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The conventional approach to causality is based on
partial orders. Without additional structure, partial
orders are only capable of expressing AND causality. In
this paper we investigate a syntactic, or logical,
approach to causality which allows other causal
relationships, such as OR causality, to be expressed with
equal facility. In earlier work we showed the benefits of
this approach by giving a causal characterization, in the
finite case, of Milner's notion of confluence in CCS. This
provides the justification for the more systematic study
of causality, without finiteness restrictions, which
appears here. We identify three general principles
which a logic causality should satisfy. These principles
summarize some basic intuitions about events and
causality. They lead us to geometric logic - the "logic of
finite observations" - as a candidate for a logic of
causality. We introduce the formalism of geometric
automata based on this choice; a geometric automaton is
a set E together with a pair of endomorphisms of the free
frame (locale) generated by E. Our main result is to
show that Winskel's general event structures are a
special case of geometrical automata.
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1 Introduction

In this paper we develop a syntactic approach to causality. We seek to find a language (a logic
or algebra) in which causal relationships can be described and to embody this in a formalism
for reasoning about reactive systems.

Causality is conventionally represented by a partially ordered set (poset). The poset whose
Hasse. diagram is shown in Figure 1 can be rendered into syntactic form as shown in Figure 2.
The arrow symbol, -+, can be read as "is-caused-by". The special symbol T, for the moment
un-interpreted, but with obvious logical connotations, indicates that the corresponding event
is initial in the partial order. A has its usual meaning of logical AND. It is clear that any
partial order could be translated into such a table, possibly infinite, using only the connective
AND. We summarise this by saying that posets express only AND causality.

One advantage of the syntactic approach is that we can easily express other forms of
causality, such as OR causality. We are accustomed to think of AND and OR as dual connectives
of comparable importance. The table below seems as meaningful as the one in Figure 2.

a -+ T
b -+ T
c -+ aVb

(We shall define an operational semantics for such tables in §3; the behaviour of this one
should be reasonably clear.) In an earlier paper we used tables like these to give a causal
characterisation, [3, Theorem 1.1], of Milner's "notion of confluence in CCS, [7, Chapter 11].
This application provides a justification for the more systematic treatment of causality in
the present paper. The reader is referred to [3, §1] for a discussion of OR causality and its
significance in concurrency theory.

The tables which we constructed above in an informal way can be seen more formally as
pairs (E, p) where E is some set of events and p : E -+ £(E) is a function ("is caused by") from
E to some logic, £(E) generated by the symbols in E. It seems to require at least the binary
connectives AND, and OR and the unary connective T. From a logical viewpoint we shall be
concerned with the model theory rather than the proof theory and we will work exclusively
with the Lindenbaum algebra of E, However, we find it convenient to continue to use the word
"logic" in preference to "algebra" partly to avoid the associations with "process algebra". The
syntax which is developed here allows us to describe causal relationships; it does not provide
us with process constructors.

One objective of this paper is to understand the requirements for a logic of causality. In
§2 we state three general principles which a logic of causality should satisfy. These principles
summarise our foundational intuitions about events and causality. They limit the possible
choices of logic and allow us to measure the expressibility of any particular logic.

In our earlier paper, [3], we restricted attention to the case of finitely many events and took
the path of least resistance by choosing classical Boolean logic as the logic of causality. This
gave rise to "tables" which we caJled causal automata. In the infinite case the choice of logic
must be made with greater care and throws up some interesting problems which are still not
completely resolved.

In §3 we show that geometric logic - the "logic of finite observations", [12] - is a suitable
candidate for a logic of causality and we introduce a formalism based on this called geometric
automata. Geometric logic, or its algebrisation, the theory of frames (locales), is the subject
matter of "pointless topology", [6]. The significance of this to computer science was first
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Figure 1: Hasse diagram of a poset

a ---t bAc
b ---t T
c ---t d
d ---t T

Figure 2: Syntactic version of the poset

noted by Smyth, [9], and followed up in Abramsky's programme, [1]. We define the concepts
needed for the present paper but refer to Vickers' introductory treatment, [12], and Johnstone's
treatise, [5], for details. A geometric automaton is simply a set, E, together with a pair of
endomorphisms of the free frame generated by E.

