
n.,H&WLETT
~PACKARD

Automated Link Creation in a
Hypertext-based Software
Reuse Library

Christine L. Tsien
Software and Systems Laboratory
HPL-91-131
September, 1991

software reuse,
software reuse
library,
hypertext,
automated
linking

The goal of this project is to explore techniques for making software
reuse effective. As the development of large software systems
continues, the idea of reusing software from previous applications
becomes attractive as a means for improving productivity and
increasing software quality. Important to such goals is the
availability of software components which are well-documented,
readily accessible, understandable, and reliable. Software reuse
libraries are designed to maintain such components. Because of the
large amount of information that may potentially be in a software
reuse library, however, a user needs to be able to quickly find,
retrieve, and understand a particular software component if reuse is
to be fully taken advantage of.

In this project, I aim to make information access, in the context of
an existing software reuse library, more efficient. I begin by
defining a set of catalogue conventions for the software components
of the library. I then develop a system which incorporates these
conventions into the library search process. Relevant pieces of
information within the library are connected together, or linked, to
allow easy reference amongst similar subjects. This is achieved by
providing a means for automatically generating hypertext links at
library creation time.

© Copyright Hewlett-Packard Company 1991

Internal Accession Date Only

Contents

1 Introduction

1.1 Motivation for Automatic Linking

1.2 Previous Related Work.

1.3 Thesis Organization . .

2 Background: Kiosk System

2.1 Overview .

2.2 Cost++ Import Tool .

2.2.1 Meta Description.

2.2.2 Link Description .

2.2.3 Network Description

3 Catalogue Conventions for a Software Reuse Library

3.1 Defining a Set of Catalogue Conventions

3.2 Incorporating Catalogue Conventions into Kiosk

4 Internal Linking System

4.1 Design Overview . . .

4.1.1 Specifying Link Types

4.1.2 Executing Feature Extractors

4.1.3 Creating Actual Links

4.2 Implementation Detail

4.2.1 Implementation Overview

4.2.2 Organization of the SearchInfoTable

4.2.3 Organization of the LinkInfoTable .

4.2.4 Dependencies Among Abstract Types

5 Summary and Conclusions

1

3

3

4

4

6

6

6

7

8

8

9

9

9

12

12

12

13

15

15

16

16

17

17

21

5.1 Assessment of Link Generation System .

5.2 Future Work .

5.2.1 Minor Modifications to Project Work

5.2.2 Not-so Minor Modifications .

A Sample Data File

B Sample Feature Extractor

21

21

22

22

25

30

C Abstract Types 31

C.1 The Searchlnfo Data Abstraction. 31

C.2 The SearchlnfoList Data Abstraction . 31

C.3 The SITelt, .Searchlnfo'Iable, and SearchlnfoTable Data Abstractions 32

CA The Search.func.database and Search.func, database..elem Data Abstractions 32

C.5 The LinkSpot and LinkSpotList Data Abstractions. . 32

C.6 The LinkInfo and LinkInfoList Data Abstractions. 32

C.7 The LITelt and LinkInfoTable Data Abstractions . 33

1 Introduction

As technology continues to advance the power of computers, large application software sys
tems are being created. With the development of these software systems comes the notion
of reusing those pieces of the software development process which may be similar or un
changed across applications. These software "components" 1 are fotentially effective means
for increasing programmer productivity and software reliability. 16, 10, 12] This potential
benefit is derived from the availability to application developers of well-documented soft
ware components which are readily accessible, understandable, and reliable. Maintaining
such software components is the goal of a software reuse library.

A software reuse library generally consists of a number of software components which are
accessible by users of the library. These components may be documentation, test cases,
known bugs, user attempts, etc., as well as source code files. A large set of reusable
components needs to be available for reuse to be effective.[3] However, a large amount of
information stored in a software reuse library makes the ability to quickly find, retrieve, and
understand a particular software component an important factor in reuse effectiveness. [7,
17] When a reuse library is based upon a hypertext 2 system of nodes and links, software
reuse can be facilitated by creating links among related pieces of information[16] within
that library.

1.1 Motivation for Automatic Linking

In a system containing many items which will be browsed through, connecting related
items may be a method for facilitating the retrieval of desired information. In the case of
a software reuse library which is based upon a hypertext system, hypertext links are the
natural way for implementing such a facility.

By linking related pieces of information in a library, a user can potentially find a desired
software component more easily, as well as better understand a component which has
already been found. These two advantages are achieved through the existence and the
presentation of external links" and internal links. 4 During the search for a particular
library component, external links can help the user to reach that component from a related
component, which mayor may not be of the same software module. After a desired software
component has been found, the user can follow internal links to better understand and
become familiar with the details of this module.

Because reuse libraries can be potentially huge collections of information, the idea of cre
ating external and internal links by hand within such a library quickly becomes infeasible.
Instead, a method for automatically creating such links becomes attractive.

The existing software reuse library framework which will be the focus of my efforts is

1 Throughout this document, software "module" will refer to an abstract piece of software, such as a procedure or a particular
functionality. Software "components" are tangible parts of a software module, such as source code, documentation, test cases,
user attempt reports, and makefiles. A software reuse library is likely to contain several components for any given module.

2Hypertext is a technology which allows text files to be interconnected in such a way that one can traverse these connections
(referred to as links) from a given text file (referred to as a node) to reach other text files (connected nodes).

3 External links are those which connect one component to another component within a reuse library.

4 Intemallinks are those which connect related pieces of information, residing in possibly different component files, about
anyone particular software module in a reuse library.

3

the Kiosk system.[6] This system supports the creation, maintenance, and presentation
of reuse libraries whose structures are determined by the specifications outlined in data
files.5 Prior to my work with the system, Kiosk had a method for generating the external,
structural links with which to create library networks. My work focuses on developing the
automatic generation of both external, cataloguing links, and internal links for Kiosk.

1.2 Previous Related Work

The idea of software reuse has been around since 1969.[3, 6] Of the various efforts which
have been made and are being made to increase the cost effectiveness of the software devel
opment process, three areas are of particular interest to this project. These areas include
hypertext systems for reuse, catalogue and classification schemes for library components,
and information retrieval techniques for a reuse library.

Hypertext is one area in which efforts have been made. Frakes and Gandel [8] compare
different methods, including hypertext, for representing software components for reuse.
Carando [4] suggests that hypertext systems provide certain advantages over other systems
for software engineering databases. She claims the advantages to be "easy access to the
information; visual representation of project elements and relations; and explicit, nonlinear
recording of relations."

In addition to hypertext, efforts in catalogue and classification schemes are of inter
est. Several different projects have developed their own cataloguing schemes for software
components.[9, 16, 2, 14] The purpose of developing a cataloguing scheme for the compo
nents of a reuse library is primarily to provide at least a minimal set of information needed
by a library user to understand a particular module. The pieces of information which
constitute an optimal, minimal set is currently undetermined. A different but related issue
involves the classification of the software components in a library.[17, 14] Here, the focus
is on how the various components should be related to one another.

Finally, information retrieval techniques for a reuse library are of interest. Monegan [16]
discusses component selection and retrieval in general, and describes the method of re
trieving information with his ORT tool. 6 Fischer, Henninger, and Redmiles [7] address
issues on information access in their system, called CODEFINDER.

1.3 Thesis Organization

The remaining sections present the details of my design and implementation of automatic
link generation capabilities for the reuse library system called Kiosk.

