
r~3 HEWLETT
~!II PACKARD

Temporal Extensions to the Iris
Model in a Medical Domain

Roberto Ferrari*
Software and Systems Laboratory
HPL-91-132
September, 1991

time, temporal
representation,
query,time
granularity,
object-oriented
databases

Time is one of the most important aspects of real life.
Software systems for the management of data in a
wide variety of domains (e.g., medicine, economics)
must include information about evolution of entities
of interest, in order to perform properly. Database
systems must effectively and efficiently manage
information about time as well as the time-variations
of entities of the domains they model. The objective
of this work is to extend the functionality of an
object-oriented database system, Iris, with temporal
representation and reasoning capabilities.

* SEED student from the Universita' degli Studi di Pavia. ltalia
© Copyright Hewlett-Packard Company 1991
Internal Accession Date Only

1 Introduction
Real world entities and environments, modeled inside computerized data systems,
evolve over time. Time is a main characteristic of our life. In order to represent the
state and the evolution of modeled entities correctly and completely, temporal
information needs to be represented and managed.
In the past, automated data management systems evolved disregarding the temporal
characteristic of data as a basic feature. The first research studies regarding the
representation oftime in database management systems appeared in the 70s with the
first attempts to embody temporal information inside the conceptual models. A
fundamental chapter is represented by the Time Oriented Databank [G.Wiederhold
et ale • 1975], the first historical database in which the values that represent the state
of an entity in a particular time instant are associated with the instant itself.
Ten years later, Snodgrass and Ahn [Snodgrass R. and Ahn I. • 1986] drew a
taxonomy of four types of databases. The "snapshot" databases are the simplest ones,
available in most conventional databases. They don't treat any representation of time
at all. They model an environment as it changes dynamically by a snapshot at a
particular point in time, so the state or instance of a snapshot database is its current
content, which does not reflect necessarily the current real status ofthe environment.
There is no capability to record and process time-varying aspects of the real world.
The second type is represented by "rollback" databases, based on "transaction" time.
It is the time in which the information is stored or updated in the database, in other
words, the time in which a change in the state of the database becomes persistent.
Again, information on the "valid" or "real" time of data is ignored. A transaction
reflects the real change, obviously, if it is entered in the database as soon as the
change in the real world happens. A rollback database maybe regarded as a sequence,
indexed by transaction time, of snapshot states. The third type is represented by
''historical'' databases. They support valid time but not transaction time. Finally,
"temporal" databases support both valid and transaction time (orthogonal time axes).
In the last ten years, studies and projects concerning representation, management,
and use of temporal information have been undertaken in different research sectors,
in particular in computer science, logic, mathematics, economics. Methodologies and
semantics coming from the logic and artificial intelligence worlds [Fagan L.M.• 1980,
Shortliffe E.H. et ale - 1981, McDermott D.• 1982, Allen J.F.• 1983, Allen J.F. - 1984
have been used and adapted to solve problems and to augment the representational
capabilities of temporal data models. A complete overview about the evolution of such
approaches is given in a recent study of Snodgrass [Snodgrass R.• 1990].
New data storage technologies, such as optical disks, efficiently and cheaply store
huge amounts of information. They support research and development of new, more .
complex temporal data models and the associated query languages. In particular,
after the first models using temporal primitives "time point" [McDermott D. ·1982]
or "time interval" [Allen J.F. - 1983], more recent theories followed, using both
primitives inside the same model. Based on these primitives, complex semantics and

1

syntaxes have been developed for the definition of new constructs for query languages
(e.g, the temporal operators before, after, etc.) [Navathe S.B. and Ahmed R. - 1987,
Snodgrass R. -1987, Chaudhuri S. -1988, Gadia S. -1988, Elmasri R., Wuu G.T.J.
1990, Sarda N. - 1990].
Most of the current work is concerned with extensions of the relational model and
SQL, and with historical more than temporal databases. This limitation has been
widely accepted because, as on-line transaction processes technologies improve, valid
and transaction time will coincide.
Most recent studies deal with big issues like the time granularity problem
[Wiederhold G. et al. - 1990, Kamens S.N. and Wiederhold G. - 1990] or attempt to
couple temporal representation models to complex data models (e.g. the object
oriented data model), richer in semantic than the relational one [Kahn M.G. -1988,
Cousins S.B. et al. -1989, Kahn M.G. et al. -1991].
The work described here focuses on use of object-oriented databases as historical
databases (valid time) and defines some strategies to embed directly inside the object
oriented model, temporal representation and reasoning methodologies. At the same
time, however, theory and work developed in the relational domain have been
carefully considered.

