
1 Introduction

The description of concurrent and distributed systems in terms of partial orders is more
expressive than the description based on the interleaving semantics. However it has the
disadvantage that there is not an obvious algebra of partial orders. The problem is to give a
nontrivial description of the operation of sequential composition. Without such an operation
the description cannot be properly incremental (see [FMM 90]).

In [FMM 90], the algebra of Concatenable Concurrent Histories was introduced, which is an
algebra of partial orders with extra information about the maximal and minimal elements
which allows a nontrivial operation of sequential composition. This algebra depends on two
alphabets, one of which is the alphabet of labels of elements which are maximal or minimal,
and one of which is the alphabet of the labels of the other elements. In [FMM 90] a truly
concurrent semantics is given to the process description language CCS using the algebra
CCH; CCH is the algebra of Concatenable Concurrent Histories with the first alphabet
being a singleton and the second being the set A of CCS actions. In this paper we will give
an axiomatization for CCH, using category theory.

Our approach follows the method given in [DMM 89], where a non-commutative tensor op
erator is given together with special elements called symmetries. We extend this approach,
introducing a biproduct structure which gives us the expressive power of the set of all bipar
tite histories. Bipartite histories describe the causal links between the visible actions, and
take the place of the algebra of symmetries in [DMM 89].

The bulk of this paper is taken up with a proof that the axiomatization does indeed give
the algebra CCH. For the reader who wishes to avoid the gory details (and they do get very
gory) there is a summary, section 9, where the main results are stated. An application of
the algebra CCH to Petri Nets is given in the last section.

2 Definitions: CCH and some categories

2.1 Definition - An element of CCH

Given a fixed set of labels A, and a label s not in A, an element of CCH is a triple (h, (3, ,)
where

• h is a labelled partial order (Vi U V2 U V3 , ~,f)

• The elements of VI are minimal in the partial order, the elements of V3 are maximal
in the partial order and distinct from the elements of Vi, and the elements of V2 are
neither maximal nor minimal in the partial order

• f( v) = s for v E Vi U V3 ; f( v) E A for v E V2

• f3 is a bijection from Vi to the set {I, 2, , IViI}

• I is a bijection from V3 to the set {I, 2, , 1V31}

An element (h, (3, I) is defined up to isomorphisms of labelled partial orders preserving (3, "
and the selection functions for Vi, V3 •
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2.2 Example

(a) (b)

Figure 1: Two elements of CCH

The introduction of the functions /3, I allows us to discriminate between different elements
of Vi, V3 with the same label. Figure 1 illustrates two elements of CCH; the order relation is
depicted through its Hasse diagram growing downwards. Elements of Vi UV3 are represented
as circles and elements of V2 as boxes. The functions /3, I are shown by the integers in the
circles.

2.3 Parallel and sequential composition

The set CCH forms an algebra under the operations of parallel and sequential composition.

Let cch., = (hI, /31, 11) and cch2 = (h2, /32, 12) be elements of CCH, where hI = (VII UV1 2U
Vb, ~1, £d and h2 = (V2 1 UV22UV23 , ~2, £2). Without loss of generality, Vh UVbUVh
and V21 U V22 U V23 are disjoint.

The parallel composition ChI @ ch2 is ((Vi U V2 U V3 , ~,£), /3, I) where

• VI = Vh U V2 1

• V2 = VI 2 U V2 2

• V3 = VI 3 U V23

• ~ = ~1 U ~2
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• (3(v) = (31(V) if V EVIl,
IVIII + (32(V) if V E V2 1

• I(V) = II(V) if V E Vb,
IVb I+12 (v) if V E V23

The sequential composition ChI; ch2 is defined if and only if IVb I = 1V21 1.

In this case the result of the operation is ((Vi U 112 U V3 , :::;, f), (3, I) where

• Vi = VII

• V2 = V12U V22

• V3 = V23

• :::; is the restriction to Vi U 112 U \13 of the transitive closure of
:::;1 U :::;2 U ((VI,V2): VI E vu,», E V2I,/I(VI) = 112(V2)}

• £(v) = s if V E Vi U \13,
£1(V) if V E V1 2 ,

£2 (v) if V E V2 2

• (3(v) = 111 (v)

• I(V) = 12(V)

2.4 Definition: Symmetric strict monoidal category

A symmetric strict monoidal category is a strict monoidal category (see [ML 71]) which
contains a symmetry morphism IU,V : U ® V ~ V ® u for each pair of states (u, v), such that

• lu,v;/v,u = id(u ® v)

• (lu,v ® id(w))j (id(v) ® IU,W) = lu,v0w

• Ifa:u~v,b:w~x,thena®b = lu,w;(b®a);lx,v

This last condition will be referred to in the rest of this paper as the coherence axiom.

3 The algebra of bipartite histories

This section is concerned with the algebra of bipartite histories, which can be considered
either as an algebra of matrices with entries T,F or as the morphisms of a biproduct category.
The elements of this algebra will play the role that symmetries play in [DMM 89].

3



(a) (b)

Figure 2: Parallel (a) and sequential composition (b) of the elements of CCH in Figure l(a) and
l(b)

3.1 Notation for matrices

Consider the algebra of matrices with non-negative dimensions over the boolean algebra with
two elements T, F. If I, 9 are matrices with dimensions k x rn, rn x n respectively then write
f; 9 for the matrix obtained by matrix multiplication of f and g. If hI, h2 have dimensions
rnI x nI, rn2 x n2 respectively, then write hI 0 h2 for the (rnI + rn2) x (nI + n2) matrix
satisfying (hI @ h2kj = T if and only if ((ht}i,j = T or (h2)i-ml,j-m2 = T).

Some special matrices will be denoted as follows.

• Write V, 1\ for the 2xI and the Ix2 matrices respectively which have both entries T

• Write 10 for the 0x 0 matrix, I for the 1x 1 matrix with entry T, and In for the tensor
product of n copies of this

• Write 0 for the 1x 1 matrix with entry F

• Write j.t, f for the 0 x l-dimensional and the 1 x D-dimensional matrices

• Write X(i,r) for the r x r matrix such that X(i,1')j,k = T if j = k tI. {I,i} or
j = 1, k = i or j = i, k = 1, and X(i,1')j,k = F otherwise
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The matrix X (i, r ) is a "swap" matrix, which is obtained from the r x t identity matrix I;
by changing the (1,1) and (i,i) entries to F and the (l,i) and (i,l) entries to T.
If I, 9 are matrices with dimensions k x m, n x m then write> f,9 < for the (k + n) x m
matrix such that > t.s <i,j is Aj if i :::; k and 9i-k,j otherwise. If t, 9 are matrices with
dimensions m x k, m x n then write < i.s > for the m x (k +n) matrix such that < I,» >i,j
is Aj if j :::; k and 9i,j-k otherwise.