Section two presents an overview of the Kiosk system. This section also elaborates upon
an existing part of the system, the import tool called Cost++, which becomes fundamental
in my link generation process.

Section three describes the development of a set of cataloguing conventions for components
of a software reuse library. It first discusses my design of the set of conventions, and then
details how I incorporated such a set into the Kiosk system.

5Section 2 describes the Kiosk system and the notion of data files in more detail.
6 Object-oriented Reuse Tool is a tool which provides support for the reuse of object-oriented software.

4

Section four focuses on my design and implementation of a method by which intemallinks,
to support efficient software reuse, can be automatically generated at library creation time
for the Kiosk system.

Section five assesses the effectiveness of the automatic link ~eneration capabilities in pro
moting efficient search and retrieval of library components III Kiosk. Possible future ex
tensions to the project are also discussed.

5

2 Background: Kiosk System

This section presents a brief description of the Kiosk reuse library system. Special emphasis
is given to describing the existing library import tool, Cost++, which plays a large role in
the internal link generation system which I later develop, detailed in Section 4.

2.1 Overview

Kiosk is a system that contains and manages libraries of reusable software components.[6]
The Kiosk system uses a tool called Cost++ to import existing software components into
a reuse library structure based upon the specifications detailed in input data files. 7 The
Kiosk system also provides browsers with which an application developer can interactively
search as well as augment a reuse library. Components, in the form of files, are thought of as
nodes in a hypertext representation. Hypertext links are used to represent the connections
amongst and within files.

2.2 Cost++ Import Tool

The import tool, Cost++, is the means by which a collection of files are linked to one
another to form a classification network, or library. Cost++ is also the means by which
internal links in the network are to be generated, as discussed in Section 4.

A Kiosk library can be thought of as a tree-like'' structure with "classification" nodes as
the internal nodes and clusters of "hub" and "spoke" nodes as the "leaves". The "leaf
clusters" each contain one hub node with possibly multiple spoke nodes attached to the
hub. The different types of nodes in a Kiosk library are:

1. Classification nodes - These are nodes which make up the internal structure of
a library representation. Classification nodes connect to either other classification
nodes or to hub nodes. Which nodes are connected to which others depends upon
the attributes of each.

2. Spoke nodes - These nodes consist of the files corresponding to the components of
a software module. Spoke nodes include source code files, header files, makefiles, test
cases, documentation files, user attempts, etc.

3. Hub nodes - These nodes provide the link between the classification nodes and
spoke nodes. Each hub node serves as the catalogue card for a particular software
module.P When viewed in the library by a user, these nodes contain the name of the
software module, a brief description of its function, the computer language in which
this module is implemented, and hooks (links) to all other pieces of information which
have been established as important in being able to understand and use the module.

Figure 1 shows an abstract representation of how the three node types are related, in the
context of a reuse library.

7See Appendix A for a sample data file.
8The library structure differs from a strict tree structure in that multiple edges (from multiple nodes) C&D point to a given

descendent node. (See Footnote 8 on page 18 for more detail.)
9 Section 3 describes in more detail the manner in which I modified these hub nodes.

6

C = classification
5 =spoke
H =hub

Figure 1: Library File Organization

A data file (given as argument to Cost++) completely specifies the manner in which a
corresponding software reuse library is structured. to Such a data file is read in during the
library-building process (during execution of Cost++). The top of the data file contains a
meta-description of the reuse library's structure. A link-description, which fully describes
the internal linking scheme of the library11, has been added to effect the desired linking
functionality. The remainder of the data file specifies the classification details of the
software components which will make up the actual library network to be created.

2.2.1 Meta Description

The meta-description is located at the very beginning of a data file and is distinguished
from the remainder of the file through the use of special delimiters. When Cost++ begins
to execute, this meta-description is scanned in, and Kiosk builds what is referred to as an
"import model". The meta-description region consists of several description lines. Each
description line details an "import model item". These import model items are used for
subsequent parsing of the reuse library network description located at the end of the data
file. Each description line contains information such as: the type of library component

10 Section 4 will describe how this data file also completely specifies what types of internal links should be created.

11 The internal linking scheme is described in Section 4.

7

for which the current model item is applicable12, the number of arguments expected for
the current import model item, the name given to a link from a hub node to a spoke
node, a search string13, an input directory which specifies where files to be linked can be
read, and an output directory which specifies where files which represent hypertext link
implementation will be stored.

2.2.2 Link Description

The link-description, which I added to support the link generation scheme, follows the
meta-description. It is also delimited in a manner which distinguishes it from the meta
and network descriptions. The linking scheme will be described in detail in Section 4.

2.2.3 Network Description

The remainder of the data file specifies the actual structure of a reuse library. Figure 2
shows an example of a small segment of such a data file. Classification nodes, which are
"nonleaf" nodes, have the label MAIN and contain names for the following: node, input
file, output file, and link. Hub nodes are also considered main nodes of the classification
network, and thus, also have the label, MAIN. Hub nodes contain the names of a software
module and of its implementation language. Following each hub node are descriptions of
the spoke files which connect to the current hub. The spoke files correspond to the software
components of the reuse library.l"

[NONLEAF {MAIN "Sets" tIll "C++/Sets" "func_view"}
[HUB {MAIN "Bitset" "C++"}

{NROFF_DOC "bitset.3x"}
{C++_SRC_CODE "bitset/bitset.c"}
{USAGE_ATTEMPT}

]]
[NONLEAF {MAIN "Hashing" tIll "C++/Hashing" "func_view"}

[HUB {MAIN "Hashtable" "C++"}

Figure 2: Network Description Format

12Example types are: c++ source code, C source code, documentation in nroff fonn, and documentation in L ATEjXfonn.
13 The specification of a seal'ch string provides an anchor for the external, cataloguing links which originate from a hub node.
HIt is sometimes necessary to refer to a node from multiple locations. This allows for the building of a lattice ("tree-like"

structure) instead of only a tree. The import data file can have reference, to objects by using a '#<label> , fonn which indicates
that the object with name <label> is to be referenced at this point, while the actual object is defined elsewhere in the data
file. An object referenced by such a label can be defined either before or after the reference.

8

3 Catalogue Conventions for a Software Reuse Li
brary

This section describes the process by which I developed and implemented a set of cata
loguing conventions in the Kiosk system. The motivation for maintaining a cataloguing
convention is to have a common basis for any given library module with which to learn
about that module and from which to find its related component files. Having such a basis
should improve reuse effectiveness by ensuring that at least a minimal amount of useful
information is available.

3.1 Defining a Set of Catalogue Conventions

An initial set of catalogue conventions for software reuse libraries has been formulated.
Tables 1 and 2 present this cataloguing information. The items in the lists have been
preliminarily determined to be useful in assisting application programmers in finding, un
derstanding, and using software components from a reuse library. In establishing such a
set, several papers related to software reuse libraries, and cataloging in particular, were
referred to for ideas on previous work.[9, 16, 2, 14]

The elements of the lists in Tables 1 and 2 are general enough that they can be applied
to other reuse libraries. Some of the terminology with which these elements have been
presented, however, is specific to the Kiosk system. IS

3.2 Incorporating Catalogue Conventions into Kiosk

A few different ideas were considered regarding how to present the catalogue information
to Kiosk library users. The most prominent of these ideas were:

1. Convert "hub" nodes into catalogue cards which hold within them all of the relevant
information needed for understanding a particular software module. This would
involve first finding the desired catalogue information from the various library files
(e.g., source code, header, makefile, man page, etc.), and then developing methods
of extracting this information in order to insert it in the catalogue card (hub node).