A key result in §3 is Proposition 3.1 which gives a topological interpretation of the free
frame. This is the essential ingredient in proving our main result, in §4, that Winskel's gen
eral event structures, [14], are a special case of geometric automata. This is an instance of
the transition from topological data (sets of points) to algebraic structures (lattices of open
subsets) which is fundamental to locale theory, [6]. This result links our ideas on causality
with Winskel's theory of events in computation, [13]; it provides a syntax for event structures
and it opens the way to giving a causal interpretation of event structure phenomena. We also
show that geometric automata give rise to domains of configurations which are more general
than the event domains of Winskel and Droste, [2].

In the concluding section we discuss briefly some open problems and some interesting
directions for further study.

2 Requirements for A Logic of Causality

In this section we discuss three general principles for a logic of causality. These principles
encapsulate some basic intuitions about events and causality. They should not be regarded as
cast in stone, but rather as defining the parameters of the present investigation.

2.1 The principle of events

This principle of events asserts that causality exists at the level of action occurrences (events)
and not at the level of actions. As I type this line of text at my word-processor I perform
various actions. For instance, the action of pressing the "a" key. Each time this action occurs,
a separate event is generated (a new ASCII characteris added to my text file). I could, if I
was sufficiently painstaking, enumerate these events from the very first time that I pressed the
"a" key during this session of typing. Each time the action occurs, the reasons for it and the
context in which it happens are different. The principle of events merely points out that in
describing causal relationships we must do so at event level and not at action level because
different action occurrences may have different causes.

All this may seem rather obvious. However, it means that when we look at a reactive
system and attempt to describe it from this causal viewpoint we have to be able to see the
individual events. The system must be transparent and not a black box. If we observe the
system in operation in this way we will necessarily see a sequence of distinct events.
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Definition 2.1 A string s E E* over some alphabet E is said to be pure if each symbol in E
appears at most once in s.

We will use the notation E*P for the set of pure strings over E. Recall that a subset T ~ E*
is a trace set if T is non-empty and prefix-closed: e E T and st E T ::::;. sET. Note that E*P
is itself a trace set. A pure trace set is a trace set contained in E*p.

Transparent systems generate pure trace sets. Not only do we regard each symbol on a trace
as a separate event but we regard the same symbol on different traces as the same event. Hence
the trace set {c,a, b, ab, ba} can be unambiguously reconstructed into the reactive system which
has two events a and b which are concurrent. There are other reactive systems which might
appear to generate the same set of traces, for instance one where there is a choice between
the two interleavings of a and b. But transparently, this system has four events, although only
two actions. We would actually see traces like {s, u, v, UW, vx} where, say, events u and x are
occurrences of action a and events v and ware occurrences of b.

It appears from this discussion that pure trace sets are equivalent to transparent reactive
systems and we might as well throwaway the systems and work with the trace sets. If our
aim is to set up a formalism based on a logic for causality then the power of the logic 
its expressibility - should be assessed by determining the class of pure trace sets which the
formalism generates. This is the mathematical content of the principle of events.

Actions can be recovered from their underlying events through a labelling function as is done
for labelled event structures and pomsets. This amounts to a process of abstraction: different
events are deemed to represent the same action. In this paper we shall not be concerned with
labelled automata.

2.2 The principle of irrelevance of history

Consider the pure trace set T1 = {s, a, b, ab, ba, abc, bad}. The events c and d depend on the
order in which the events a and b have occurred. If a happens before b then c occurs but not
d and vice-versa. In other words, history is relevant. To describe this in our logic of causality
it seems inescapable that we would need logical formulae f E £(E) whose truth depends on
sequences of events. This would appear to be a more discriminating and complex logic than
one based on sets of events. In this paper we choose to avoid this possibility; for us, history
will not be relevant. We stress that this is purely for reasons of convenience. We believe that
history is very relevant and that we must come to terms with it in the future if we are to fully
understand causality. By treating first the simpler problem we hope to lay the foundation for
a study of the more complex one. We shall mention some of the directions that might be taken
in §5.