2 The tools
Iris, the liP object-oriented DBMS [Fishman D.H. et al, - 1989, Wilkinson K. et al.
1990], and the Iris Programming Language (IPL) [Annevelink J. - 1990], an extension
of OSQL, the query language of Iris, have been used as the platform to model and to
implement the temporal constructs and methods. IPL permits to implement complex
functions and to access LISP - C library functions.

Concepts and ideas are illustrated with examples from a medical application,
monitoring patients with AIDS Related Complex (ARC).

3 The temporal object model
In object oriented databases, it is possible to model the environment of interest by
means of types (classes) that denote the complex templates representing the
conceptual entities of the particular domain. Types are related to each other in a
hierarchical taxonomy ("type lattice") that permits the specification of property and
method ("functions" in Iris model) inheritance. Objects are instances of types; they
represent the actual members of the abstract types. Their behavior is specified by the
functions defined for the types they per- tain. The ARC taxonomy is shown in the
figure 1 below.

2

ARC Taxonomy

Infecttv-.t.ngents

PatlloPhyaIo/ConceptsL. Deseases

_______________ AntiMicrobials

Drugs

----- ARCDrugs

SlngleEvents

Events -e::" ~ LabAesults~ ,,,cacs

,.".'~ -> "",,""',.
Po,,",", -----------==== ~:::/ .:

~--.. Complaints,,"" '" ,,'

" """,

",,
.. infections , , , , , ,

, , ,, , ,,. ,.,', ", ", ",. ,','
", ",,,' .> OIlherAdmins ~ SMA20s

" ,',1' _----" I':" ".,,,, _----------
";,;,, ',. ----------

,. , ,. ... '" ----
n... len ,. ",' ,...... -----.....t ts ,." " _---... ", '-------..~---

ARCPatients ...-

Figure 1. Taxonomy of classes defining the AIDS Related Complex data schema.

Full arrows represent the logical relationship "IS-A" ("specialization") between super
and sub-types. So, an object of the type ARCPatient will inherit all the properties
specified from the supertype Patient as well as ones specifically defined for the type
ARCPatient. Dotted arrows represent the "HAS-A" relationship ("aggregation")
between objects that are instances of different types: an object of the type
ARCPatients may refer to one or more objects of the type Complaints. This means
that an attribute defined, in schema definition phase, for the type ARCPAtients is
used to relate an object of type ARCPatient with one or more instances of type
Complaints.

Objects model complex entities and temporal objects model complex entities with
attributes whose values may vary over time. Some features of a complex, time
varying entity may be steady, while other time-varying ones may vary with different
rates. For example, a "patient" object has some properties (e.g. name, sex, birthday)
that do not vary with time, and others (e.g. blood pressure, temperature, lab tests
results, diseases, therapies, etc.) that do. The time-varying properties ofan entity are
the ones that let us consider the entity as a temporal entity. In the example, because
ofthe time-varying features, the entity patient has to be considered a temporal entity.
Object-oriented database systems allow one to model each entity's attribute,
depending on the nature of the attribute as defined by the schema, as a simple
property (e.g. patient's temperature) or a complex one (e.g. therapy planning). In
particular, the Iris model supports single properties of a template to be "stored"
(values for the property are stored in a table), "derived" (the property is implemented
as an SQL statement), or "foreign" functions (the property is implemented through a
programming language, e.g. IPL) whose result is of "literal" type (string, integer, real,

3

etc.). Complex properties are modeled similar to simple properties, but the result may
be of a complex, user- defined type. Figure 2 shows the properties inherited or defined
for the type ARCPatients. Examples are shown of stored functions, e.g.
"nameOfPatient", "DateOfBirth", "Sex". Creating or updating an object of type
ARCPatients, the operator has to enter the proper values for each of the stored
properties. An example of derived function is "ssnoOfPatient" (social security
number), that can be retrieved from the value entered for ''MedicalRecord''. One
example of foreign function is "Age", computed as the number of granules of granule
type "year" contained in the time interval between the actual date and the date stored
in DateOfBirth. OpportunisticInfections is a complex property whose values are
identifiers of objects of user type Complaints.