We will construct a biproduct category B whose morphisms are the matrices over {T, F}
whose dimensions are finite (and possibly zero). (See [ML 71] for the definition of a biproduct
category; it is not essential to this paper.) The objects of B are in one-to-one correspondence
with the set of non-negative integers; we will denote by [n] the object of B corresponding to
the integer n.

Let B be the category whose set of objects is {[nJ : n 2: O} with a tensor product, 129,
satisfying [nlJ 129 [n2] = [nl +n2], and whose morphisms from [m] to [n] (m,n 2: 0) are just
the m x n matrices over the boolean algebra with two elements. The composition of two
morphisms i.s is the morphism I, 9 and there are operations 0, >, < and <, > on the set
of morphisms, as described in the last subsection.

It is straightforward to check that 129 is a biproduct for B, where the product and coproduct
pairings of morphisms are <, > and >, <.

3.2 Decomposition of morphisms of B

Each morphism A of B either has all entries F or is equal to exactly one morphism of the
form AI; A2; A3 where

• Al has exactly one entry T in each column, and if A1i,j = A1k,j+l = T then k > i

• A2 has at least one entry T in each row and in each column

• A3 has exactly one entry T in each row, and if A1i,j = A.1 i+t ,k = T then k > j.

Proof

Let A be a morphism from [n] to [m] which does not have all entries F. Let the numbers of
the rows of A which contain an entry T be i l , ... , i; in ascending order and the numbers of
the columns of A which contain an entry T be i.. ... ,I» in ascending order. Let Al be the
morphism from [n] to [r] such that Al a ,b is T if and only if a = i b• Let A2 be the morphism
from [r] to [s] such that A2a,b = T if and only if A contains an entry T at place ia,jb. Let
.43 be the morphism from [s] to [m] such that A3a ,b = T if and only if b = i; Then A =
AI; A2; A3, as required.

To show uniqueness, suppose that AI; A2; A3 = B1; B2; B3 where both expressions are of
the required form. AI, B1 are determined uniquely by which of their rows have all entries
F. But the it h row of Al has all entries F if and only if the it h row of AI; A2; A3 has all
entries F, so Al=Bl. Similarly A3=B3. A2 is just the matrix obtained by deleting from
AI; A2; A3 all rows and columns with all entries F, so is equal to B2.
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3.3 Representation

What has the category B to do with the algebra CCH? The answer is that there is a bijection
between morphisms of B and elements of CCH whose objects are all either maximal or
minimal, and this bijection preserves the operations; and @.

The element ((Vi U{} UV3 , :S:, £),13, ,) of CCH corresponds to the IVi Ix IV3 1matrix which has
entry T at place (i,j) if and only if x :s: y where j3(x) = i and ,(y) = j. It is straightforward
to check that this bijection preserves the operators; and @.

An element of CCH whose objects are all either maximal or minimal is called bipartite.

4 An axiomatization of B

In this section we give an axiomatization for B, which does not involve the biproduct struc
ture. This axiomatization is closely related to the axiomatization we will give for CCH.

4.1 Definition

Let B2 be the symmetric strict monoidal category generated by an object [1] and morphisms
/\ : [1] -+ [1] ® [1], V : [1] @ [1] -+ [1] under the following axioms.

• The identity object [0], which is the tensor product of no copies of [1], is initial and
final

• /\; (I @ /\) = /\; (/\ ® 1) where I is the identity morphism on [1]

• (I ® V); V = (V @ 1); V

• /\; V = I

• V; /\ = (/\ e /\); (I ® X ® 1); (V ® V) where X : ([1] ® [1]) -+ ([1] @ [1]) is the symmetry
isomorphism

• 1\; (I 129 f) = I where e : [1] -+ [0]

• (I 129 {t); V = I where {t : [OJ -+ [IJ

• /\;X=/\

• XiV = V

Note The axiom that [OJ is initial and final is equivalent to the axioms
{t; 1\ = {t ® {t, V; e = e ® f
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rn = (1\0 ® ... ® 1\0); 10; (Vo ® ... ® Vo)

4.2 First stage of proof that the categories B, B2 are isomorphic

It is straightforward to check that B is a symmetric, strict monoidal category and that it is
generated as a symmetric strict monoidal category by the 1x 2 and 2 x 1 dimensional matrices
which have both entries T. (The symmetry isomorphism in,m in B is the (n +Tn) X (Tn +n)
dimensional matrix whose (i,j)th element is T if i = j - m or j = i - n, and F otherwise.)
Each of the axioms for B2 also holds in B (with the appropriate renaming of variables) and
so there is a surjective morphism of symmetric, strict monoidal categories from from B2 to
B. Say that a morphism of B2 represents a given bipartite history if and only if it is mapped
to the history under the morphism from B2 to B. We need to show that if two morphisms
of B2 represent the same bipartite history then they are equal in B2.

If two morphisms represent the same bipartite history which has an empty set of maximal
elements or an empty set of minimal elements then then are equal in B2 by the fact that [0)
is initial and final.

Let In be the identity morphism on [n].
Let

1\0 = c, Vo = J.1,

1\1 = VI = I

r; I\n-l; (1\ ® I n- z) for n ~ 2

v; (V ® I n - z);Vn - 1 for n ~ 2

4.3 Lemma

Every morphism Tn of B2 is equal to a morphism of the form 10 , c (9 ... ® c, J.1, ® ... ® J.1" or

where i, k ~ 1, n(l), ... , n(j), Tn(l), ... ,Tn(k) ~ 0, and a is in the subalgebra of B2 generated
by the symmetry isomorphisms.

Proof

The statement holds if Tn is a generator. If Tn is the tensor product of two morphisms
for which the statement holds, then it also holds for rrr, by the functoriality of the tensor
product. By induction on the minimal number of instances of generators in an expression
for rn, we may assume that Tn is of the form Tnl; Tnz where the statement holds for Tnl and
Tnz. If m : [n] ---+ [OJ or Tn : [OJ ---+ [n] for some n then the statement holds by initiality and
finality of [OJ. If Tnl is a tensor product of copies of e and Tnz is a tensor product of copies
of J.1, then

and so the statement holds.

To make the notation easier, let IT be the subalgebra of B2 generated by the symmetry
isomorphisms, let W be the set of morphisms of the form

I\n(l) ® ... ® I\n(j)
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I and the

for some j 2:: 1, n(l), ... , n(j) 2:: 0, and let V be the set of morphisms of the form

Vn(I) 0 ... @ Vn(j)

for somej 2:: 1,n(1), ... ,n(j) 2:: o.
Remark 1 It follows from the axioms (I @ v), V = (V @ 1); V, (I @ p)j V

functoriality of @ that if n(l) 2:: 0, 0 ~ a < n(2), then

(Ia @ Vn(I) @ I n(2)- a)jV n(2) = V n(I)+n(2)-I

Therefore, using the functoriality of @ again, if VI, V2 E V and VI; v2 is defined then it is also
in V. Similarly if WI, W2 are in Wand WI j W2 is defined then it is in W.