The principle of irrelevance of history has two mathematical consequences. Firstly, it tells
us something about the model theory of our logic. The truth of a logical formula will be
determined by sets, as opposed to sequences, of events. Hence we expect a pairing between
sets of events, S E 2E , and formulae, f E £(E):

S(J) = { ;.

Secondly, it rules out of consideration certain pure trace sets, such as the one above, in assessing
our logic. How can we describe the trace sets for which history is irrelevant? .

We need some notation for strings to start with. The prefix ordering on strings, s, t E E* ,
will be denoted s ~ t. The notation s f'V t will indicate that 's and t are permutations of each
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other. If T is a trace set and 8 E T, then [8] will indicate the equivalence class of 8 up to
permutation in T:

[s] = {t E Tit rv s}.

On such equivalence classes, which form the set T /rv, one can define the prefix ordering up to
permutation: [8] ~ [t] if, and only if, 3s1 E [s], t 1 E [t] such that SI ~ tl. It is easy to see that
this relation on T / rv is reflexive and anti-symmetric. It is not, however, always transitive, as
the trace set T1 above makes clear: [a] ~ lab] and lab] :5 [bad] but [a] i. [bad]. This captures
exactly what we mean by history-relevance.

Definition 2.2 A trace set T is transitive if the prefix ordering up to permutation is transitive.
That is, if (T / rv, :5) is a partial order.

For the rest of this paper we shall concentrate on pure, transitive trace sets. The par
tial order (T / rv,~) will turn out to be particularly significant when we consider domains of
configurations.

2.3 The principle of finite causes

It is clear that our logic of causality must have a connective resembling AND. When there are
infinitely many events available this raises the possibility of an infinitary conjunction:

e ~ !\{el e2 ... e ...}, , ,n, .
.

The problem with this is clear: the event e could not take place until infinitely many events
had occurred. An infinitary disjunction, on the other hand, is much better behaved:

e ~ V{el e2 ... e ...}, , ,n, .

Here e could occur after any of the ei, a form of infinite choice. It is interesting that the
intuitive duality between AND and OR which we argued for in §1 disappears in an infinite
context.

The principle of finite causes is customarily invoked - in event structures for instance - as a
way of avoiding infinitary conjunction. We could, of course, simply rule out the use of infinitary
conjunction in our logic of causality. However it is more insightful to state the principle of
finite causes in terms of the model theory in the following way: the validity of any formula in
our logic should be determined by its value on just the finite sets of events. More precisely, if
Fin(E) ~ 2E denotes the set of finite subsets of E, and f,g E £(E) are formulae in our logic
such that

{S E Fin(E)IS(J) = T} = {T E Fin(E)IT(g) = T}

then f = 9 in £(E). This has the effect of directing our attention towards the set Fin(E). Its
structure seems to be of great significance in understanding logics of causality.

This completes our discussion of the principles required bya logic of causality. In the next
section we introduce the particular candidate, geometric logic, which we will study in the rest
of the paper.
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3 Geometric Automata

The principle of finite causes draws our attention to the discrepancy between infinitary 0 Rand
infinitary AND. This should warn us that the customary dualities of classical Boolean logic are
threatened in the infinite case. A similar phenomenon has been observed in geometric logic,
the "logic of finite observations", [12, Chapter 2], for much the same reasons. This suggests
that we examine geometric logic as a candidate for a logic of causality.

Geometric logic is an infinitary intuitionistic logic. The Lindenbaum algebra of a geometric
theory is referred to as a frame, [6, 12]. Recall that if (F,~) is a poset then a subset S ~ F
has a meet (greatest lower bound), m = 1\ S, if m ~ x for all xES (m is a lower bound)
and, if m' has the same property, then m' ~ m (m is the greatest lower bound). A similar
definition holds for the join (least upper bound) of S, denoted VS. Note that x ~ y if, and
only if, x /\ y = x; similarly, z ~ y if, and only if, x V y = y.

Definition 3.1 A frame F is a poset in which (1) all finite meets exist; (2) arbitrary joins
exist; (3) binary meets distribute over arbitrary joins, a /\ ViEI{bi} = ViEI{a /\ bi}.