Name

ARCPatients Properties
Type Inherited from

nameOfPatlent
addrellOfPatlent
MedIealRecord
OateOfBlrth
lex
City
County
ZlpCode
InlurConltralntl
Age
IlnoOfPatient
ARCTherAdmin
OITherAdmln
CBC
SMA20
Opportunlltlelnfeetlonl

Charltrlng
Charltrlng
Integer
Integer
Charltrlng
Charltrlng
Charltrlng
Integer
Charltrlng
Integer
Integer
ARCStudyMedleAdmln.
OITherAdmln.
CBCI
SMA201
Complalntl

Patlentl
Patlentl
Patient.
Patient.
Patient.
Patient.
Patlentl
Patlentl
Patlentl
Patlentl
Patlentl

Figure 2. Property list for type ARCPatients: first and second column report
names and types of the properties, the third one the eventual types from
which the properties are Inherited.

The main topic of the time representation modeling project is described in the
following.
As shown in figure 1, the type Events and two subtypes, SingleEvents and
TimeIntervals, are defined. Type Events has two properties, "startDate" and
"stopDate", that represent the initial and end dates of time events and that are
inherited by the subtypes, SingleEvents and TimeInterval, and subsequent subtypes.
All the time-varying properties of complex temporal objects of the schema (e.g.
ARCPatients' instances) may be modeled as subtypes of SingleEvents or of
TimeIntervals, depending on their temporal behavior. Subtypes of SingleEvents
model events whose validity is certain only for a time instant (e.g. hematological test

4

on a blood sample of a particular date), whether subtypes of TimeIntervals model
events continuously valid during a time interval of definition (e.g. a therapy planning
for a patient in a particular period).

The time-stamps startDate and stopDate are implemented as stored functions of
literal type Integer. However, the users will use, at creation or update time of
temporal objects, the string format ''DD_MM_YYYY_hbmm'' for dates, with digits
corresponding to day, month, year, hours and minutes in place of letters. Properly
defined functions have been defined to perform the conversions from the string format
into the internal integer representation. The integer representation was chosen for
two reasons. The first is that it is much simpler to perform temporal operations
(comparisons, computations, etc.) on integers than on each other format. The second
reason regards time granularity and will be discussed further.
Most of the temporal templates connected by a ''HAS-A'' relationship to other
prototypical entities are meaningful by themselves and not only because of their
"HAS-A" dependency relationship. In fact, for example, the template CBCs may be
regarded by itself as the template that will collect all the hematological tests done
during a period of monitoring on the patients.
SingleEvents have both time stamps, despite their characteristic to be one instant
lasting, in order to let all the temporal operators, computation and retrieval functions
work as well on them as on actual TimeIntervals. Proper input functions may be
implemented to associate the same date value, that the users enters at creation or
update time of an object of some SingleEvents subtype, to both time-stamps.
Figure 3 reports the properties inherited by and defined for the type CBCs.

CBCs Properties

Name

atartDate
atopDate
'atlantld
WBC
RBC
HOB
HCT
PLCT
RETC

Type

Integer
Integer
Patlenta
Real
Re.l
Re.l
Re.l
Integer
Re.l

Inherited from

Event.
Eventa
Patlentlda

Figure 3. Property list for type CBCs: It's a time point type (It Inherits the time
stamps properties and the functions to manage them from the
SlngleEvents type).

5

4 Temporal operators and functions
Temporal operators [Allen J.F. - 1983, Wiederhold G. et al. - 1990], properly defined
to cover all the possibilities in order to compare time points with intervals or Intervals
with intervals, have been implemented with LISP - C library functions directly inside
the Iris kernel and model.
They operate on the integer time stamps of two different events ev1 and ev2.
The list ofsuch operators, with the description ofeach one's logical behavior, follows:

before_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 if the event e1 terminates before e2 starts

after_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 ifel starts after e2 is terminated (symmetrical ofbefore->

until_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»

the result is 1 ife1 terminates the same time e2 starts

from_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 ifel starts the same time e2 ends (symmetrical of until->

leads_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»

the result is 1 if e1 starts before e2 and e2 starts before e1 but ends before e1 ends,
e.g. e1 overlaps e2 but their extremes never coincide

lags_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 ifel starts after e2 starts but before e2 ends and el ends after e2 ends,
e.g. e2 overlaps e1 but their extremes never coincide (symmetrical of leads->

staris_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 ife1 and e2 start the same time but e1 ends before e2

finishes_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 ifel and e2 end the same time but el starts after e2 is started

