.

Suppose that the system System1 is eS(H, L). De
fine System2 as follows.

• The index set ofSystem2 is 12 =11U{a, b}, where
11 is the index set of System l ; a (j, 11 will be the
index of the audit file, which will be a buffering
object, and b ¢ 11 will be the index of a non
buffering object which ensures that the audit is
done first

• The domain D a is as in the previous subsection,
viz. the set of finite strings whose entries are ei
ther possible initial states of System1 or quadru
ples of Systeml . The domain Db is Quadl U {e},
where Quadl is the set of quadruples of System1,
and e ¢ Quadl. If i E 11 then the domain D, is
as in System1

• The set M2 of possible initial states of System2
is the set of states UIlU{a,b} for which Ub = e
and Ua is equal to UIlU{a,b} III (the restriction of
UIlU{a,b} to 11), and moreover Ua E MI, the set
of possible initial states of System1

• The set Quad2 of quadruples for System2 is

{({b}, V{b}, K U {b}, WKU{b}) :

Wb = e,Vb = Q = (J,VJ,K,WKU{b} IK) E QuadI}

U{(J U {b}, VJU{b}, {a, b},Wa,b) :

Vb = e,wa = Wb = (J,VJU{b} !J,K,WK) E QuadI}

System2 has the audit behaviour as described in the
introduction. It is straightforward to prove that it is
eS(H U {a, b}, L).

5 Composition properties
Although some important security properties are

not easily composeable, if a security property can be
captured with a definition which satisfies some com
position results then this makes it much easier to work
with. This is because the proof that a large system is
secure can be performed in stages, where first small
subsystems are proved secure and then composition

rules are used to show that the system built from these
subsystems is also secure. In this section I will describe
several ways in which a causally secure system can be
changed while still retaining some security.

5.1 Parallel composition of systems
Given two causally secure systems with disjoint ob

ject sets, the system which is the parallel composition
of these two (without communication) is causally se
cure.

Formally speaking, suppose that the two systems
Systeml , System2 have index sets Il, 12 (with Il n
12 = 0) and sets of quadruples Quad1 and Quad2.
Let the sets of initial states for these be M 1 and M2.
Define System1 II System2 to be the system such that

• The index set is I = Il U 12

• The set of quadruples is Quadl U Quad2

• The set of initial states is M = MIx M2

Notice that the 0l?erator II is associative, so that
System1 II System2 II System3 is well defined.

If H, L are subsets of IlUn, and System1 and Sys
tem2 are causally secure with respect to the policies
(HnIl, LnIl) and (HnI2, LnI2) respectively, then
System1 II System2 is CS(H,L).

5.2 A feedback property
The following lemma is concerned with a property

of the type described in [10]. The idea of the feedback
property is that output from an output port in a secure
system can be fed back as input to an input port,
without causing a breach of security.

For the feedback property described in this section
a value is only present in the queue of values to the fed
object if it has been released from the feeding object;
in other words, the initial state of the fed object is
A. This assumption will be lifted later in this paper,
where there is a treatment of "open feedback"; under
open feedback a fed object may be fed values from
the environment as well as values released from the
feeding object.

Clearly the feedback cannot be done arbitrarily.
For instance, if a system is CS(H, L) then feeding
back output from an object not in L into an object in
L may cause a breach of security. Therefore there is a
restriction on the security status of the pair of objects
between which the feedback takes place. Moreover,
the values which are fed back must be acceptable to
the object which receives them. This gives the follow
ing condition.

Condition on i, j
OJ is an output port and O; is an input port of a
system such that the value sets Ai, A j satisfy A j ~ Ai.

Moreover, the system is CS(H, L) and either i E H or
i,j E L.

Given System1 satisfying the condition on i, j, de
fine a new system, feed(j, i,Systeml), as follows.

• The index set is 1\{j}, where I is the index of
System1

• The set Quad2 of quadruples is obtained by sub
stituting i for j wherever it occurs in the set
Quad1 of quadruples for System1

• The object O, is a buffering object. The other
objects are buffering objects if and only if the ob
ject with the same index in System1 is a buffering
object

• A state UI\{j} is in the set M2 of possible initial
states if and only if Ui = A and there is some VI E
M 1 (the set of possible initial states of System1)
such that v» = Uk for all k E I\{i,j}

Then feed(j, i,Systeml) is CS(H\{j}, L\{j}).
It is easy to check that if System1 is such that

System2 = feed(j(I), i(I), feed(j(2), i(2),Systeml))
is defined, (where i(I), i(2),j(I),j(2) are all different)
then System2 is equal to

feed(j(2), i(2), feed(j(I), i(I), Systeml))

For ease of notation I will write feed(L, System),
where L ={(j(I), i(I)), ... , (j(n), i(n))}, to denote

feed(j(I), i(I), ... , feed(j(n), i(n), System)) .. .).