Remark 2 It follows from the coherence axiom for the symmetry isomorphisms that if
V E V, 7r E II, and Vj 7r is defined, then there are some VI E V, 7rI E II such that Vj 7r =
7rI; VI. It also follows that if W E W, 7r E II, and 7r; W is defined, then there are some WI E W,
7rI E II such that Wj7r = 7rIjWI. '

The next stage of the proof is to prove the special case TnI = Vn , Tn2 = Am by induction on
n + m. If n = 0 or m = 0 the statement has already been proved. If n = 1 or m = 1 then
the statement follows from the property of the identity morphism. If n = Tn = 2 then one of
the axioms gives

m = (A2 @ A2); (I @ X @ 1); (V2 @ V 2)

and so the statement holds. If n = 2 < m then assume (as an inductive hypothesis) that
whenever 2 ~ m( 1) < m there is some 7rm(I) E II such that

Then V2 ; Am is equal to
V 2; A2; (Am-I @ 1)

by the definition of Am and the axiom A; (A @ 1) = Aj (I @ A),

by one of the axioms

by functoriality of @

by hypothesis,

for some 7r E II,

as required.
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Finally suppose n > 2 and that the statement holds for Vn(l); Am whenever 2 ::; n(l) ::; n.
Then

v.. Am

(Vn- l ® 1); V2 ; Am

(Vn-l ® 1); (Am ® Am);1l'm; (V2 ® ... ® V2)

by the case n = 2

by functoriality of ®
= ((WI; 0"1; vi) ® W2); 1l'm; V2

for some VI, V2 E V, WI, W2 EW, 0" E II

for some W3 E W, 0"2, 0"3 E II, V3 E V
which is equal to a morphism of the required form by remarks 1 and 2.

Now suppose that m = rnl; rn2 and rnl = WI; 1l'1; VI, rn2 = W2; 1l'2; V2 for some WI, W2 E
W, 1l'1, 1l'2 E II, VI, V2 E V. The morphism VI; W2 is a tensor product of morphisms of the
form Vn; Am for some rn, n, so the statement holds for this morphism, and it must equal
10, or a tensor product of copies of J-L, or a tensor product of copies of E, or a morphism
W3; 1l'3; V3. If it is equal to 10 or a tensor product of copies of J-L or a tensor product of copies
of E then the fact that [0] is initial and final forces rn to equal a morphism of the form
(E ® ... ® E);Io; (J-L ® ... ® J-L), E ® ... ® E, J-L ® ... ® J-L, or 10 • If it is equal to W3; 1l'3; V3 then
rn = WI; 1l'1; W3; 1l'3; V3; 1l'2; V2 which is equal to a morphism of the required form by remarks 1
and 2. This completes the proof of the lemma. \l

4.4 Normal form for bipartite histories

It is straightforward to show that every bipartite history with nonempty sets of minimal and
maximal elements can be represented as a sequential composition bl ; b2 ; b3 where bl is the
image of an element (An(l) ® .. , ® An(a») of W under the homomorphism from B, b3 is the
image of an element Vm(l) ® ... ® Vm(b) of V, and b2 is a permutation linking the i th maximal
element with the p(i)th minimal element such that

and
(ii) if Ef:in(i) < J < K ::; Ef=ln(i) and E7::-llrn(i) < p(J) < E7=lrn(i)

then p(K) > E7=lrn(i)

Condition (i) says that if the p(J)th and p(K)th minimal elements of b3 are linked to the
same maximal element of b3 , and p(J) < p(K), then j < k where the ph and kth minimal
elements of bl are linked to the ph and K th maximal elements respectively.
Condition (ii) says that if the ph and Kth maximal elements of bl are linked to the same
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minimal element of bs, and J < K, then j < k where the p(J)th and p(KYh minimal elements
of b3 are linked to the ph and kth maximal elements respectively.
These conditions can be ensured by means of the equations /\; X = /\ and Xj V = V in B.
Moreover each bipartite history with nonempty sets of minimal and maximal elements can
be represented by only one morphism of this form. The image of the algebra II under the
homomorphism from B2 to B is the algebra of permutations. Two elements of II are equal
if and only they are images of the same permutation. (See [DMM 89].) Therefore in order
to show that any two morphisms in B2 represented by the same bipartite history are equal
in B2 it is enough to show that any morphism W; 11'; v in B is equal to a morphism WI; 11'1; VI
where 11'1 represents a permutation in B which satisfies the conditions (i) and (ii). Write ,(p)
for an element of II representing a permutation p. Let

W = /\n(l) (9 ... (9/\n(n), v = Vm(l ) (9 ... (9 Vm(m)

Let p be any permutation.

4.5 Removing Loops

Let Loop(w,,(p), v) be the number of pairs (J,K) such that for some h,f,

Etln(i) < J < K < E1:~n(i)

and
E1:~m(i) < p(J) < p(K) :::; ~1=ln(i)

This is the number of pairs (J, K) for which the ph and K th minimal elements of the history
representing ware linked to the same maximal element, and the p(J)th and p(K)th minimal
elements of the history representing v are linked to the same maximal element.
Suppose LooP(Wi,(P);V) is nonzero. The axioms XiV = V and /\;X = /\ enable w;,(p);v
to be rewritten as W; ,(pI); v for some pI such that Loop( w, ,(pI), v) = Loop(w, ,(p), v) and
that there are some h,f for which n(h) > 1, m(f) > 1, and

pI((E7:11n(i))+ 1) = (E1:~m(i)) + 1,

pI((~7;ln(i)) + 2) = (~1:~m(i)) + 2.
Now by the coherence axiom for the symmetry isomorphisms W; ,(pI); v =

(,h-l,1 1;><) In-h); (/\n(h) (9/\n(l) (9 ... (9/\n(n»); ,(p2)j (Vm(e) (9 ... (9 Vm(m»); (,1,(-1 (9 1m- e)
for some p2 satisfying

LooP((/\n(h) (9 ... (9/\n(n»),,(p2), Vm(e)l'" Vm(m») = Loop(w,,(p), v), p2(I) = 1, p2(2) = 2.