6

equals_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 ifel and e2 overlap exactly

during_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»

the result is 1 ifel starts after e2 started and ends before e2 ends

spans_(startDate(evl), stopDate(evl), startDate(ev2), stopDate(ev2»
the result is 1 if el starts before e2 starts and ends after e2 ends (symmetrical of
durinV

A graphical representation of the temporal relationships between interval events, in
order to satisfy the temporal operators, is shown in the following figure 4.

Temporal Operators

B

A BEFORE B

A AFTER B

A UNTIL B

A FROM B

A LEADS B

A LAGS B

A STARTS B

A FINISHES B

A EaUALS B

A DURING B

A SPANS B

I

~

I
I
I
I
I
I
I

~
I
I
I
I

: t-I--II
I I
I I
I I
I I, ~
I I
I I
I I

: t-I--II:
I I
I I
I I
I I I

I : I
I I
I I

time line

Figure 4. Graphical representation of the temporal relationships between Interval
events In order to satisfy the temporal operators.

7

Using these operators it is possible to determine temporal relationships between two
time points, a time point and an interval or two intervals. For time points, the
startDate and stopDate coincide. In the graphical point of view of figure 4, when at
least one of the two events compared by each operator is a time point, the
corresponding interval collapses to a point, but all the logical dependencies above
remain valid. The operators can be used directly in IPL foreign functions or in OSQL
queries. A complete set of such Iris functions that permit use of LISP • C library
operators directly inside Iris functions or OSQL queries and allow refererence to
events in place of their time stamps has been defined. For example, the following
function is the Iris OSQL interface for the function before_:

create function Before_(Events evl, Events ev2) -> Integer as ipl
return before_(startDate(evl), stopDate(evl),startDate(ev2),stopDate(ev2»;

Iris functional interfaces to operators described above can be used directly to define
Iris retrieval functions. As an example, the following function retrieves all the events
of a certain type before a date:

create function SelAllEvsBeforeDate(Charstring EvType, Charstring d)
-> Events as

selecte
for each Events e, UserType t
where NameOfrype(t) =EvType and

RefsAsType(e,t) =0 and
Before_(e,DateToEvent(d» = I;

The arguments of this function are, respectively, the name of the event type of
interest (e.g CBCs, Complaints) and the date in the string format
''DD_MM_YYYY_hhm m '' . The functions NameOtType and RefsAsType are system
function, used together to retrieve instances of type Events and, at the same time, of
the user defined type. The operator Before_ will retrieve, among these objects, only
those satisfying the logical temporal implication. It has to be pointed out that if the
user defined type is a subtype of SingleEvents (e.g. CBCs) the operator Before_ will
compare time points on the time line and will return all the instant events preceding
the user date. In case the user type is a subtype of TimeIntervals (e.g, Complaints), .
the operator will retrieve all the interval events completed before the user date.
The previous function can be used, for example, in the body of another function that
refers directly to patients:

8

create function SelAllEvsBeforeDateForPat(Charstring EvType,
Charstring Date, Charstring PatientName) -> Events as

selecte

for each Events e, ARCPatients p
where PatientId(e) • p and

nameOfPatient(p) - PatientName and
e • SelAllEvsBeforeDate(EvType,Date);

In order to retrieve the events of type CBCs for the patient "HIV Albert" before the
date Jan 1st 1991 ("15_09_1991_0000") the user has to call the function with the
arguments as follows:

call SelAllEvsBeforeDateForPat("CBCs", ''IIIV Albert", "15_09_1991_0000");

An example of complex ipl function follows. Among the events of a certain temporal
type, terminated before a date and selected by the SelAllEvsBeforeDate function, this
function retrieves the event that just precedes a particular date, entered by the user:

create function SelFirstEvBeforeDate(Charstring EvType, Charstring d)