5.3 A hookup property
Suppose that System1 and System2 are systems

whose objects are indexed by the disjoint sets Il, 12
respectively, and whose sets of possible initial states
are Ml, M2. Let I(out) = {j(I), ... ,j(m)} be a
set of output ports of System1 II System2, (in other
words, let each j(r) be either an output port of Sys
teml or an output port of System2) and let I(in) =
{i(I), ... , i(m)} be a set of input ports of System1 II
System2. Form the hookup system System3 by feeding
the output at j(r) for 1 ~ r ~ minto i(r). Formally,
the System3 is

feed(L, Systeml II System2)

where L = ((j(I), i(I)), ... , (j(m), i(m))}. Let HI, Ll
and H2, L2 be nonintersecting subsets of Il and of
12, such that System1 is CS(Hl, Ll) and System2 is
CS(H2, L2). Suppose that for each 1 ~ r ~ m,

• Aj(r) ~ Ai(r)

• Either i(r) E HI U H2, or i(r) E Ll U L2 and
j(r) E Ll U L2

Then it follows directly from the previous two proper
ties that System3 is

CS((HI U H2)\I(out), (Ll U L2)\J(out))

This hookup property is not the same as the com
position used in [6], under which data which is fed
into an input node must then be used as a cause of a
transition. In contrast, in the composition described
here it is possible for data to be fed into an input node
and then never used. Nondeducibility is not preserved
under the composition of [6] but it is preserved under
the composition described here.

5.4 Two very simple systems
In order to build more complicated systems it is

useful to introduce an interleaver and a doubler, which
are very simple systems which can be used for flow
control inside larger systems.

An interleaver V(i(l), i(2), 0) has input ports Oi(1)'

Oi(2), a single output port 0 0 , and no other objects.
The sets Ao , Ai(l), and Ai(2) are equal. The quadru
ples for this system are given by the schemata

({i(l)},V{i(l)},{O},W{o}): Vi(l) = ui;

({i(2)},V{i(2)}' {o},W{o}) : Vi(2) =Wo

A doubler Ni, 0(1), 0(2)) has output ports 0 0(1),
0 0 (2) ' a single input port Oi, and no other objects.
The sets Ao(1),Ao(2) are both equal to Ai. The
quadruples for this system are given by the schema

({i}, V{i}, {o(l), 0(2)}, W{0(1),0(2)}) : Vi = Wo(l) = Wo(2)

The following results hold for these two systems:
V(i(1),i(2),o) is CS({(H(a),L(a)) : a E A}) if and
only if there is no a E A such that (H(a), L(a))
is the pair .{({i(1),i(2)}, {o}),({i(l)}, {i(2),o}), or
({i(2)}, {i(l),o}).
f\(i, 0(1), 0(2)) is CS({(H(a),L(a)) : a E A}) if and
only if there is no a E A such that i E H(a) and
L(a) i- 0.
5.5 An open feedback property

If'System l is a system such that feed(j. i, Systeml)
is defined, there is no object with index j in
feed(j, i, Systeml), because the object 0 in System 1
disappears when its values are fed back. iioreover, the
object with index i in feed(j, i, Systeml) no longer
accepts input from the environment, because the only
values which it receives are those fed back. An alterna
tive way of turning System l into a more complicated
system with feedback from OJ to O, is to output all
values arriving at OJ as well as feeding them back, and
to allow values to reach O, from the environment as
well as from OJ'

Given Systernl , a system which has this behaviour
is System2, where System2 is

feed(L, (V(i(l), i(2), 0(3)) II Systeml

11/\(i(3), 0(1), 0(2))))

where L = ((0(2), i(2)), (0(3), i), (j, i(3))}, none of
i(l), i(2), i(3), 0(1), 0(2), 0(3) are in the index set for
System l , and Ai(1) = Ai(2) = Ao(3) = Ai, Ao(l) =
Ao(2) = Ai(3) = Aj .