2. Create a separate "catalogue card" file which would hold all of the relevant informa
tion as described in the first idea. This catalogue card would then be linked to the
hub node.

3. Massage the existing hub nodes into centers, or directories, of information which can
then serve as catalogue cards. More specifically, provide hooks (links) to all of the
pieces of catalogue information, which reside elsewhere.

After weighing the pros and cons of these alternatives, the third idea was chosen. The
deciding factors included ease to the application developer in finding relevant information
about reusable software components, and feasibility in relatively rapid prototyping.

15 For example, the reference to "hub" and "classification" nodes is specific to Ki06k.

9

Table 1: Information Presented in a Hub Node

Hub nodes display:
••_==================-=••••••==-====-========-===

Name of module
Brief overview
Implementation language

Hub nodes should have links to:
==========._.===========••••••••==•••••••••====-=
Usage Syntax
Synopsis
Portability issues/requirements
File names of relevance
Other commands/options related to module
Author(s)
Performance issues. known bugs. macros used
Version number
Date created
Date last modified
Depends on. inheritance
Size of module. number of source code lines

Hub nodes have links. if available. to:
====================-============================

Man page, documentation
Source code
Makefile
Header files
Examples of use
Test cases
Reviews
Usage attempts
Trouble Shooting; person(s) to contact
User modification/customization provisions
Binaries
Testing documentation (strategy, etc.)
Detailed documentation

10

Table 2: Information Presented in a Classification Node

Classification nodes display:
===

Hame of node
Brief overview/description of the category

with possible mention of descendant nodes

The first idea listed would potentially result in a cumbersome system due to the volume of
information which would be stored in the hub nodes. Such a presentation would make it
more difficult to scan a catalogue card quickly, and thus more difficult to readily understand
the associated software module. In addition, this approach would require the development
of sophisticated extraction tools whose job would be to find and extract catalogue card
information from within software component files.

The second idea not only has the same disadvantages as the first, but also another: a
library user would need to first traverse an extra link simply to get to the catalogue card
information, only to then find it poorly presented.

The third option would provide an application programmer with a concise view of all
available information on a particular module, as well as with quick access to the file where
that information is stored. This approach does not require the development of sophisticated
extraction tools to examine catalogue card information within component files because the
information need not be extracted. The file position where the information begins needs
only to be found.

Information is searched for in the component files and in the data file. 16 For example, within
the "man page" 17 file for a module can usually be found a synopsis, author names, and the
names of "related files". Within the hub node, various labels of catalogue information (e.g.,
SYNOPSIS, AUTHOR, FILES) are placed. When a spoke file is being read in, text-based
searches are used to look for the desired pieces of catalogue information. When the places
are found at which such information is located in the files, the appropriate links from the
hub node file to the spoke files are created.

16 The implementation language for a particular software module is found from the data file.
17 On-line manual page for a software module.

11

4 Internal Linking System

This section presents my design and implementation of the internal linking system for
Kiosk. The types of these links can be specified prior to running Cost++, and then
instances of each link type are generated during library-creation time. Issues considered
during the design phase included expandability and flexibility of the system, as well as
feasibility in implementation.

Several possibilities were considered while deciding how to go about creating such a system,
particularly the method by which linking pouibilitie818 would be found. Some of these
options included using etag8[18], 8h[13], 8edl13], awk[13], per~19], and egrep[13]. I decided
to hand code the basic linking infrastructure and functionality, and then leave the method
for actually finding linking possibilities extremely flexible. This was done by allowing for
user-defined feature eztractors'" to be used for the text searches which would result in link
possibilities within files (internal link possibilities).

4.1 Design Overview

The design for generating internal links at library-creation time consists of three primary
parts. First, the desired types of links need to be specified. This includes specifying which
of the various library files the searches of each link type should perform upon. Second, the
actual routines for performing searches, feature extractors, need to run over the library
files to find potential locations for creating internal links. Finally, the resulting linking
possibilities need to be analyzed so that actual links can be created where heuristically
determined appropriate.

4.1.1 Specifying Link Types

Specification of link types is accomplished during the scanning in of the link-description
section found near the top of an import data file. An example of a link-description section
is shown in Figure 3.

Each pair of LINK items (one SRCJTEM description line and one DEST-ITEM description
line) is converted into two objects, each holding the search information pertaining to their
own particular type of search. All pairs of such LINK items are also assigned a unique ID
number (which can simply be the integers in increasing order beginning at zero). These ID
numbers will become important later in the process for associating results of SRC.lTEM
searches with their matching DESTJTEM search results. Once these two search objects
have been made, they are then put into a list which is sorted according to which model
item each searching function is intended for. For example, manner, all searching functions
intended for "NROFF..DOC" model items are stored together, while all those intended
for "C++.BRC_CODE" model items are stored with one another but separate from the
NROFF..DOC functions.

After the entire LINK description section has been scanned, the result produced is a
table-each table entry has a string name (corresponding to a model item name) and

18 Linking possibilities are described in Subsection 4.1.2.
19Feature extractors search text files for "interesting" places which may later be potentially linked to related "interesting"

places elsewhere in the library. Feature extractors can be built-in functions, programs, or shell scripts.

12

XX Link Description

{LINK

X Links between a class declaration in a
X class's member functions in C++ source
{SRC_ITEM HEADER "1"
{DEST_ITEM C++_SRC_CODE "m"

1. Links between a function definition in
X description in a documentation file.
{SRC_ITEM C++_SRC_CODE "1"
{DEST_ITEM NROFF_DOC "1"

header and that
code.
"get_class"}
"get_memfuncs"}

source code and its

"get_func_src"}
"get_func_docs"}

}

1. Links between a friend
1. of that friend.
{SRC_ITEM HEADER
{DEST_ITEM HEADER

to a class and the class declaration

"m" "get_friend"}
"1" "get_class"}

Figure 3: Sample LINK Description Within A Data File

each of these table entries is associated with a group of searches. A particular group of
searches, therefore, is associated with a model item (which corresponds to a type of software
component). Each of these groups of searches will be performed on the files having the
particular model item type associated.

4.1.2 Executing Feature Extractors

The second part of automatically generating internal links is the actual searching of the
library files, which produces possibilities for link anchors, or linking possibilities. Once
the LINK description section has been read in and the searching table built, the network
description in the remainder of the import data file is parsed. As each description line
is read, its model item name is compared against the model item names stored in the
searching table. Should there be a match, all of the searching functions stored in the
table with the current model item name will be executed on the library files (software
component files) specified by the current description line. In the case where the current
model item name is not in the searching table, no searches are performed, and hence, the
current library file will not have any internal links. For example, consider the fragment of
a network description shown in Figure 4.