Therefore Wi ,(p); v is equal to

(,h-l,1 @ In-h); (/\n(h)-1 (9 /\n(l) 0 ... @ /\n(n»); (/\ @ In(I)+...+n(n)-2); (12 (9,(p3));

(V (9 Im(I)+...+m(m)-2); (Vm(e)-1 0 Vm(l ) 1;><) ••• @ Vm(m»); (,1,e-l @ 1m- e)
where 12(9,(p3) = ,(p2).
By the axiom /\; V = I, W; ,(p); v is equal to

(,h-l,1 (9 In-h); (/\n(h)-1 @ /\n(l) @ ... (9 /\n(n»); (10,(p3));

(Vm(e)-1 (9 Vm(l ) 1;><) ••• @ Vm(m»); (,1,e-l @ 1m- e),
= Wl;,(p4);Vl where WI E W,Vl E V, and Loop(wl,,(p4), vI) < Loop(w,,(p), v). Therefore
without loss of generality Loop(w,,(p),v) = O.
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4.6 Final stage

By using the axiom X; V = V it is possible to rewrite W; ,(p); v as W; ,(pI); v for some
pI satisfying condition (i). By using the axiom A; X = A it is possible to rewrite this as
W; ,(p2)j v satisfying conditions (i) and (ii). This completes the proof that Band B2 are
isomorphic categories. \l

In the rest of the paper we will consider a larger category, which contains B as a subcategory.
We will eventually be able to construct a bijection between the morphisms of this larger
category and the elements of CCH, which also preserves the operators; and 0, and whose
restriction to the morphisms of B is the map described here.

5 Definitions - the category A, and layered form

This section gives the definition (in terms of generators and axioms) of the larger category
containing B whose morphisms will turn out by the end of the paper to be the elements of
CCH in disguise. It also gives the definition of layered form; every morphism can be written
as a term in layered form, but not necessarily in a unique way.

5.1 Definition of the category A

Let A be a fixed set of labels. We introduce a category which has the same objects as B
but more morphisms. For each label t in A there is a morphism (also called t, by abuse
of notation) from [1] to [1]. Let A be the symmetric strict monoidal category generated
by a non-identity object [1], and morphisms t : [1] ---+ [1] (t E A), V : [1] 0 [1] ---+ [1],
A : [1] ---+ [1] 0 [1], under the following set of axioms.

• The identity object [0] is initial and final

• A; (I 0 A) = A; (A 0 1) where I is the identity morphism on [1]

• (I0 v ); V = (V 0 1); V

• A; V = I

• V; A = (A 0 A); (I 0 X 0 1)j (V 0 V) where X : ([1] 0 [1]) ---+ ([1] 0 [1]) is the symmetry
isomorphism

• A;(I0 f) = I where e : [1] ---+ [OJ

• (I0 J.l); V = I where v : [0] ---+ [1]

• A; X = A

• X; V = V

• t; A = A; (I 0 t); (I 0 A)j (V 0 1) whenever tEA
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The last axiom is called the copy axiom. From now on a term will be understood to be a
term of this algebra. It is clear that the subcategory of A which is the smallest symmetric
strict monoidal category containing V and 1\ is B.

A term in the category A which represents a morphism from [n] to [m], where n,m 2:: 0, can
be given an informal representation as a picture, where

• the picture for u1 0 u2 is the picture for u2 to the right of the picture for u1

• the picture for u1; u2 is the picture for u1 above the picture for u2 with the upper
nodes of u2 and the lower nodes of u1 identified

• the pictures for I,X, 1\, and V are just I, x, 1\, V, (with nodes at the ends of the lines)

• the picture for a consists of an upper and lower node

• the picture for tEA is I with a label t

As an example, Figure 3 gives the pictures corresponding to the copy axiom. We found these
pictures easier to work with than the formal terms, and used them to find our proofs.

Figure 3: A pictorial representation of the copy axiom

5.2 Layered form

Using the functoriality of 0 every term can be written in the form

BI ; PI; B2 ; P2 ; •.. ; Pr - l ; ts,
for some 7' 2:: 1, where B ll ... .B; are morphisms of B and PI,"" Pr - l are each of the form

91 ® 92 ® ... ® 98

where each 9i is either I or an element of A, and not all of 91, ... 98 are I. This is called
Layered form.

Notice that the axioms given in the definition of the category A involve at most three layers.
This was a surprising result; a first draft of this paper had axioms involving arbitrarily many
layers. The price paid for having such a simple set of axioms is the length of the proof which
takes up the next section.
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6 Partial Ordering Condition

This section is devoted to a proof that any term can be written in a form satisfying a certain
condition called the Partial Ordering Condition. This condition will be crucial when proving
the representation theorem for the algebra.

Section 6.1 defines the terms used and gives the Partial Ordering Condition. Section 6.2
proves a Theorem expressing equality between certain terms, which is needed to prove the
result. The proof of the Theorem is in seven stages; the first six stages prove that the
theorem holds in particular cases, and the last stage uses these cases and induction to
prove the theorem holds in general. Section 6.3 uses the Theorem together with a different
induction to prove that any term u of the category A can be written in layered form so that
any term consisting of a set of consecutive layers of u (including u itself) satisfies the partial
ordering condition.

6.1 Definitions - Linkage

Suppose u is a term built from morphisms of B and elements of A using the operators; and
0. Suppose that (1 ::; i ::; n,1 ::; j ::; m) where u expresses a morphism from [n] to [m].
Define Linkl(u, i,j) and Link2(u, i,j) by structural induction on u as follows.

• If u is a morphism of B then Link1(u,i,j) = Link2(u,i,j) = 1 if Ui,j = T; otherwise
Link1(u,i,j) = Link2(u,i,j) = O.

• If u E A then Linkl.Iu.Ll ) = 1 and Link2(u,I,I) = o.
• If u = ul 0 u2 where ul, u2 express morphisms from [nl] to [ml] and [n2] to [m2J

respectively, then Linkl(u,i,j) is Linkl(ul,i,j) if i::; nl,j::; m1,
Linkl(u2,i - nl,j - ml) if i > nl, j > ml,
and 0 otherwise.
Similarly Link2(u, i,j) is
Link2(u1,i,j) if i:S n1,j :S m1,
Link2(u2,i - nl,j - m1) if i > n1, j > m1,
and 0 otherwise.

• If u = ul; u2 where ul, u2 express morphisms from [n] to [p] and [p] to [m] respectively,
then

Link1(u, i, j) ~19:::;p(Linkl(ul, i, k).Link1(u2, k, j))

and
Link2(u,i,j) ~1:::;k:::;p(Link2(ul, i, k).Link2(u2, k, j))

Informally, if u is represented graphically, as described in section 5.1, Link1(u, i,j) is the
number of paths between the ith upper node in the picture for u and the ph lower node in
the picture, and Link2(u, i, j) is the number of these paths which are unlabelled.

Note that Linkl(u, i,j) and Link2(u, i,j) are defined for terms u, not for morphisms. For in
stance, the terms I, Aj V are equal as morphisms, but Linkl(I,I,I)=1 and Linklj A; V,I,I)=2.
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6.1.1 Definition - i linked to j by u

Say that i is linked to j by u if and only if Link1(u,i,j» O.
Informally i is linked to j by u if there is a path in the picture for u from the i t h upper node
to the ph lower node.