Historically, frames arose not from logic but from topology: they were the posets of open
subsets of a topological space, In a topological space, meet corresponds to intersection of open
subsets and join to union; the distributive law comes for free. The move away from topology
as "sets of points" to topology as "lattices of opens" (pointless topology or locale theory) is
ably documented in Johnstone's survey, [6].

We denote 1\ 0, the greatest element of F, by T, and V.0, the least element, by F. The
simplest non-degenerate frame, the Sierpinski frame, is the poset 2 = {F, T} where, of course,
F ~ T. IT F and G are frames, a frame homomorphism is a function f : F .... G which
preserves meets and joins and hence preserves the partial order and T and F. Frames and frame
homomorphisms form a category, Frm. Taking the poset of open subsets is a (contravariant)
functor from the category, Top, of topological spaces and continuous maps, to Frm. (In
pointless topology one prefers to work in Frm'?', the category of locales, [6], but this distinction
need not concern us here.)

When compared with complete Boolean algebras and complete Heyting algebras, frames
have a better algebraic theory. Despite the infinitary operation, they can still be constructed
by generators and relations. (Frm is algebraic over Set, [5, §II.1.2].) Given a set E there
exists a free frame generated by E, denoted Fr(E). Fr: Set .... Frm is the left adjoint
to the forgetful functor and Fr(E) is defined up to isomorphism by the following universal
property. There exists a set function i : E .... Fr(E) which is initial in the following sense:
given any other set function f : E .... G from E to some frame G, there exists a unique frame
homomorphism f : Fr(E) .... G such that f = fi. We shall drop the function i and identify
elements of E with their images iCe) E Fr(E). Similarly, we shall use the same notation for
the set function f and its lifting to a frame homomorphism. .

In marked contrast to frames there is no free complete Boolean algebra or free complete
Heyting algebra on countably infinitely many generators, [5, §I.4.1O], a problem which will
confront us later. For the moment our first concern is with the structure of Fr(E).

IT (X,~) is a poset, xi will denote the upward closure of x E X: xi= {yE X I x ~ y}.
This can be extended to subsets: if S ~ X, then Si= UXES{xj}. A subset S is upward closed
if S = Si. Downward closures will be denoted xL Sl. The collection of upward (downward)
closed subsets of (X,~) forms a topology on X, the Alexandrov topology, [12, §3.6.2], denoted
Xi (Xl).
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v(f) = { ;

Of particular interest to us are topologies on Fin( E) which we consider as a partial order
under inclusion of subsets. Let () : E -+ Fin(E)j be defined by 8(e) = {e}j. As discussed
above, this lifts uniquely to a frame homomorphism on Fr(E).

Proposition 3.1 (): Fr(E) -+ Fin(E)j is an isomorphism of frames.

Proof: Johnstone's proof that Frm is algebraic over Set, [5, §II.1.2], shows that Fr(E) may
be represented, up to isomorphism, as M SL(E)l where M SL(E) is the free meet semi-lattice
generated by E. In this representation, a generator e E E corresponds to e] in M S L(E)l. Now
MSL(E) is simply Fin(E)OP as a poset and hence MSL(E)l can be identified with Fin(E)j.
Under this identification, the generator e corresponds to {eH. The result follows.

QED

The real content of this result is, of course, Johnstone's construction of the free frame.
However, the result has a special significance for us: it is the "crucial characteristic property
of {AND,OR} causality", [3, Lemma 3.1], placed in its correct setting and it is the key to our
causal interpretation of event structures in §4.

In order to relate frames to the discussion in §2 we need to reintroduce the logical dimension
which has been missing so far. In the trivial frame, 2, the operations of meet and join are
identical to AND and OR if T and F are interpreted as "true" and "false". Let E be a set
and v : E -+ 2 be any set function. By the universal property of free frames, v lifts to a
frame homomorphism v : Fr( E) -+ 2. This corresponds to a valuation on Fr(E) in which
the elements e E E with v(e) = T are given the value "true", all other elements of E are
valued "false" and meet and join are interpreted as AND and OR. We shall identify a function
v: E -+ 2 with the characteristic function ofthe subset {e EEl veE) = T} so that statements
like v ~ w have an obvious meaning. If S ~ E then vs will denote the corresponding valuation.
We have a pairing

between subsets v E 2E and formulae f E Fr(E). This is what we expect from the principle
of irrelevance of history as discussed in §2.2.