Now suppose that Systeml is CS(H, L) and either
i E H or i, j E L. Let H2, L2 be the sets obtained from
H,L by adding i(l) and i(2) if H (resp.L) contains i,
and replacing j if it occurs by the pair i(3), 0(1). It is
straightforward, but tedious. to show that System2 is
CS(H2, L2).

5.6 Protection against high-level Trojans
Finally, I will describe a composition property

which gives some protection against Trojan horse at
tacks. The connection between composition and pro
tection against Trojans was first noticed by Millen [7].
The sort of attack against which the property gives
protection is a machine which can intercept input be
fore it reaches the system, read output from the sys
tem, and combine these two to give new input to the
system in place of the input from the external envi
ronment. This is the type of attack described in [7J.
The threat of such an attack is that high-level infor
mation may reach low-level objects as the result of this
interference. The security condition which I will de
scribe will assign high-level security to all the objects
of the Trojan; the idea is that the Trojan should not
influence the low-level operation of the system. I will
assume that the Trojan can only input to high-level
input ports. This ensures that it cannot, for instance,
feed high-level output directly back into a low-level
input port.

Let System1 be a system with index set I, contain
ing elements i, j such that O, is an input port and
OJ is an output port. Let T be a system with in
dex set J which has an empty intersection with I and
contains elements i(l), i(2), 0(3) such that the objects
Oi(l) and Oi(2) are input ports in T, 0 0 (3) is an output
port, Aj ~ Ai(2)' and Ao(3) ~ Ai. Let 0(1), 0(2), i(3)
be elements not in I U J and define A o(l) ' A o(2) ' and
A i (3) to equal Aj • Then System2 behaves as the com
posite system consisting of System1 and the Trojan T,
where System2 is

feed(L, System1 II T 11/\(i(3),0(1), 0(2)))

where L = ((0(3), i), (j, i(3)), (0(2), i(2))}.
Suppose that System1 is CS(H, L), where i E H.

Let H2, L2 be the sets obtained from H, L by replacing
j by {o(l), i(3)} wherever it occurs. It can be proved
that System2 is CS((H2UJ)\{0(3)}, L2), as required.

Acknowledgements
I would like to thank the anonymous referee who

pointed out several errors in a previous version of this
paper, and Fabio Gadducci, who did the analysis of
the PED! protocol.

References
[1] P. Bieber and F.Cuppens, "A Definition of Se

cure Dependencies using the Logic of Security,"
in Proc. Computer Security Foundations Work
shop IV, pp.2-11, 1991.

[2] J. A. Goguen and J. Meseguer, "Security Policies
and Security Models," in Proc. IEEE Computer
Society Symposium on Research in Security and
Privacy, pp.1l-20, 1982.

[3J R. Hill, EDI and X.400 using PED!, Technology
Appraisal Ltd., Middlesex, 1990.

[8] John McLean, "Security Models and Informa
tion Flow," in Proc. IEEE Computer Society
Symposium on Research in Security and Privacy,
pp.180-187, 1990.

[9] D. Sutherland, "A Model of Information," in
Proc. of the 9t h National Computer Security Con
ference, Gaithersburg, MD., September 1986.

[4] D. M. Johnson and F. J. Thayer, "Security and
the Composition of Machines," in Proc. Com
puter Security Foundations Workshop, Franco
nia, NH, 1988.

[5] Alain J. Martin, "Programming in VLSI: From
Communicating Processes to Delay-Insensitive
Circuits," UT Year of Programming Institute
on Concurrent Programming, ed. C.A.R. Hoare,
publ. Addison-Wesley, 1989.

[6] D. McCullough, "Noninterference and the Com
posability of Security Properties," in Proc. IEEE
Computer Society Symposium on Research in Se
curity and Privacy, pp.177-186, 1988.

[7] Jonathan K. Millen, "Hookup Security for Syn
chronous Machines," IEEE document TH0315
2/90/0000/0084, pp.84-89, 1990.

[10]

[11]

Vladimiro Sassone and Vijay Varadharajan, "A
Unifying Petri Net Model of Non-Interference
and Non-Deducibility Security," Technical Re
port, HP Labs Bristol, submitted to the Journal
of Computer Security.

J. Todd Wittbold and Dale M. Johnson, "Infor
mation Flow in Nondeterministic Systems," in
Proc. IEEE Computer Society Symposium on Re
search in Security and Privacy, pp.144-161, 1990.