6.1.2 Partial ordering condition

Say that u satisfies the partial ordering condition if for each pair (i, j) either Link2( u, i, j)
is zero or Link1(u, i,j) = Link2(u, i,j) = l.
Informally u satisfies the partial ordering condition if whenever there is an unlabelled path
between two nodes there is just one of these, and no labelled path between the two nodes.
In order to prove that any morphism can be written as a term satisfying the condition we
will first prove a technical result.

6.2 Theorem

If u is a term representing a morphism from [n] to [m] such that i is linked to j by u then

u = X(i, n); (1\ ® In-t}; (I ® X(i, n)); (I ® u); (I 0 XU, my); (V ® Im-t}; XU, m)

Note

X(l,n)=In , so that if u is a morphism from [1] to [1] the Theorem for u states that

u = (1\ ® In- l ) ; (I ® u); (V ® Im-t}

The copy axiom is a special case of the Theorem, where u = t; 1\ for some tEA and i = j = l.

Proof

The proof goes in several stages. Let Theorem(u, i, j) be the statement of the Theorem for
u, i, and j, that is the equality

u = X(i, n); (1\ ® In-t}; (I ® X(i, n)); (I ® u); (I 0 XU, my); (V ® Im- l ) ; XU, m)

The first stage shows that Theorem(In, i, i) holds whenever 1 ::; i ::; n.

The second stage shows that if p is a permutation of size n x n such that Pi,k = T and u1
is a morphism from [n] to [m] such that Theorem(u1,k,j) holds, then Theorem((p;u1),i,j)
holds. A similar argument shows that if p is a permutation of size m x m such that Pk,j = T
and u1 is a term representing a morphism from [n] to [m] such that Theorem(u1, i, k) holds,
then Theorem((u1;p),i,j) holds.

For stages 3, 4, 5 and 6 it is assumed that the Theorem(u1, 1, 1) holds. The result of each
of these stages is that Theorem((u2; u1), 1, 1) holds, where u2 is of the form I ® u3 in stage
3, t ® In- l in stage 4 where tEA, V ® In- 2 in stage 5, and 1\ ® In- l in stage 6. We worked
out how to prove stages 3-6 by means of the diagrams in Figure 4. (Figure 4 is on page 32.)

Stage 7 uses induction to prove the Theorem in the case i = j = 1, and then uses the result
of stage 2 to derive the general case.
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6.2.1 Stage 1

Suppose u = In. Then

X(i, n); (/\ @ In-dj (I 0 X(i, n)); (I @ u); (I @ X(j, n))j (V @ In-d; X(j, n)

X(i, n); (/\ @ In-d; (I @ X(i, n)); (I @ X(i, n)); (V @ In-dj X(i, n)

X(i, n); ((/\; V) ® In-d; X(i, n)

= In

So Theoremf.L, i, i) holds.

6.2.2 Stage 2

Suppose that p is a permutation of size n x nand ul is a morphism from [n] to [m] such
that Theorem(ul, k,j) holds. Since Ia ® X(2, 2) @ h = X(a + 1, a + b+ 2); X(a + 2, a + b+
2); X(a + 1, a + b+ 2) the elements X(i, n) together with I generate all permutations under
;. This means that p can be written as a concatenation of matrices of the form X(a, n) and
we may assume by induction on the minimal length of such an expression for p that p =
X(a, n) for some a.

If k = a then we must show that Theorem((X(k, n)j u), l,j) holds. Now

(/\ @ In-dj (I @ (X(k, n)j ul))j (I @ X(j, m)); (V 0 Im-d; X(j, m)

(/\ @ In-dj (I @ X(k, n))j (I @ ul); (I (;9 X(j, m))j (V @ Im-d; X(j, m)

= X(k,n);ul

since Theorem(u 1, k, j) holds.

If k = 1 then we must show that Theorem((X(a,n);ul),a,j) holds. Now

X(a, n)j (/\ @ In-d; (I @ X(a, n))j (I @ (X(a, n)j ul));

(I @ X(j, m)); (V @ 1m - I ) ; X(j, m)

X(a, n)j (/\ ® In-I); (I ® (X(a, n); X(a, n)))j (I ® u l );

(I @ XU, m))j (V ® Im-d; XU, m)

= X(a,n);ul

since Theorem(ul, l,j) holds.

Suppose that k =1= 1, a. Then we must show that Theorem(X(a, n)j ul, k, j) holds. Now

X(k, n); (/\ @ In-d; (I 0 X(k, n)); (I @ (X(a, n); ul));

(I 0 X(j, m))j (V @ Im-d; X(j, m)

= X(k, n)j (/\ @ In-d; (I @ (X(k, n); X(a, n)))j (I @ u l };

(I ® X(j, m))j (V @ Im-d; X(j, m)
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It is straightforward to check that the matrices

X(k, n); (/\ @ In-t}; (I @ (X(k, n); X(a, n)))
and

X(a, n); X(k, n); (/\ @ In-t}; (I @X(k,n))
are equal as morphisms of B (and hence as terms of the algebra). Therefore

X(k, n); (/\ @ In-t}; (I @ X(k, n)); (I @ (X(a, n); u1));

(I @ XU, m)); (V @ Im-t}; XU, m)
= X(a, n); X(k, n); (/\ @ In-t}; (I @X(k,n)); (I @ ul );

(I @ XU, m)); (V @ 1m - I ) ; XU, m)
- X(a n)' u1- "

Since Theorem(u1, k, j) holds.

The result follows.

6.2.3 Stage 3

Suppose u = (I®u3);u1 and Theorem(u1,1,1) holds. Let u3: [n -1] ---+ [7' -1]. Then

(/\ @ In-I); (I @ u); (V @ Im-t}

= (/\ @ In-I); (I ® I @ u3); (I @ u1); (V @ Im-t}
= (I @ u3); (/\ ® Ir-d; (I @ u1); (V @ Im-t}

= (I @u3);u1
since Theorem(u1, 1, 1) holds,

= u
so Theorem(u, 1, 1) holds as required.