Lemma 3.1 For any f E Fr(E), ()(f) = {v E Fin(E) I v(f) = T}.

Proof: Let ()1 : Fr(E) -+ Fin(E)j be defined by 81(1 ) = {v E Fin(E) I v(f) = T}. Since the
frame operations in Fin(E)j are set theoretic, it is easy to check that ()1(I A 9) = ()1(I) n81(9)
and ()1(ViEI{Ji}) = UiEI{()1(fi)}. Hence 81 is a homomorphism of frames. By the universal
property of Fr(E) it is sufficient to check that 8 = 81 on elements of E. For e E E, and any
valuation v : E -+ 2, v(e) = T if, and only if, e E v. That is, if, and only if, v E {eH. It follows
that 8(e) = {e}j= {v E Fin(E) Ivee) =T} = 81(e). Hence 8 =81 and the result follows.

QED

The Lemma shows immediately that the principle of finite causes, §2.3, is obeyed. It
appears that Fr(E) is a good candidate for £(E). However, as it stands, a table of the form
p : E -+ Fr(E) would be incapable of representing the trace set {E:, a, b}. Indeed, when E is
finite, such tables are exactly the {AND, OR} automata of [3] which represent only the confluent
trace sets, [3, Proposition 3.1]. This brings us to the major problem of a causal logic: dealing
with choice or conflict. (We will return to the question of expressibility of the logic later in
this section.)
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It seems clear that conflict is related logically to negation. If we attempt to incorporate
negation into geometric logic we move inexorably towards a full Boolean algebra. Of course,
frames have a negation anyway, the pseudocomplement of the corresponding complete Heyting
algebra, [5, §I.l.11], [12, §3.1O]. As one might expect, this has quite the wrong interpretation
in the model theory: the pseudocomplement of an upwards closed subset is always empty. The
correct interpretation comes from looking at both the upward and downward closed subsets
of Fin(E), corresponding to formulae in Fr(E) and their "negations". The smallest topology
containing both Fin(E) i and Fin(E) 1 is evidently the discrete topology on Fin(E): the
complete Boolean algebra 2F in(E ) . In the finite case this is free; in the infinite case we know
that it cannot be, as pointed out earlier. It is not at all clear how 2F in(E ) can be presented
algebraically.

In this paper we shall sidestep this problem by dealing with choice in the operational
semantics of the table formalism rather than within the logic of causality. This trick is entirely
contrary to the spirit of the present paper but is justified because of the insight it gives into
event structures. Because of the general acceptance of event structures as a formalism for
dealing with concurrency, [11, 10, 14], and their importance as a link to the domain theory of
Scott, [2, 8, 13], we feel that a causal interpretation of them is interesting enough to defer a
purely logical treatment of conflict.

Definition 3.2 A geometric automaton, G, is a triple, (E,p,O') where E is a set of events
and p, 0' : E -+ Fr(E) are a pair of functions from E to the free frame generated by E.

We will sometimes use subscripts, EG, PG, O'G to avoid confusion. E is the carrier of G and
p and 0' are, respectively, the positive and negative causality functions. Conflict arises from
the tension between them as the following operational semantics makes clear. Recall that for
any set E, v0 is the all-false valuation: v0(e) = F for all e E E.

Definition 3.3 Let G = (E,p,O') be a geometric automaton. The event e E E is said to be
enabled in G ifv0(p(e)) = T and v0(0'(e)) = F.

Note that, by Proposition 3.1 and Lemma 3.1, v0(J) =T if, and only if, f = T.

Definition 3.4 The automaton G = (E, p, 0') offers the event e and evolves into the automaton
G' = (E', p', 0"), denoted in the usual way by G ~ G', if, and only if, the following conditions
hold: (1) e is enabled in G; (2) E' = E - {e}; (3) p' = p[TIe]; (4) 0" = O'[TIe].

The use of V0 corresponds to setting each of the generators in E to F; informally, no event
has yet been offered. Those events which can be offered are the enabled ones: those for which
the positive causality is "on", T, and the negative causality is "off", F. When e is offered,
we substitute for this generator the value T, as in condition 3 above, and a new automaton
emerges.