-> Events as ipI
begin

var EvObj, firstObj, comp;
EvObj := SelAllEvsBeforeDate(EvType,d);
if (EvObj != ()) then begin

firstObj := head(EvObj);
while ((EvObj := tail(EvObj» != (}) begin

comp := head(EvObj);
if ((Finishes_(comp,firstObj) == 1) or

(Lags_(comp,firstObj) == 1) or
(From_(comp,firstObj) == 1) or

(After_(comp,firstObj) -= 1)) then
firtsObj := comp;

end;
return firstObj;

end
else error(''No events of type ", EvType);

end;

9

The EvObj variable will collect in a first time the set ofevents that precede the user
date. Then, among them, the procedure loops searching for the one that is at the
shortest distance in time from the particular date. The head and tail functions in the
body of the procedure above are Xscheme functions that operates on lists and bags of
items (objects or literal values) and return, respectively the first element, or the set
of elements following the first one. It has to be observed that the use of the four
operators Finishes_ Lags_, From_ After_ is mandatory in order to perform correctly
even in case ofinterval events that may overlap.

As it can be seen from the examples, it has been attempted to maintain the Iris
"functional" style in the operators, computations, queries definition and, as a brief
consideration, it has been observed that this kind of functional approach is powerful
and quite easy to work with.

5 Time granularity
Normally, there is an appropriate time granularity for each different kind of event.
For example, the beginning ofan infectious disease is sufficiently well described, with
approximations due to uncertainty, in terms ofdays, while the therapy planning often
needs a description in terms of days, hours and minutes. In this work, it has been
decided that, at the level of physical storage, time information is represented in the
uniform format of"DD_MM_YYYY_bh m m " translated in an integer representing the
number ofminutes elapsed from the date "Jan 1st 1900 00:00" 'til the date ofinterest.
This means that the system will store only integers referring to dates in the format of
finest granularity (minutes). However, the user can enter the information about the
time stamps in the format she prefers. System functions have been provided to
convert time information entered with different granularity into dates in the
complete format above, adding defaults for lacking time granules. So, the functions
that operate and compute on integer time stamps are independent from the particular
granularity format the operator decides to use. Xscheme function that compute the
number ofgranules of different granule types (years, months, etc.) contained in time
intervals have been implemented:

granulesno(secondExtreme, firstExtreme, granType)
where the arguments &eCOndExtreme and firstExtreme are integers representing the
end and start dates, respectively, of the time interval of interest and granType is an
integer that codes the types granules in the following fashion:

1. year

2.month
a.day
4.hour

o=minute
The iris OSQL interface function for granulesno is:

10

create function GranulesNo(Integer dl, Integer d2, Integer typeGran)
-> Integer as ipl

return granuIesno(dl, d2, typeGran);
As an example, the following function uses the Xscheme function granulesno to
retrieve the number of granules of a certain type contained in the time interval
defined by two SingleEvents:
create function GranulesBetweenSingleEvs(SingleEvents ev2,

SingleEvents evl, typeGran) -> Integer as ipl
begin

if (Before_(evl,ev2) •• I) then begin
return granuIesno(startDate(evl), startDate(ev2), typeGran);

end
else begin

if (Equals_(evl,ev2) == 1) then
return 0

else
error(''Events not in the right sequence", NULL);

end;

end;

6 Examples of queries in the ARC domain
In the following we give a number of simple examples taken from a scenario that deals
with the treatment of opportunistic infections in ARC patients. During routine
treatment (study medication) of a patient affected by mY, an acute, intercurrent
infection (Opporunistic Infection 01) may arise. In this case, the therapist has to stop
the study medication and start a proper, intensive therapy for the 01. This kind of
therapy may last no more than 21 days, in order to avoid serious problems of toxicity
in the patient.
In order to perform properly the 01 therapy, each day the therapist has to consult the
archive to see which patients are under 01 treatment and he has to suspend the
treatment for those patients whose treatment period is longer that 21 days. An
example query that retrieves the patients for which the 01 treatment period is shorter
or equal to 21 days, is the following:
selectp
for each ARCPatients p, OITherAdmins oiTher
where Patientld(oiTher) I: p and

GranulesNo(DateToInt(NowO),startDate(oiTher), 3) <=21;