6.2.4 Stage 4

Suppose u = (t @ In-I); u1 where tEA, and Theorem(u1, 1, 1) holds. Then

(/\ @ In-t}; (I @ u); (V @ Im-t}

= (/\ @ In-t}; (I @ t @ In-t}; (I @ u1); (V @ Im-d
= (/\ @ In-t}; (I @ t @ In-I); (I @ r; ® In-I); (I @ I @ u1); (I @ V @ Im-d; (V @ Im-d

since Theorem(u1, 1,1) holds,

= (/\ @ In-t}; (I @ t @ In-d; (I ® /\ @ In-I); (I @ I @ u1); (V @ 1m); (V @ 1m- I)

. = (/\ @ In-d; (I @ t @ In-d; (I @ /\ @ In-t}; (V @ In); (I ® u1); (V @ Im-t}
= ((/\; (I @t); (I @ /\); (V @ 1)) @ In-t}; (I @ ul ); (V @ Im-d

= ((t; /\) @ In-d; (I @ u1); (V @ Im-d
by the copy axiom

= (t @ In-I); (/\ ® In-d; (I ® u1); (V ® Im-d
= (t ® In-t}; u1

= u

So Theorem(u, 1, 1) holds.
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6.2.5 Stage 5

Suppose u = (V 0 I n - 2);u1, and Theorem(u1,1,1) holds. Then

(/\ 0 In-I); (I 0 u); (V 0 1m-I)

= (/\ 0 In-I); (I 0 V 0 In-2 ) ; (I0 u1); (V 0 Im-d

= (/\ 0 In-d; (I 0 V 0 In-2 ) ; (I 0 /\ 0 In-2 ) ; (I 0 10 u1); (I0 V 0 Im-d; (V 0 Im-d
since Theorem(u1, 1, 1) holds,

= (((/\ 0 /); (I 0 V); (I 0/\)) 0 I n - 2 ) ;

(I0 10 u1); (V 0 1m); (V e Im-I)

= (((/\ 0 /); (I0 V); (I 0/\); (V 0 /)) 0 I n - 2 ) ; (I 0 u1); (V 0 1m-I)

= ((V; /\) 0 In-2 ) ; (I0 u1); (V 0 Im-d

= (V 0 In-2 ) ; (/\ 0 In-2 ) ; (I 0 u1); (V 0 Im-t}

= (V 0 I n - 2 ) ; u1

since Theorem(u1, 1, 1) holds,
= u

so Theorem(u, 1, 1) holds.

6.2.6 Stage 6

Suppose u = (/\0In - d ; u1 and Theorem(u1,1,1) holds. Now

(/\ 0 In-t}; (I (~u); (V 0 1m- I )

= (/\ 0 In-t}; (I 0/\ 0 In-d; (I 0 u1); (V o In-t}

= (/\ 0 In-t}; (/\ 0 In); (I0 u1); (V 0 In-d

= (/\ (~In-I);u1

since Theorem(u1, 1, 1) holds,
= u

So Theorem(u, 1, 1) holds.
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6.2.7 Stage 7

Say that a term is in form F if it is ofthe form I a@f(9Ib for some a, b ~ 0, f E {O, /\, V}U1\.
By the coherence axiom and the functoriality of (9 each morphism linking 1 to 1 can be
written as a concatenation of terms which are alternately permutations linking 1 to 1 and
terms in form F. We show by induction on the number of terms of form F in such an
expression that for each morphism u linking 1 to 1, Theorem(u, 1, 1) holds. If there are no
terms of form F in the expression then u is a permutation, so Theorem(u, 1, 1) holds by
stages 1 and 2. If there is at least one term of form F in the concatenation then u = Pj u2j ul
where P is a permutation (possibly the identity permutation) linking 1 to 1, u2 is of form
F, and ul is a morphism linking 1 to 1 such that Theorem(ul, 1, 1) holds, by the inductive
hypothesis. If a ~ 0 then Theorem(u, 1, 1) holds by stages 3 and 2. Suppose a = O. Since 1
is linked to 1 by u we cannot have u2 = 0 @ Ii; so u2 = /\ (9 Ib, V (9 Ib, or t @ Ib for some
t E 1\. Stages 4,5, and 6 ensure that this implies that Theoremffuz; ul), 1, 1) holds, and so
Theorem(u, 1, 1) holds by stage 2.

Finally, suppose that i is linked to j by some morphism u from [n] to [m]. Then u =
X(i,n)jv;X(j,n) for some morphism v linking 1 to 1. By above, Theorem(v,I,I) holds, so
by stage 2, Theorem(u,i,j) holds.

6.3 Proof of the partial ordering condition

This subsection gives two corollaries of the Theorem. The first essentially proves that any
term can be written in a form satisfying the partial ordering condition. The second corollary
is the stronger result that any term can be written in a layered form so that all terms
consisting of consecutive layers of the layered form satisfy the partial ordering condition.

Corollary 1

Any term u in layered form which does not satisfy the partial ordering condition is equal to
a term v in layered form such that Linkl(v,i,j) :::; Linkl(u,i,j) for all pairs (i,j) and there
is at least one pair (i,j) such that Linkl(v,i,j) < Linkl(u,i,j).

Proof The proof of Corollary 1 uses the Theorem as a starting point for an argument by
induction.

For ease of notation we will write (X)~ for Linkl(X, i,j) throughout the proof of the corol
lary.

Suppose a term u in layered form does not satisfy the partial ordering condition. Without
loss of generality, using the coherence axiom, we may assume that u is of the form

ZI; (/\ @ In); (I @ Z2); Z3; (V @ 1m); Z4

where ZI, Z2, Z3, Z4 are terms in layered form,
there is some i linked to 1 by ZI,
there is some j linked to 1 by Z4, 1 is linked to 1 by Z2 and by each layer of Z3,
2 is linked to 2 by each layer of Z3, and
each layer of Z3 which is of the form 91 ® 92 ® .. , @ 9r has 91 = I.
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We will show that this is equal to a term in layered form

Z1; (/\ @ In); (I @ Y2); Y3; (V @ 1m);Z4

where Y2, Y3 are terms in layered form, and

((I @ Y2); Y3)~ < ((I @ Z2); Z3)~ for all (i,j)

((I @ Y2); Y3)~ < ((I ® Z2); Z3)~

We will prove the result by induction on the number of layers of Z3 of the form 91 @ ... @9r.

6.3.1 Case 0

If Z3 has no layers of the form 91 @ ... @ 9r then it must be a morphism of B. Assume that
this is the case. Let Z5 be the s X (m +2) matrix (where Z3 has size s x (m +2)) such that
zs., = zs., if (i,j) f:. (1,1) and Z51,1 = F. Then Z3 = (/\ ® Is-I); (I @ Z5); (V @ Im+d
and so

u = Z1; (/\ @ In); (I @ Z2); (/\ @ Is-d; (I e Z5); (V ® Im+l); (V @ 1m);Z4

= Z1; (/\ @ In); (I @ /\ @ In); (I @ I @ Z2); (I @ Z5); (I @ V @ 1m);(V (:9 1m);Z4

= Z1; (/\ @ In); (I @ ((/\ @ In); (I @ Z2); Z5; (V ® 1m)));(V @ 1m); Z4

and 1 is linked to 2 by (/\ @ In), 2 is linked to 2 by (I @ Z2), 2 is linked to 2 by Z5, 2 is
linked to 1 by (V @ 1m ), so 1 is linked to 1 by (/\ @ In); (I @ Z2); Z5; (V @ 1m ) . This means
that we can use the Theorem, and u equals

Z1; (/\ @ In); (I @ Z2); Z5; (V @ 1m);Z4

By the definition of Z5, ((I®Z2); Z5)~ -:; ((I@Z2); Z3)~ for all pairs (i,j) and ((I@Z2); Z5H
is less than ((I @ Z2); Z3H as required.