An example may help to make the semantics less abstract. Consider the automaton G
shown below, where the positive causality is written in the first column of the table and the
negative causality in the last column.

T a F
G= T b F

a v b c aAb
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According to Definition 3.3, the only enabled events are a and b. If a is offered, the automaton
evolves into

since T V b = T and T 1\ b = b.
evolve to the automaton

H=1TbFl
~

The event c has now become enabled.

K=I T b F I
If c is offered, then we

L=I T c T I
which can then proceed to offer b. On the other hand, if H had offered b instead of c, we would
evolve to the automaton

in which c is no longer enabled. The automaton L is dead and can offer no events. The
behaviour of G if it offers b to begin with is symmetrical. The traces of G are seen to be
{E,a,b,ac,bc,ab,ba,acb,bca}.

An automaton H is said to be derived from G if there are a sequence of automata
G1 , · · · ,Gn , where n 2: 1, such that,

The set of derived automata of G is denoted Der(G). Note that G E Der(G), corresponding
to the case n = 1, when G = H. Der(G) forms a labelled transition system, LTS(G), under
the operational semantics defined above:

LTS(G) = (Der(G),Ea,~),

where ~~ Der(G) X Ea x Der(G). The string el e2 ... en-l E (Ea )*P is referred to as a
trace of G. The empty string, E, corresponds to the case n = 1. The set of traces is denoted
traces(G); it is clearly a pure trace set as defined in §2.1. Since we have carefully avoided
history relevance, the following result is hardly surprising.

Lemma 3.2 If G is a geometric automaton then traces(G) is a pure transitive trace set.

However, not all such trace sets arise in this way. It is not hard to show that the fol
lowing pure transitive trace set {E,a,e,ab, cd, abc,cda, abed, cdab} cannot be the traces of any
geometric automaton. Hence geometric logic, despite the trick of negative causality. Ia not as
expressive of causal behaviour as we would ideally like. In this respect we mention without
proof that any finite pure transitive trace set is the traces of some causal automaton (ie: where
full Boolean logic is used). This draws our attention once again to problem of the structure of
2Fin(E ) when E is infinite.

An alternative discussion of the operational semantics of geometric automata may be found
in [4]. It is equivalent to the one given above but recasts the behaviour in terms of the concepts
of "observation" and "state". It is, in some ways, a more attractive treatment but it is unsuited
to discussing event structures and we have chosen not to adopt it here.

This completes the introductory material on geometric automata. Before embarking on
the next section it will be convenient to record a lemma which we will need later. Suppose
that e E E and F = E - {e}. If c ~ Fin(E} let re(c) be defined by

re(c) = {S E Fin(F) Ieither SEc, or, S U {e} E c}.

It is easy to check that if c is upward closed then so is r e(c) so that we have a function
re : Fin(EH -+ Fin(FH. Note that re also preserves downward closed subsets. .
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Lemma 3.3 re is a homomorphism of frames. Furthermore, the diagram below commutes

Fin(E)j

! re

Fin(F)j

Fr(E)

! [Tje]

Fr(F).

Proof: The frame operations in Fin(E)j and Fin(F)j are set theoretic and it is easy to check
that re(c n d) = re(c) n reed) and re(UiEdCi}) = UEI{ re(ci)}, where c, d, c, E Fin(E)j.

The function [T j e] : Fr( E) ~ Fr(F) is also a homomorphism of frames: it is the lifting to
Fr(E) of the function E ~ Fr( F) which is the identity on x =f:. e and takes e to T. Hence it is
sufficient, by the universal property of Fr(E), to check the commutativity of the diagram on
the elements x E E. If x =f:. e then OF(x[Tje]) = 8F(X) = {x}jF= re({x}jE) = re(8E(x». (We
have used superscripts to indicate in which set the upward closure is taking place.) If x = e,
then OF(e[Tje]) = OF(T) = 0jF= re({e}lE) = re(OE(e».

QED

4 Event Structures

In this section we show how an event structure can be interpreted as a special type of geometric
automaton. We recall the definition of an event structure from [14, §1.1.1].