13

[HUB {MAIN "Ptyopen" "C,,}
{NROFF_DOC "ptyopen.3:X"}
{MAKEFILE "ptyopen/makefile"}

]

Figure 4: Network Description Fragment From A Sample Data File

When the first description line after MAIN is read, the model item name,
NROFF..DOC, will be checked against the model item names stored in the searching ta
ble. NROFF..DOC is found to be present, so the associated searching functions, which
in this case is just geLmemfuncs20 , are executed on the file, ptyopen. 3:x. Any mem
ber functions found will produce link possibilities (described below). On the other hand,
when the next description line is read and checked against the searching table, the model
item name MAKEFILE is not found. Hence, no search functions will be executed on
ptyopen/makefile, and thus, this latter file will not have any internal links.

For those model items whose names are in the searching table, the linking positions are
determined as follows: Each search function that is executed on the current library file
scans the contents of the file for some pre-specified pattern. Whenever an instance of
this pattern is found, it is converted into a "unique" identifier string, and the current file
position is remembered. At the end of the file, the searching function returns a list of
possible link positions and their corresponding "identifier" strings, along with the current
file's name.

The returned list of link possibilities is then organized into one of two link information
tables. One of these tables is for the results of SRCJTEM searching functions, while the
second is for the results of DESTJTEM searches. Each position in these link information
tables is numbered sequentially, beginning at zero, to correspond to the numbers previously
assigned to search objects. 21 For example, link possibilities resulting from a SRCJTEM
search with unique ID number 3 will be stored in the element 3 position 22 of the SOURCE
link information table. Likewise, link possibilities resulting from a DESTJTEM search
with unique ID number 0 will be stored in the first position of the DESTINATION link
information table.

Inside of each link information table element, link possibilities returned from searches are
sorted even further: Those with the same "identifier" string are clustered in a group. Thus,
each link information table element is associated with a collection of "groups" of link pos
sibilities. For example, consider the function, geLmemfuncs, which finds locations of a
class's member function definitions, using the class name as the "identifier" string. When

20See Appendix B for a sample feature extractor.
21These numbers correspond to their array indices for efficiency in accessing table elements.

22The element 3 position is actually the fourth table entry due to the fact that the table indices begin at zero.

14

executed on the file, bitset . c, "Bitset" will serve as the identifier string for a new link pos
sibility each time a member function, such as Bitset::bumpsize, Bitset::Bitset, Bitset::clear,
and Bitset::hash, is defined. Within this same source code file, Bitsetiter::Bitsetiter is also
defined, so "Bitsetiter" will also serve as an identifier string for a link possibility. The
four link possibilities associated with "Bitset" will be grouped together, while the one link
possibility associated with "Bitsetiter" will be "grouped" by itself. Both of these groups
will be stored with the link information table element which corresponds to geLmemfuncs.

Each link information table element also stores "one..or..many" data ('1' or 'm') to be used
when deciding the manner in which multiple linking possibilities should be interconnected. 23

This information is read from the LINK description data and then stored in the correspond
ing search information object.

4.1.3 Creating Actual Links

The third and final part of generating internal links is determining which link possibilities
should be linked to which other link possibilities. After the entire network description has
been read in and the specified library files have been parsed, two link information tables,
as described above, have been created. Only comparisons between link possibilities of a
given element of the SOURCE link information table and the correspondingly-positioned
DESTINATION table element's link possibilities need be performed. The significance of
link possibilities having the same table position is that they also have the same unique
search ID, which means that they constituted a single LINK pair. For each set of pairs
of link possibilities, the SOURCE's identifier strings are checked against the DESTINA
TION's identifier strings. Anytime there is a match, links from the file positions associated
with the SOURCE's current "identifier" should be created to connect with those of the
DESTINATION's current "identifier".

At this point, which list of file positions are matched with which other list of file positions
has been determined. The next step is to use the "one.or..many" information to determine
whether: (1) a particular file position should be linked to one other file position ("I-I"), (2)
a particular position should be linked to every position in the other list ("I-m"), (3) every
position ofthe current list should be linked to the one of the other list ("m-I"), or (4) every
position of the current list should be linked to every position of the other list ("m-m").
For example, a SRCJTEM search may be to find class declarations inside of header files,
in which case the identifier string is the class name itself, and the "one.or.maay" field is
'1'. The corresponding DESTJTEM search may be to find definitions of a class's member
functions inside of source code. If the identifier string is to be the class name, then this
search's "one..or..many" field is 'm' since once class may have many member functions.

Once the internal links have all been created, the library files are then saved out (e.g., to
disk), and a new Kiosk reuse library with internal links has been created.

4.2 Implementation Detail

This subsection describes in greater detail the actual implementation of the process ex
plained in the previous subsection. 24

23The use of the "on~r.many"data is described in further detail in Subsection 4.1.3.
2. This subsection can be safely skipped by the reader without sacrificing loss in overall understanding of the linking system.

15

4.2.1 Implementation Overview

When a new ImporLmodel is created, a new SearchInfoTable object is also created as
a private member of the former. This SearchInfoTable is used to organize all searching
functions specified in the LINK description of the input data file. The initialization of a
SearchInfoTable involves creating and initializing two LinkInfoTables, which are to be used
later.

During creation of a new ImporLmodel object, ImporLmodel::_open_classijication_ data_file
is invoked. This function builds up the contents of the search table by calling Im
porLmodel::_build..Jearch_table, which then registers all of the searching functions ("fea
ture extractors") into a database (a Search_junc_database). _build..Jearch_table also parses
each LINK description line, using ImporLtable::_read_search_modeLitem, and then creates
a SearchInfo object from this parsed information. The created SearchInfo object is then
added to the SearchInfoTable, using SearchInfoTable::add_ search.

ImporLmodel: :read_in_classification_node is soon called from the top level. This func
tion will read in the network description specified in the import data file. Within this
function, various other functions are invoked, eventually leading to the execution of Im
porLmodel::dir_assisLgeneraLnode_parse_func upon each file listed in the network descrip
tion. This latter function not only parses each file to bring it into the reuse library being
created, but also calls SearchInfo Table::do_searches_ jind_lspots with the current import
model item and the current file as arguments. do_searches_find_lspots is responsible for
determining which search functions, if any, should be executed on the current file. This
function is also responsible for invoking the functions to search the files and for organizing
the resulting information (in the form of LinkInfo objects) into a structure which can later
be analyzed to determine where to create links. The LinkInfos are stored in the previ
ously mentioned LinkInfo Tables-one for storing the LinkInfos resulting from searches on
"SRC.lTEM" LINK items, and the other for storing the LinkInfos resulting from searches
on "DEST-ITEM" LINK items.

Finally, when the entire network description and corresponding library files have been
read in, and thus all of the search functions have executed when appropriate to do so,
the two LinkInfo Tables are left holding all possibilities for internal link positions. At
this time, SearchInfoTable::make_internal- .links is called from the top level function.
moke.iaternal.links filters through the information in both LinkInfo Tables: When a Link
Info's "identifier" string from an element of the SOURCE LinkInfo Table matches the "iden
tifier" string of a LinkInfo from the corresponding element of the DESTINATION Link
InfoTable, then a link is created by means of invoking LinkInfo::link_LinkSpots, which in
turn calls link.modes to create the actual links.

Descriptions of the data structures, or abstract types, used in implementing the automated
linking scheme for Kiosk are located in Appendix C.

4.2.2 Organization of the SearchInfoTable

The SearchInfoTable is the framework for part one of the generation of internal links, as
mentioned previously. The structure of a SearchInfoTable is depicted in Figure 5.