6.3.2 Inductive step

Now suppose that Z3 = Z5; (I @ 92 @ ... @ 9r); Z6 where Z5 is a morphism of Band Z6
is I; or is in layered form with the top layer a non-identity morphism of B. Let Z7 be the
matrix of the same size as Z5 such that Z7i,j = Z5i,j whenever (i,j) f:. (1,1), Z71,1 = F.
Then u equals

Z1; (/\ @ In); (I @ Z2); Z5; (I @ 92 @ .. , @ s-): Z6; (V @ 1m);Z4

= Z1; (/\ @ In); (I ® Z2); (/\ @ Is-d; (I e Z7);

(V ® Ir-d; (I ® 92 @ ... @ 9r); Z6; (V @ 1m);Z4

= Z1; (/\ @ In); (I @ /\ @ In); (I @ I ® Z2); (I @ Z7);

(I @ I @ 92 @ ... @ 9r); (V @ Ir-d; Z6; (V @ 1m);Z4

= Z1; (/\ ® In); (I @ ((/\ @ In); (I @ Z2); Z7; (I @92 @ ... ® 9r); X(2, 1»));

19



(1 ® X(2, 7')); (V @ Ir- I ) ; Z6j (V ® 1m);Z4

Put
Z8 = (/\®In)j(1®Z2);Z7;(1®92@ ... ®9r);X(2,r)

Z9 = The term in layered form((1 ® X(2, r)); (V ® Ir-d); Z10

where Z6 = Z10; ZII with Z10 the top layer of Z6.
Then ((1 ® X(2,7')); (V ® Ir- 1); Z6) can be rewritten in layered form as Z9; Zl1 with fewer
layers of the form 91 ® ... ® 9r than Z3,
1 is linked to 1 by Z8 and each layer of Z9j Zl1, and
2 is linked to 2 by each layer of Z9; ZI1.
Hence it is possible to use the inductive hypothesis; u is equal to a term

ZI; (/\ ® In); (I @ Y2); Y3; (V ® 1m);Z4

such that
((/\ ® In); (I Q9 Y2); Y3)~ ~ ((/\ Q9 In)(I Q9 Z8); (Z9; Zl1))~

for all pairs (i, j), and

((/\ ® In); (1 I~ Y2)j Y3)~ < ((/\ ® In)(1 ® Z8); (Z9; Zl1))~

It remains to prove that

((/\ ® In); (I ® Z8); (Z9; Zl1))~ ~ ((/\ ® In); (I ® Z2); Z3)~

for all pairs (i,j), ie.

((/\ ® In); (I ® ((/\ Q9 In); (I Q9 Z2); Z7; (I Q9 Q9 s-):X(2, 7'))); (Z9; Zl1))~

< ((/\ I~ In); (1 @ Z2); Z5; (1 ® 92 ® ® 9r); Z10; Zl1)~

for all pairs (i, j).

6.3.3 Case 1 - i = 1

By definition of Linkl,

((/\ ® In); (I (gl ((/\ Q9 In); (I Q9 Z2); Z7; (I Q9 .•. Q9 9r); X(2, r))); (Z9; Zl1))j

= ~k((Z9)l.(Zl1)j)

+ ~kl,k2,k3( (Z7)l1.(X(2, r) )~~.(Z9)~;+I.(Zl1 )j3)

+ ~kl,k2,k3,k4( (Z2)l1'( Z7)~~+l.(X(2, 7'))~;'(Z9)~l+I.(Zl1 )J4)

By definition of Z9, (Z9)~1 = (ZlO)~1 and

~k3((X(2, 7') )~~.( Z9)~~+l) = (ZlO)~~
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for any k2, k4, so

((/\ @In); (1 @((/\ @In); (1 ® Z2); Z7; (1 @... @9r); X(2, r))); (Z9; Zll))}

= (ZIO; Zll)}

+ ~k2((Z7)l2.(ZIO; Zll)72)

+ ~kl,k2((Z2)l1.(Z7)Z~+t .(ZIO;Zll)72)

By the definition of Z7 in terms of Z5, this is equal to

~k2((Z5)l2.(ZIO; Zll)j2)

+ ~kl,k2((Z2)l1.(Z5)Z~+t .(ZlO; Zll )72)

which is equal to

as required.

~k2(((/\ @In); (1 @Z2); Z5)l2'(ZlO; Zll)72)

= ((/\ @In); (1 ® Z2); Z5; (1 ® 92 @... @9r); ZIO; Zll)}

6.3.4 Case 2 - i > 1

Let i > 1. By definition of Linkl,

((/\ @In); (1 @((/\ @In); (1 @Z2); Z7; (1 @... @9r); X(2, r))); (Z9; Zll))~

= ~kl ((1 @Z2); Z7; (1 @92 @... @9r); X(2, 1·))~tl.(Z9; Zll)jt+l

= 'E k1,k2,k3,k4((1 @Z2)~tl.(Z7)Z~.(X(2, r))Z~.(Z9)Z~+t .(Zll)74
)

= 'Ek1,k2,k4((Z2)~1'(Z7)Z~+1.(ZlO)Z~.(Zll )j4)

by the definition of Z9 in terms of Z10

by the definition of Z7 in terms of Z5

= 'Ek2(((/\ @In); (1 @Z2); Z5)~2.Linkl(ZlO; Zll)j2)

= ((/\ @In); (1 @Z2); Z5; (1 @92 @... @9r); Z10; Zll)~

as required. This completes the proof of Corollary 1.
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6.3.5 Corollary 2

Any morphism can be written as a term u in layered form such that if v is any term consisting
of a series of consecutive layers of u, then v satisfies the partial ordering condition.

Proof

The proof is by induction on the minimal number of layers needed to represent the morphism
as a layered term. Any term with just one layer satisfies the partial ordering condition.

Let u be a layered term B(l); P(l); ... ;P(1' -1); B(1') representing the morphism such that
the number

L,i,jLink1(u, i, j)
is minimal. By induction on the number of layers needed there is a layered term equal to
P(l); ... ; P(1' - 1); B(r) such that any term consisting of a series of consecutive layers of the
layered term satisfies the partial ordering condition. Substituting P(l); ... ;P(r - 1); B(r)
with this layered term in the expression for u will not increase L,i,jLink1(u, i, j), so without
loss of generality the layered term is just P(l); ... ;P(r - 1); B(1-).