Definition 4.1 An event structure, S, is a triple S = (E,Con,l-) where (1) E is a set of
events; (2) Con ~ Fin(E), the consistency predicate, satisfies: if v E Con and w ~ v then
wE Con; (3) I-~ Fin(E) X E, the enabling relation, satisfies: if v I- e and v ~ w then wI-e.

(We use subscripts, Es, Cons, I-s, where necessary, to avoid confusion.)
We have made one alteration to Winskel's original definition. The enabling relation, 1-, is

taken to lie in Fin(E) x E rather than Con x E. In effect, if v E Con and v I- e, then we adjoin
to the enabling relation in Con X E any w E Fin(E), such that v ~ w. This cannot create
any new enablings of e from among the consistent subsets because of 4.1(3). The reader can
easily check that this change makes no difference to the configurations of the event structure.
Note that 4.1(2) merely states that Con is downward closed and 4.1(3), because of the change
made above, states that {v E Fin(E) I v I- e} is upward closed for all e E E.

Winskel's definition of the behaviour of an event structure is in terms of its configura
tions, [14, §1.1.2]. The configurations form a Scott domain, VeE), under inclusion of subsets.
The behaviour of a geometric automaton, however, is expressed in terms of a labelled tran
sition system. We need common ground in order to compare the two formalisms and so we
present a transition system semantics for event structures. We then explain how the domain
of configurations can be recovered from it.

Definition 4.2 Let S = (E, Con, 1-) be an event structure. The event e E E is said to be
enabled in S if 0 I- e and {e} E Con.

Definition 4.3 The event structure S = (E, Con, 1-) offers the event e and evolves into the
event structure S' = (E', Con' , 1-'), denoted S ~ S', if, and only if, the following conditions
hold: (1) e is enabled in S; (2) E' = E - {e}; (3) Con' = re(Con); (4) 'VxE E', {v E
Fin(E') I ti f-' x} = re({w E Fin(E) I w f- x}).
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Since re preserves upward or downward closed subsets of Fin(E), as discussed in §3, this
definition does indeed yield an event structure. In a similar way to geometric automata, we get a
set of derived event structures, Der(S), a labelled transition system, LTS(S) = (Der(S), Es, ~
), and a set of traces, traces(S).

Lemma 4.1 If S is an event structure then traces( S) is a pure transitive trace set.

If S is an event structure and 8 E trace8(S) then 8 gives rise to a (finite) subset of Es, [8],
by simply forgetting the ordering of symbols in the trace. If s, t E traces(S) are permutations
of each other then clearly [s] = [t]. Hence [-] is a function from traces(S)j,,-, to Fin(Es).
The configurations of an event structure are also subsets of Es. Let VoCEs) denote the partial
order of finite (compact) elements, [14, §1.1.15], of V(Es). We know that the finite elements
are exactly the finite configurations, [14, Theorem 1.1.16], and so VoCEs) ~ Fin(Es) and
inherits the partial order coming from inclusion of subsets.

Proposition 4.1 If S is an event structure then [-] induces an isomorphism of partial orders

[-] : (traces(S)j,,-,,~) - VoCEs).

This makes it clear how the labelled transition system semantics defined above relates to
Winskel's semantics in terms of configurations. Since V(Es) is an algebraic directed complete
partial order, [14, Theorem 1.1.6], we can recover the full domain from its finite elements by
ideal completion, [12, Proposition 9.1.4]. This construction of the domain of configurations
appears to be new although it seems implicit in [10, Theorem 5.1]. It has little to recommend
it, in so far as event structures are concerned, because it is unnecessarily complicated and fails
to give the infinite configurations. Its proper significance is only revealed in the context of
geometric automata.

Definition 4.4 If S = (E, Con, 1-) is an event structure, define the geometric automaton
Ll(S) = G where: (1) Ea = E; (2) paCe) = U-1({v E Fin(E) I v I- e}); (3) ua(e) =
(U-l(Con))[T je].