11

The function GranulesN'o in the query above operates on the instances of type
OITherAdm;ns and returns the number of granules of type "days" (coded with 8)
contained in the interval having extremes the startDate of each instance and the
actual date in which the therapist consults the archive, retrieved from the system
date by the function Now. The function DateToInt operates the conversion from the
string format returned by Now into the internal integer representation.
A second example of query could be to retrieve in the actua1day the patients for which
an 01 therapy has been terminated:
selectp
for each ARCPatients p, OITherAdmins oiTher
where Patientld(oiTher) • p and

Finishes_(oiTher, DateToEvent(NowO);
Since a Timelnterval event (therapy administration) is compared with a
SingleEvents (actual date) and because the particular implementation of temporal
operator (valid both for intervals than for time points), the same logical and actual
result could be obtained in the previous select statement by replacing the Finishes_
with the From... operator.
At the end of 01 therapy cycles, CBC and SMA20 tests may be requested in order to
check the toxicity level. Ifthe toxicity level is lower than 8, the study medication can
be restarted, otherwise the patient has to remain on study medication interruption
until the toxicity level decreases under 8. The toxicity level for the patient will be
tested for a period of 14 days. If after this period the toxicity level is again equal or
higher than 8, the patient will remain on study medication interruption.
The following query checks for the instances of CBC and SMA20 test results at the
minimal distance in time and not farther than 14 days from the actual date. The
patients whose tests satisfy these requests and whose level of toxicity is re- entered
into the normal range will be selected.
selectp
for each ARCPatients p, OlTherAdmins oiTher, CDCs cbc, SMA20s sma20
where Patientld(oiTher) • p and

Patientld(cbc) • p and
After_(DateToEvent(NowO),oiTher).1 and
GranulesNo(DateTolnt(NowO),startDate(oiTher), 3) <- 14 and
cbc • SelFirstEvBeforeDate("CDCs",NowO) and
sma20 - SelFirstEvBeforeDate(''SMA2Os'',NowO) and
TODclty(cbc,sma20) < 3;

12

7 Future research
One of the most important issues for future research is represented by the need to

abstract from the particular context (the ARC scenario) the semantics and the syntax
to express temporal data and queries for the widest variety of applications. The next
step of our research moves in the direction to collect and to analyze different kinds of
temporal retrieval in the same and in different domains,

The problem of time granularity is far from a solution within the present work.
We should be able to give to the user the opportunity to manage the temporal
information in the format that she or the circumstances need. For instance, let us
consider the case in which a physician interviews a patient about his past diseases. It
may happen that, for certain diseases, the patient remembers "exactly" the period of
duration in terms of start and end dates. For other diseases he can only remember the
month and the year or only the year. For example, the Patient mv Albert remembers
that he had hepatitis A in 1989 and that he was hospitalized from Feb 21st 1989 to
Apr 15th 1989. In the first months of the same year he had even recurrent
candidiasis, but he can't remember the exact dates. So, the user should be able to
represent the different illness episodes as reported by the patient: hepatitis A in the
time interval Feb 21st 1989 - Apr 15th 1983 and candidiasis "sometime" in the first
months of 1989. Actually, the second event is neither a SingleEvent, nor a
TimeInterval, as we modeled. It is, rather, an interval spanning an uncertain
duration inside the year of 1989. We should be able, however, to represent and to
manage this kind oftemporal information as well as the deterministic one.
A related problem is represented by the need to transform the time information stored
in single event format into time interval format [Wiederhold G. et al, 1990]. This need
may occur whenever data have been modeled as single events not because they are
events actually lasting only one instant but, rather, events whose values are well
known only for a little time; for example, the results of laboratory tests relative to
samples collected in a particular date (e.g. CBC, SMA20). Addressing this problem,
we should experiment with methodologies that "expand" a time point into an interval
and, at the same time, are capable to represent the a-priori unknown behavior
("pattern") of the time-varying information in the different instants of the expanded
interval. The dual operation permits us to "coalesce"into a single time interval two or
more subsequent intervals. This is possible and useful in terms of efficiency and
memory occupancy whenever the temporal behavior of the particular property is
globally homogeneous within the entire, extended interval and whenever the loss of
information about the nternal time-stamps, denoting the original extremes of validity
for the property's behavior, is disregardable.
Abstract semantics for general applications and time granularity are undoubtly the
most important issues. However, another complex and intriguing aspect of time
domain, strictly related with the previous ones, is represented by temporal reasoning.
It will be interesting in the future to experiment with methodologies that permit one
to reason on temporal data, modeled within an object-oriented database.