A SearchInfoTable is a table of SITeIt objects. An SITelthold a string name and a pointer
to a SearchInfoList. Each SITelt is associated with the model item whose name matches

16

this SITelt's string field. All Searchlnfo's, grouped together in one SearchlnfoList to which
a particular SITelt points, represent the various feature extractors which will be performed
on library files of the matching model item type. Each SRCJTEM Searchlnfo has a unique
identifying number, or search-UID, as does each DESTJTEM Searchlnfo. SRCJTEM
and DESTJTEM feature extractors which were specified together as a pair in the LINK
description have the same search.Uffr's.

Appendix C describes each of the portrayed objects and their functions.

4.2.3 Organization of the LinklnfoTable

A pair of LinkInfo Tables is the framework for part two of the generation of intemallinks,
as described in Subsection 4.1.2. The structure of a LinkInfo Table is depicted in Figure 6.

One of these tables is referred to as the "SOURCE" table, while the other is its correspond
ing "destination" table. ("Source" and "DESTINATION" are used in the same sense as
in the LINK description section: the source of a link and the destination of a link.) A
LinkInfo Table is a table of LITelt objects. Each LITelt holds a character corresponding
to "one.or.many" information and a pointer to a LinkInfoList. Each element of a LinkIn
fo Table corresponds to a particular Searchlnfo. Their correspondence is: the array element
index of a given LinkInfo Table element is equal to the search.Ufl) of the Searchlnfo whose
function yielded the objects of linking information held by the current LITelt.

Appendix C describes each of the portrayed objects and their functions.

4.2.4 Dependencies Among Abstract Types

The diagram in Figure 7 depicts the dependencies among the modules of the internal
link generation system. These abstract types are used to facilitate implementation of the
automatic linking scheme.

17

SearchlnfoTable

I
pointer

to
SITelt

'\
/

"unique"
identifier

pointer to
SearchInfoUst

~

pointer to
SearchInfo,

search UIO

SITelt

\
J
l SearchlnfoUst
\,
I

src_or_dest SearchInfo

one_or_many

.... feature extractor

Figure 5: SearchlnfoTable Structure

18

pointer
to

L1Telt

pointer
to LinklnfoList.
/

LinklnfoTable I

LITeIt

J

\
pointer

to
Linklnfo

LinklnfoList

,
"identifier"

strina
pointer
to Link~potList

/
\,
J

pointer
to

LinkSpot

Linklnfo

)
LinkSpotList

filename

filepos
LinkSpot

Figure 6: LinklnfoTable Structure

19

•

Import_model

~ Import_modeUtem

SearchlnfoTable --:

---iF ~ LinklnfoTable

'\Search func
_SearchlnfoTable

database -
LITeIt

SITelt / \
Search func
database_elam LinklnfoList

Search InfoList ~ ~

"::: Linklnfo

~
SearchInfo

LinkSpotList

............... ~

LinkSpot

Figure 7: Module Dependency Diagram

20

5 Summary and Conclusions

In this section, I review the goal and motivation of the project, summarize the project
results, and comment on directions for future work.

5.1 Assessment of Link Generation System

The goal of this project has been to improve software reuse effectiveness for the Kiosk
library system. Software reuse has been seen as a potential means for improving program
mer productivity and increasing software reliability. However, it has also been noted that
large collections of software components need to be available if reuse is to be effective.
With large component collections, or libraries, though, it becomes more difficult for a user
to locate specific information.

In a hypertext-based reuse library system, one attempt at helping a user to locate in
formation involves taking advantage of the nodes-and-links property which is intrinsic to
hypertext. The search for and retrieval of information can be facilitated through the
establishment of a cataloguing convention scheme and an internal linking scheme. The
catalogue conventions have been implemented to ensure that at least a minimal amount
of information about each software module in a library is both available and easily found.
The internal linking scheme has been implemented to aid in the understanding of how to
use a module once it has been found. Because of the potential number of files in a reuse
library, the links created for both the cataloguing information and for the internal linking
scheme are generated automatically during library creation time.

The effectiveness of incorporating catalogue conventions into a reuse library system will be
more readily determined as the Kiosk project progresses and the number of users increases.

The effects of the internal linking system have been monitored during and after the creation
of a reuse library. During library creation, the linking functionality has been watched to
determine the correctness of the implementation. After the creation process, the library
files have been examined to determine whether or not the generated internal links, as
specified by the LINK description and the feature extractors, connect useful pieces of
information.

The automatic linking functionality works as had been initially conceived. However, not
all internal links have been found to correctly connect related pieces of information. This
problem may arise due to the heuristic nature of the feature extractors used in determining
link possibilities. More cleverly written feature extractors have been observed to produce
fewer spurious internal links for the sample reuse library tested. Further use of the Kiosk
system will be needed to better determine the advantages and disadvantages of the internal
linking scheme.

5.2 Future Work

Without question, there is much additional work to be done to improve a user's ability to
find and understand reusable software in a library system. In the sections to follow, I will
comment on specific work for the linking scheme of the Kiosk system.

21

5.2.1 Minor Modifications to Project Work

• Make built-in "feature extractors" (searching methods of class SearchInfo) more mod
ular.

• Add the ability to count the number of source code lines when source files are avail
able, and place this information in the HUB nodes. Efficiency may be a concern
if wc -1 25 is used via system calls. Another concern is in HUB nodes which have
more than one source code file: In such cases, the sum of the lines could possibly be
reported.

• Allow the META and LINK description sections to be given in any order, with the
LINK description's presence entirely optional.

• Move the META and LINK description sections to a separate file so that the same
META and LINK specifications can be used for multiple library structures.

• Add an invocation of SearchInfoTable::do_searches-find_13pot3 to ImporLmodel:: gen·
eraLnode_parse_func if this is determined as necessary. A hook (commented lines
regarding whether or not to add SEARCH functionality) already exists in the code.

5.2.2 Not-so Minor Modifications

• Make the linking system more efficient: If a particular searching function (e.g.,
Searchlnfo::geLclass) is used by more than one LINK item, the function should only
execute once rather than executing the number of times it appears in different LINK
items.

• Might want to have the ability to restrict links to files within a HUB rather than to
all files in the classification network. A case where this would be useful has already
arisen: in linking between class member functions and their definition in documen
tation, a generic member function name, such as size, may be "accidentally" linked
to the documentation for that member function name of a different class. An idea
regarding the implementation for this would be to call the make_internaLlinks pro
cedure after fully reading in each HUB node. This procedure would then be required
to clear out the link possibilities listed in the LinkInfo Tables upon completion of
creating internal links.

• Add an extra parameter in the LINK description for specifying whether a particular
internal link type should be performed across the entire library or just within a hub.

• Depending upon presentation of link anchors to a Kiosk user, consider only creating
one link to a given file and file position. For example, if there are links from methods
of a class to the class definition, there may potentially be numerous methods. If each
of the link anchors on the class definition end are presented by their link role name
in parentheses, for example, that class definition is likely to look extremely cluttered.

• Consider adding the ability to create links from a position resulting from a search,
to a file (e.g. beginning of file), rather than to another searched position.

25 we .1 is a Unix conunand which gives the "word count"ol a file.

22

• Consider adding the ability to specify "HUB" as a model item to be searched in the
LINK description section. This would entail modifying the manner in which the file
to be searched is determined. Currently, the file to be searched is the file, named in
the network description, associated with the current model item under consideration.

• Develop more ideas for types of internal links to have in a reuse library structure.
Add their specifications to the LINK description in a data file.