(Here, Con denotes the complement of Con in Fin(E). Evidently, Con is upwards closed.)
Event structures, as originally formulated by Winskel, have a topological character. Ge

ometric automata are a reformulation in algebraic terms in keeping with the transition from
topological data (sets of points) to algebraic structures (lattices of open subsets) which is fun
damental to locale theory, [6]. Proposition 3.1 is the key to making this work as the definition
above shows. The trick of using positive aad negative causality for geometric automata is
already implicit in the definition of event structures. Of course, we still have to show that the
behaviour of an event structure S is the same as that of Ll(S). This is accomplished in the
following lemmas.

Lemma 4.2 If S is an event structure then e is enabled in S if, and only if, e is enabled in
deS).

Proof: Let S = (E,Con,l-) and deS) = (E,p,u) and abbreviate "if, and only if," to iff. By
Definitions 4.4(2) and 4.1(3), 01- e iff U(p(e)) = 0r. That is, by Lemma 3.1, iff v0(p(e)) = T.
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Now let F = E - [e}. By Lemma 3.3 ((}E/(Con)[T Ie] = (};l(re(Con)). Now {e} E Con
iff {e} f/. Con iff re(Con) t= 0i. Hence, by Definition 4.4(3) and Lemma 3.1, {e} E Con iff
vQ)(u(e)) = F.

The result now follows from Definitions 3.3 and 4.2.
QED

Lemma 4.3 If 5 is an event structure and 5 ~ T then .6.(5)~ .6.(T). Conversely, if G is a
geometric automaton of the form G = .6.(5) and G ~ H, then H = .6.(T) and 5 ~ T.

We can now put together the main result of this paper.

Theorem 4.1 ~ gives a bijective correspondence between event structures and geometric au
tomata, G, with the property that 3f E Fr(EG) such that "Ie E EG, uG(e) = f[T Ie]. Further
more, for an event structure S = (E, Con, 1-), ~ induces an isomorphism of transition systems
labelled over E between LTS(S) and LTS(.6.(S)).

Proof: If G = (E,p,u) is an automaton of the appropriate form, let A(G) = (E,Con,l-) be
defined by Con = (}(f), where f E Fr(E) is the element in the statement of the theorem, and
1-= {(v, e) E Fin(E) X E Iv E (}(p(e))}. It now follows from Proposition 3.1 that ~(A(G)) = G
and, for an event structure S, that A(.6.(S)) = S. This proves the first part. The second part
follows easily from Lemma 4.3.

QED

The result shows that event structures are a special case of geometric automata: those with
"constant" negative causality. With this in place we now have an obvious way to generalise
Winskel's domain of configurations. If X is a poset, Idl(X) denotes its ideal completion in the
sense of [12, Definition 9.1.1].

Definition 4.5 If G is a geometric automaton, its domain of configurations, denoted peG),
is defined by peG) = Idl(traces(G)/"',~).

If follows from Proposition 4.1 that for an event structure S, p(~(S)) ~ V(S). In an event
structure the partial order on configurations comes from inclusion of subsets. For geometric
automata this is no longer the case: a configuration may be properly contained in another
one but the automaton may not be able to evolve from the smaller state to the larger. The
inclusion ordering does not reflect the behaviour of the automaton. The correct partial order
is that inherited from the prefix ordering on traces. For example, the automaton G discussed
in §3 has the domain shown in Figure 3. We see that the configuration {a, b} cannot evolve
into {a,b,c}.

This example is also interesting because the domain of configurations is not consistently
complete: the configurations {a} and {b} have an upper bound but no least upper bound.
This shows that geometric automata give rise to more general domains than those coming
from event structures, which Droste refers to as event domains, [2].

5 Conclusion

The main thrust of this paper has been the importance of studying causality from a logical
standpoint. We have shown that the (first) crucial problem in this study is the logical treatment
of conflict or choice. The solution adopted here enables us to give a simple interpretation of
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{a,c}

{a}

{a,b,c}

{b,c}

{b}

Figure 3: Domain of configurations

Winskel's general event structures but it cannot be considered as a complete and satisfactory
answer in general.

The other interesting direction for further work is to drop the assumption of irrelevance of
history. In this respect, our use of locales suggests that quantales would be the appropriate
algebraic framework for history sensitive causality. The corresponding logic is (geometric)
linear logic. Perhaps Girard's deconstruction of negation may also provide some clues towards
a satisfactory logical treatment of conflict. We hope to address some of these speculations in
future papers.
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