13

8 Aknowledgments
The author would like to thank Paul Tang's research group inside the Hewlett
Packard Laboratories - Palo Alto - CA, and expecially Jurgen Annevelink whose
comments and ideas have actively encouraged and guided the development of the
work. Thanks to the Edward Shortlift's research group inside the Shool of Medicine
Stanford University - CA for the informations about the clinical scenario and for the
precious feedback.

9 References
Allen J.F.: "Maintaining a Knowledge about Temporal Intervals", Communications of

the ACM, vol. 26, n. 11, pp. 832 - 844, 1983.
Allen J.F.: "Towards a General Theory ofAction and Time", Artificial Intelligence n.

23, pp. 123 - 154, 1984.
Annevelink J.: "Database Programming Languages: A Functional Approach",

Technical Memo HPL-DTD-90-12, Hewlett-Packard Laboratories, Palo Alto, CA,
November 1990.

Chaudhuri S.: ''Temporal Relationships in Databases", Proc 14th VLDB, pp. 160
170, August 1988.

Cousins S.B., Kahn M.G., Frisse M.E.: "The Display and Manipulation of Temporal
Information", Proceedings of the 13th SCAMC, Washington, DC, November 1989.

E1masri R., Wuu G.T.J.: "ATemporal Model and Query Language for ER Databases",
Proceedings of the 6th International Conference on Data Engineering, pp. 76 - 83,
February, 1990.

Fishman D.H. et al.: "Overview of the Iris DBMS", Object Oriented Concepts,
Databases and Applications, Kim W. and Lochovsky F.H., Eds. New York, ACM,
1989.

Gadia S.K: "AHomogeneous Relational Model and Query Language for Temporal
Databases", ACM TODS, vol. 13, no. 4, pp. 418 - 448, December 1988.

Fagan L.M.: ''VM: Representing Time-Dependent Relation in a Medical Setting", PhD
thesis, Stanford University, 1980.

Kamens S.N., Wiedrhold G.: "An Implementation of Temporal Queries for SQL",
submitted for publication in 1990.

Kahn M.G.: "Model Based Interpretation ofTime-Ordered Medical Data", PhD thesis,
University of California, San Francisco, 1988.

Kahn M.G., Fagan L.M., Tu S.W.: "Extensions to the Time-Oriented Database Model
to Support Temporal Reasoning in Medical Expert Systems", Methods of
Information in Medicine, no. 30, pp. 4 - 14, 1991.

McDermott D.: "A Temporal Logic for Reasoning About Processes and Plans",
Cognitive Science, no. 6, pp. 101 - 155, 1982.

14

Navathe S.B., Ahmed R.: "TSQL: A Language Interface for History Databases",
Proceedings ofTAlS Conference, Sophia Antipolis. France, pp. 115 - 128, 1987.

Sarda N.: "Extensions to SQL for Historical Databases", IEEE Transactions on
Knowledge and Data Engineering, vol. 2, no. 2, June 1990.

Shortliffe E.H., Scott AC., BishoffM.B, Campbell AB., Van Melle W., Jacobs C.D.:
"ONCOCIN: an Expert System for Oncology Protocol Management", Proceedings
ofthe 7th International Joint Conference on Artificial Intelligence, Vancouver, pp.
876 - 880, 1981.

Snodgrass R., Ahn I.: "Temporal Databases", IEEE Computers, vol. 19, no. 3, pp. 35
42, September 1986.

Snodgrass R.: "The Temporal Query Language TQuel", ACM Transactions on
Database Systems 12,2, pp. 247 - 298,1987.

Snodgrass R.: "Temporal Databases: Status and Research Directions", SIGMOn
RECORD, vol. 19, no. 4, December 1990.

Wiederhold G., Fries J.F., Weyl S.: "Structured Organization of Clinical Data Bases",
Proceedings of the AFIPS National Computer Conference, AFIPS, pp. 479 - 485,
1975.

Wiederhold G., Sushil J., Witold L.: "Dealing with Granularity ofTime in Tempoaral
Databases", submitted for publication in 1990.

Wilkinson K., LYngbaek P., Hasan W.: "The Iris Architecture and Implementation",
IEEE Transaction on Knowledge and Data Engineering, vol. 2, no. 1, March 1990.

15