These ideas are only some of the moderately specific enhancements to Kiosk's linking
system. They do not include work on the broader aspects of facilitating information
retrieval and understanding in a software reuse library. Clearly, there are more possibilities
than have been explored in this project. Nevertheless, the project has examined a number
of the issues and ideas related to the use of automatic generation of links to increase reuse
software effectiveness.

23

Acknowledgments

I would like to thank people at HPLabs: Martin Griss, for his support and supervising
of my project; Mike Creech, for his technical suggestions, feedback, and project support;
Dennis Freeze, for his help with whizzy emacs and XlI commands; Mike Lemon, for his
consistent help and advice; and Patricia Collins, for being supportive of my endeavors and
introducing me to Kiosk. I would also like to thank various professors at MIT: Peter Elias,
for supervising my bachelor's thesis write-up, for being concerned about my wrists, for
reading drafts in an excruciatingly precise manner, and for making very good suggestions
aimed at making my thesis more readable than this sentence; and Art Smith, for being
a very nice person as well as undergraduate advisor, and for supporting me in my many
endeavors.

24

A Sample Data File

The following is a sample data file included to illustrate the layout of the various sections:
Meta Description, Link Description, and Network Description. The Network Description
is a subset of an actual software reuse library specification.

1.1. Data file for CODELIBS

1.1. Meta Description

{META
{MAIN 2 ""

"$krlwc" "no"}
"" "$rlscm"

}

'1.'1.

{VALUE_LINK -1 "" 1111 1111 "" "no"
"value_link_parse_func"}

{DOC -1 "l-desc" "Description:<"
"$rlscd" "$krlwcd" "no"}

{LATEX_DOC -1 "l-desc" "Description:<"
"$rlscd" "$krlwcd" "no"}

{NROFF_DOC -1 "l-desc" "Description:<"
"$rlscd" "$krlwcd" "no"}

{SRC_CODE -1 "source_code" "Source Code:<"
"$rlscs" "$krlwcs" "no"}

{C_SRC_CODE -1 "source_code" "Source Code:<"
"$rlscs" "$krlwcs" "no"}

{C++_SRC_CODE -1 "source_code" "Source Code:<"
"$rlscs" "$krlwcs" "no"}

{HEADER -1 "header" "Header File:<"
"$rlscs" "$krlwch" "no"}

{DEPENDS_ON -1 "depends_on" "Depends On:<"
"" "" "no"}

{MAKEFILE -1 "makefile" "Makefile:<"
"$rlscs" "$krlwcs" "no"}

{CONFIG -1 "config" "Building:<"
"$rlscs" "$krlwcs" "no"}

{TEST -1 "test" "Tests:<"
"$rlscs" "$krlwct" "no"}

{INHERITS_FROM -1 "inherits_from" "Inherits From:<"
"" "" "no"}

{USAGE_ATTEMPT 0 "usage_attempt" "Usage Attempts:<" "$rlscm"
"$krlwcu" "yes" "usage" "generator_parse_func"}

{REVIEW 0 "review" "Reviews:<" "$rlscm" "$krlwcu" "yes"
"review" "generator_parse_func"}

Link Description

25

{LINK
{SRC_ITEM
{DEST_ITEM

{SRC_ITEM
{DEST_ITEM

}

HEADER
C++_SRC_CODE

C++_SRC_CODE
NROFF_DOC

"1"
"m"

"1"
"m"

"get_class"}
"get_memfuncs"}

"get_func_src"}
"get_func_docs"}

Y.Y. Network Description

[NONLEAF {MAIN "Computer Software" ""
"$krlwc/Computer_Software" "func_view"}

[NONLEAF {MAIN "Operating Systems" ""
"$krlwc/Operating_Systems" "func_view"}

[NONLEAF {MAIN "BSD" '"'
"$krlwc/B.S.D" "func_view"}

[NONLEAF {MAIN "Compatibility" ""
"$krlwc/BSD/Compatibility" "func_view"}

]]]
[NONLEAF {MAIN "Computer Languages" '"'

"$krlwc/Computer_Languages" "func_view"}
[NONLEAF {MAIN "C++" '"' "$krlwc/C++/C++" "func_view"}

[NONLEAF {MAIN "Data Structures" ""
"$krlwc/C++/Data_Structures" "func_view"}

[NONLEAF {MAIN
"Tables" "" "$krlwc/C++/Tables" "func_view"}

[HUB {MAIN "Sorttable" "C++"}
{NROFF_DOC "sorttable.3x"}
{C++_SRC_CODE "sorttable/sorttable.g"}
{VALUE_LINK "OS" "HP-UX/6.5"

"machine" "HP300"}
{USAGE_ATTEMPT}
{REVIEW}
{CONFIG "sorttable/config"}
{MAKEFILE "sorttable/makefile"}
{TEST "sorttable/QATEST/tst. c"

"sorttable/QATEST/tst.std"}
{DEPENDS_ON #"$krlwc/Element"}

]
[HUB {MAIN "Element" "C++"}

{NROFF_DOC #"$krlwcd/sorttable.3x"}
{USAGE_ATTEMPT}
{REVIEW}
{CONFIG #"$krlwcs/sorttable/config"}

26

{MAKEFILE 'lI$krlwcs/sorttable/makefilell}
{C++_SRC_CODE 'lI$krlwcs/sorttable/sorttable.gll}
{TEST 'lI$krlwct/shellutils/QATEST/tst.c"

'lI$krlwct/shellutils/QATEST/tst.stdll}
]]

[NONLEAF {MAIN "Sets ll
tIll

"$krlwc/C++/Sets" "func_viewll}
[HUB {MAIN "Bitset" "C++II}

{NROFF_DOC "bitset.3xll}
{C++_SRC_CODE "bitset/bitset.c"}
{VALUE_LINK "OS" "HP-UX/6.5"

"machine" "HP300 1l
}

{USAGE_ATI'EMPT}
{REVIEW}
{CONFIG "bitset/configll}
{MAKEFILE "bitset/makefilell}
{TEST IIbitset/QATEST/tst.c ll

"bitset/QATEST/tst.stdll}
{HEADER "bitset/bitset.hll}

]]
[NONLEAF {MAIN IIArrays" 1"1

"$krlwc/C++/Arrays" "func_viewll}
[HUB {MAIN IIAr r ayll "C++II}

{NROFF_DOC 'lI$krlwcd/dynarray.3xll}
{HEADER '''$krlwch/dynarray/dynarray.h''}
{VALUE_LINK 1I0SII IIHP-UX/S.5 11

IImachine ll "HP300 1l
}

{USAGE_ATTEMPT}
{REVIEW}
{CONFIG 'lI$krlwcs/dynarray/configll}
{MAKEFILE '''$krlwcs/dynarray/makefile''}
{TEST #"$krlwct/dynarray/QATEST/tst.c"

'''$krlwct/dynarray/QATEST/tst.std''}
{C++_SRC_CODE #"$krlwcs/dynarray/dynarray.g"

#"$krlwcs/dynarray/charbuf.c"}
]

[HUB {MAIN "Dynarray" "C++"}
{NROFF_DOC "dynarray.3x"}

{HEADER "dynarray/dynarray.h"}
{USAGE_ATTEMPT}

{VALUE_LINK "OS" "HP-UX/7.0"
"machine" "HP800"}

{REVIEW}
{CONFIG "dynarray/config"}
{MAKEFILE "dynarray/makefile"}
{TEST "dynarray/QATEST/tst.c"

"dynarray/QATEST/tst.stdll}
{C++_SRC_CODE "dynarray/charbuf.cll

IIdynarray/dynarray.gll}
]]

[NONLEAF {MAIN "Str Ings" 1"1

27

"$krlwc/C++/Strings" "func_view"}
[HUB {MAIN "String++" "C++"}

{NROFF_DOC "string++.3x"}
{USAGE_ATIEMPT}
{REVIEW}
{CONFIG "string++/config"}
{MAKEFILE "string++/makefile"}
{VALUE_LINK "OS" "HP-UX/7.0"

"machine" "HPaOO"}
{C++_SRC_CODE "string++/strxx_rep.c"

"string++/strxx_str.c"
"string++/strxx_sub.c"}

{HEADER "string++/string++.h"}
{DEPENDS_ON '''$krlwc/Stringx''}

]]]]

]
[HUB {MAIN "Stringx" "C"}

{NROFF_DOC "stringx.3x"}
{USAGE_ATIEMPT}
{REVIEW}
{CONFIG "stringx/config"}
{MAKEFILE "stringx/Makefile"}
{TEST "stringx/QATEST/strapp.in"

"stringx/QATEST/strapp.std"}
{VALUE_LINK "OS" "HP-UX/7.0"

"machine" "HPaOO"}
{C_SRC_CODE "stringx/strapp.C"

[NONLEAF {MAIN "c" "" "$krlwc/C/C" "func_view"}
[NONLEAF {MAIN "Data Structures" ""

"$krlwc/C/Data_Structures" "func_view"}
[NONLEAF {MAIN "Strings" ""

"$krlwc/C/Strings" "func_view"}
[HUB {MAIN "Mbstring" "C"}

{NROFF_DOC "mbstring.3x"}
{USAGE_ATIEMPT}
{REVIEW}
{CONFIG "mbstring/config"}
{MAKEFILE "mbstring/Makefile"}
{TEST "mbstring/QATEST/tst.c"

"mbstring/QATEST/tst.std"}
{VALUE_LINK "OS" "HP-UX/7.0"

"machine" "HPaOO"}
{C_SRC_CODE "mbstring/mbschr.c"

"mbstring/mbslen.c"
"mbstring/mbsrchr.c"}

{HEADER "mbstring/mbstring.h"}

28

"stringx/strbld.C"
"stringx/strcase.C"
"stringx/strchg.C"
"stringx/strcmpi.C"
"stringx/strdupx.c"
"stringx/strend.C"
"stringx/strhash.C"
"stringx/strnlsx.C"
"stringx/strpos.C"
"stringx/strsep.C"
"stringx/strtest.C"
"stringx/strtokx.C"
"stringx/strvec.C"
"stringx/strvcmp.C"}

{HEADER "stringx/stringx.h"}
]]

[NONLEAF {MAIN "Tables" 1111

"$krlwc/C/Tables" "func_view"}
[NONLEAF {MAIN "Symbol Tables" 1111

"$krlwc/C/Symbol_Tables" "func_view"}

]]]]]]

29

B Sample Feature Extractor

This section gives the C++ source code for a sample feature extractor used in the internal
linking scheme.

10

Requires:
Modifies:
Effectll: Performs a search on spoke _node for the names of

C++ member functions. Returns a pointer to a LinkIDfoLillt
which holds LinkInfoll corresponding to each occurrence
of a different member function name which was found.

LinkIDfoLillt* SearchInfo::get JunC_1lrC (Node *Ilpoke_node)
II
II
II
II
II
II
II
{
IIFunction for model item: C++_SRC_CODE
LinkInfoLillt *returnJil = new LinkInfoList;
LinkInfo *new linkinfo;
LinkSpotList *~ewJsI;
LinkSpot *new Jinkspot;
char *key_Iltring;

boolok = spoke_node->lletup_llearch (":: [a-z.A-Z.-l*[C]");
if (ok)

{
int Iltart_index , end_index;
do

20

{
IltartJndex = Ilpoke_node->lltream_llearch (endJndex);
if (startJndex >= 0)

{
char *match = Ilpoke_node->fetch_text (Iltart_index , end_index);

IIThe LinkInfoLillt to be returned can have elements
II (LinkInfos) that have the same ustring blc it will
II be remedied upon return to do _llearches}indJllpotll

30

key_string = Iltrtokx (match," : Coo);
newJinkspot = new LinkSpot (spoke_node, start_index + 2);
newJill = new LinkSpotLillt;
newJsl->end 0 = newJinkspot;
newJinkinfo = new LinkInfo (key _Iltring, new_lsI);
returnJil- >end 0 = newJinkinfo;

};
40

}
while (IltartJndex >= 0);

};
return (returnJil)j

}j

30

C Abstract Types

This section details the data structures created to support the linking system described in
Chapter 4.

Thirteen abstract data types were created to implement the system of automatically gen
erating links for Kiosk. These data abstractions are: Searchlnfo, SearchlnfoList, SITelt,
-Searchlnfo Table, Searchlnfo Table, Search_func_database_elem, Search_ func_database, Link
Spot, LinkSpotList, LinkInfo, LinklnfoList, LITelt, and Linklnfo Table.

The first seven data types were developed in order to keep track of and to use the searching
functions that need to be executed on specified model items. The other six data types were
developed in order to keep track of information returned from searches in order to facilitate
the actual creation of internal links. Several of these data types are either simply arrays
of specialized objects, or are those specialized objects themselves.

The following sections give further details about the data abstractions.

C.I The SearchInfo Data Abstraction

Searchlnfo is a class which represents an object that holds information related to perform
ing a search over nodes (files) in order to find positions at which to create internal links.
A Searchlnfo object consists of four fields: (1) an integer corresponding to a unique ID
number which is associated with each LINK item, (2) a character (either's' or 'd' cor
responding to whether the particular LINK item was a "SRCJTEM" or "DESTJTEM" ,
(3) a character (either '1' or 'm' corresponding to whether the current search is to result
in one link position (e.g., a class declaration) or in many link positions (e.g., all methods
of a class), and (4) a pointer to the actual function which is to do the searching of a node
(file). The class methods provide means to create, destroy, access, and alter a Searchlnfo
object.

The external functions for Searchlnfo are: Searchlnfo, Searchlnfo, is-src_or_dest, is.one.or
_many, geLfunction, geLsearch_UID, geLclass, geLmemfuncs, geLfunc-src, geLfunc_docs,
get-friend, and merqe.L'Ilists, As new built-in feature extractors are developed, they will
become methods of the Searchlnfo class.

Searchlnfo creates anew one ofthese objects, while Searchlnfo destroys (frees) it. is.src.or
_dest returns the character associated with the current Searchlnfo's src.or.dest field. Simi
larly, is_one_or_many returns the character associated with this object's one.or.many field.
geLfunction returns a pointer to the actual function which is to do the searching of a
node. Examples of such searching functions are qei.class, geLmemfuncs, geLfunc-src,
geLfunc_docs, and geLfriend. These functions rely on Node::setup-search, Node::stream
.search, and Node::fetch_text in order to find link positions. get-search_UID returns the
integer corresponding to this object's unique ID number. merge-Lnists combines two
LinkInfoLists into one, returning the merged list.

C.2 The SearchInfoList Data Abstraction

The SearchlnfoList class is simply an array of pointers to Searchlnfo objects. The imple
mentation of this array class uses that which is provided by the codelibs library.

31

As used in facilitating link generation, each SearchInfoLi8t groups together SearchInfos
(searching functions) which are to be performed on a particular import model item (e.g.,
C++.BRC_CODE, HEADER, NROFF.DOC).

C.3 The SITelt, -SearchInfoTabIe, and SearchInfoTable Data
Abstractions

The SITelt class was created to be array element objects for the array class .Secrcb
Info Table. Each SITelt object has two fields: (1) a string, called the unique..string, which
corresponds to a model item name (e.g., LATEX.DOC, C..5RC_CODE, etc.) and (2) a
pointer to a SearchInfoList.

The data abstraction, -SearchInfoTable, is simply an array of SITelt objects. This ar
ray, like the SearchInfoLi8t, is implemented using the array class provided in the codelibs
package.

The SearchInfoTable class inherits from -SearchInfoTable. The two classes are alike ex
cept that the SearchInfo Table class also has two LinkInfo Tables, source.L'[T and desiina
iion.L'I'I', as private members.

C.4 The Search.func.database and Search.func; databasa.elem
Data Abstractions

The Search_func_databa8e class is an array object of pointers to Search_func_databa8e_ elem
objects. This array is implemented using the array class from codelib», Each object of the
Search_func_databa8e_elem class has two fields: 0) a string corresponding to the name of a
function, and (2) a pointer to the function itself. These functions are the search functions
which are specified in LINK items and which will be used to search over files while looking
for link positions.

C.5 The LinkSpot and LinkSpotList Data Abstractions

The LinkSpot class provides an object used to store the location of a link anchor: (1) a
pointer to a node (the file in which the link will be added), and (2) an integer corresponding
to the file position where the link will be.

The LinkSpotLi8t class is an array of pointers to LinkSpots. Again, the implementation of
this array class is through the array object provided in the codelib8 library.

C.G The LinkInfo and LinkInfoList Data Abstractions

The LinkInfo class provides an object used to store information needed when determining
which LinkSpot8 should be linked to which other LinkSpot8. Each LinkInfo contains two
fields: (1) a string (extracted from a particular searching function), and (2) a pointer to a
LinkSpotLi8t. The string is used in determining whether or not to create intemallinks: if
the string of a particular LinkInfo object matches the string of a corresponding LinkInfo
object, then the LinkSpot8 contained in the first LinkSpotLi8t will be linked to those of the
second LinkSpotLi8t.

32

C.7 The LITelt and LinklnfoTable Data Abstractions

An LITelt is an object with two fields: (1) a character (either '1' or 'm'), and (2) a pointer to
a LinkInfoList. The character specifies whether the searching function which corresponds
to the current LITelt was expected to produce a single LinkSpot per uniquely returned
string (e.g. the position of a class declaration), or multiple ('m') LinkSpots per uniquely
returned string (e.g., positions of each member function for a particular class).

The Linklnfo Table class is an array of LITelt objects. Two of these tables are needed for
searching and linking as described. One corresponds to searches and their returned linking
information resulting from SRC.ITEM LINK items (as specified in the LINK description),
while the other is the analogous table for the information from DEST.ITEM LINK items.
The position of an LITelt in a LinkInfo Table is important-it corresponds to the search.Uffr
originally given to each Searchlnfo object. Elements of the SOURCE Linklnfo Table are
paired with the correspondingly positioned elements of the DESTINATION Linklnfo Table.

A LinklnfoList associated with a given LITelt holds all of the Linklnfos which have been
generated from performing the searching function whose search.Ufl) is the same as the
current LITelt's table position.

33

References
[1] Eric Beser. A Hypertext Reusable Library System White Paper. Technical report,

Westinghouse Electronic Systems Group, 1988.

[2] Bruce A. Burton, Rhonda Wienk Aragon, Stephen A. Bailey, Kenneth D. Koehler,
and Lauren A. Mayes. The Reusable Software Library. In IEEE Software, pages
25-33. Intermetrics, Inc, July 1987.

[3] Gianluigi Caldiera and Victor R. Basili. Identifying and Qualifying Reusable Software
Components. In Computer, pages 61-70. University of Maryland, February 1991.

[4] Patricia Carando. SHADOW Fusing Hypertext with AI. In IEEE Expert, pages 65-78.
Schlumberger, Winter 1989.

[5] Brad Cox. Building malleable systems from software 'chips'. Computerworld, pages
59-68, March 30 1987.

[6] Michael L. Creech, Dennis F. Freeze, and Martin L. Griss. KIOSK A Hypertext-based
Software Reuse Tool. Technical report, Hewlett Packard Laboratories, Palo Alto, CA
94303, March 1991.

[7] Gerhard Fischer, Scott Henninger, and David Redmiles. Cognitive Tools for Locating
and Comprehending Software Objects for Reuse. Technical report, Department of
Computer Science and Institute of Cognitive Science, University of Colorado, Campus
Box 430, Bulder, Colorado 80309, 1991.

[8] W. B. Frakes and P. B. Gandel. Representing Reusable Software. Technical report,
Software Productivity Consortium and AT&T Bell Laboratories, 1990.

[9] W. B. Frakes and B. A. Nejmeh, An Information System for Software Reuse. In
Proceedings of the Tenth Minnowbrook Workshop on Software Reuse, pages 142-151,
Holmdel, New Jersey 07733, 1987. AT&T Bell Laboratories.

[10] W. B. Frakes and B. A. Nejmeh. Software Reuse Through Information Retrieval.
In Proceedings of the Twentienth Annual Hawaii International Conference on System
Sciences, pages 530-535, Holmdel, New Jersey 07733, 1987. AT&T Bell Laboratories.

[11] Joseph A. Goguen. Reusing and Interconnecting Software Components. Computer,
pages 16-28, February 1986.

[12] Martin L. Griss. Software Reuse at Hewlett-Packard. Invited submission to the First
International Workshop on Software Reusability, January 7 1991.

[13] Hewlett-Packard Company, Ft. Collins, Colorado. HP- UX Reference, September 1989.
HP-UX Release 7.0, Volume 1, Section 1. awk: pages 95-97; egrep: pages 355-356;
sed: pages 627-629; sh: pages 630-639.

[14] Wayne Lim and Sylvan Rubin. Guidelines for Cataloging Reusable Software. Unpub
lished; Hewlett Packard and Ford Aerospace.

[15] Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. Automatically Generating
Software Libraries without Pre-Encoded Knowledge. Technical report, IBM Thomas
J. Watson Research Center, 1989.

34

l16] Michael D. Monegan. An Object-Oriented Software Reuse Tool. A.!. Memo 1118,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, April 1989.

[17] Ruben Prieto-Diaz and Peter Freeman. Classifying Software for Reusability. In IEEE
Software, pages 6-16. GTE Laboratories and University of California at Irvine, 1987.

[18] Richard Stallman. GNU Emacs Manual. Free Software Foundation, Cambridge, MA,
sixth edition, March 1987. Version 8, Section 21.11, pp. 147-152.

[19] Larry Wall and Randall L. Schwartz. Programming perl. O'Reilly and Associates,
Inc., Sebastopol, CA, 1991.

35