If there is some pair (h,k) such that k < r ; Link1(B(1);P(1); ... ;P(k),m,h) > 0 for some
m, and Link1(B(k+1); P(k+1); ... ;B(r), h, m) = 0 for all m, then assume that k is maximal
such that such a pair exists. We must have Link1(B(k + 1), h,m) = 0 for all m. Then

B(k); P(k); B(k + 1)

B(k); (91 Q9 ••• Q9 9s); (h-1 Q9 a Q9 Is-h); B(k + 1)

= B(k); (91 Q9 9h-1 Q9 0 Q9 9h+l ... Q9 9s); B(k + 1)

= B(k); (h-1 Q9 0 Q9 Is-h); (91 (gl ••• Q9 9s); B(k +1)
= BB(k);P(k);B(k+ 1)

where BB(k) is the matrix of the same dimensions as B(k) satisfying BB(k)a,b = B(k)a,b if
b =f:. hand F if b = h. Substituting BB(k) for B(k) in the term u leaves Link1(v,i,j) and
Link2(v, i,j) no greater than before whenever v is a term consisting of consecutive layers of
u. By performing this substitution for each h satisfying the condition given above, and using
backwards induction on k, we may assume that there is no such pair (h, k).

If v is a term consisting of a series of consecutive layers of u and does not satisfy the partial
ordering condition, then v must be the term B(l); P(l); ... P(k) for some k. By Corollary 1
v can be rewritten as a term w in layered form where Link1(w,i,j) :::; Link1(v,i,j) for all
i,j and there is some pair (i,j) such that Link1(w, i,j) < Link1(v, i,j). Since Link1(v, i,j)
> 0 there is some m such that

Link1(B(k + 1); P(k + 1); ... ; B(1'), h, m) > 0

But this implies that

L,i,jLink1(w; B(k +1); P(k + 1); ... ; B(1'),i,j) < L,i,jLink1(u, i,j)

which contradicts the hypothesis on u. Therefore no such v can exist. This completes the
proof.
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7 Normal form

This section gives a normal form for terms of the algebra, and proves that every term is equal
to a term in normal form. There are six conditions for a term to be in normal form; the
first two have already been introduced. It will turn out that each term is equal to a unique
term in normal form. The definition of normal form is partly derived from the definition of
normal form in [DMM 89], but in that paper a term may be equal to more than one term
in normal form.

7.1 Definition of Normal form

A term u which is in normal form if and only if all the following conditions hold;

1. (layering) u is in layered form, =B1 ; PI; ... ; Pr - 1 ; B,

2. (partial ordering condition) If v is any term consisting of a series of consecutive
layers of u, v satisfies the partial ordering condition

3. (maximal parallelism) for each set of three consecutive layers

of u with A a morphism of B, if 9i =J I then there is some k such that Ak,i=T and
hk =J I

4. (independence of idles) for each pair of consecutive layers A; (91 0 ... 0 9m) with
A a morphism of B, if 9i = I then I{k: Ak,i = T}I ::; 1, and if 9i = 9j = I, i i= j, then
I{k : Ak,i = Ak,j = T}I = 0

5. (decomposition of causal links) Either r = 1, or B1 , B2 , ••• ,Br - 1 have at least one
entry T in each column and B2 , B3 , • • • ,Br have at least one entry T in each row

6. (ordering) If 91 ®92 ® ... ®98 = Pk for some k then for each 1 :::; i :::; s -1 either 9i = I
or 9i,9i+l E A with 9i -< 9i+!, where -< is some fixed total ordering on A. Moreover, if
9i = 9i+I for some 1 :::; i :::; s - 1, then the set {j : (Bk)j,i = T} either precedes or is
equal to the set {j : (Bk)j,i+l = T} in lexicographical ordering.

7.2 Maximal parallelism

Every morphism can be expressed as a term satisfying conditions 1, 2 and 3 of normal form.

Proof

By Corollary 2, every morphism can be expressed as a term satisfying conditions 1 and 2.
Suppose we have a term satisfying conditions 1 and 2, but not 3. Then there is a set of three
consecutive layers
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of the term with A a morphism of B, such that for some i with 9i f: I there is no k such
that Ak,i=T and hk f: I. By using permutations we may assume that i = 1 and Ak,l=T if
and only if 1 S k S s, for some s. We will show that the term

can be written in the form required, where the term satisfies conditions 1, and 2. Let Al
be the s X m matrix satisfying Ali,j = Ai,j (1 ::; i ::; s,1 S j ::; m). Let A2 be the
((m - 1)+ (n - s)) x (m - 1) matrix satisfying

A2i,j = (Im-di,j if 1 S i,j S m - 1,

A2i,j Ai+s-(m-1),j+l if m SiS m - 1 +n - s, 1 S j S m - 1.

Now
(Is 0 hs+l @ ... @ hn); A; (91 @ ... @ 9m)

(Is 0 hs+l @ ... @ hn); (AI @ I n- s);(I @ A2); (91 @ ... @ 9m)

= (AI @ hs+l @ @ hn)j (91 @ (A2j (92 @ ... @9m)))

(AI @ I n- s);u; @ hs+1 @ @ hn); (91 @ I n+m- s);(I @ A2); (I @ ... 0 9m)

= (AI 0 I n- s); (91 @ I m- 1 @ hs+1 @ ... 0 hn); (I @ A2); (I @ ... 09m)

and by using this manipulation once for each i such that Ak,i = T implies hk = I, the term
can be written in the form required.

If the term is part of a layered expression, the rewriting may cause the maximum parallel
condition to be untrue for the preceeding or following layer. However the rewriting strictly
decrea:ses the number N(1 )+N(2).+ . . . N(k), w~ere there ,:"r~ k ~ayers ofthe form (91@' . .~9n)
and {] : 1 ::; J ::; n,9i f: I} = N( z). Therefore if the rewriting IS repeated for an appropriate
subterm each time there is a layer which no longer satisfies the maximal parallism condition,
the process must eventually terminate to leave a term satisfying conditions 1, 2, and 3.

7.3 Independence of idles

Every morphism can be expressed as a term satisfying conditions 1, 2, 3 and 4 of normal
form.

Without loss of generality, using the coherence axiom, the morphism can be written in the
form

ul; A; (Ib @ 9b+1 @ ... @ 9n);u2

where A is a m x n matrix satisfying

{k: Ak,i = T for some 1 ::; i S b} = {1,2, ... ,a},

{i : 9i = I} = {I, 2, ... , b}, ul satisfies conditions 1,2,3 and 4, and the whole term satisfies
conditions 1, 2 and 3.

Now
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= AI; (A2 @ In-b); (t, @ 9b+l @ ... @ 9n)

where Al is the m x (a + n - b) matrix satisfying Ali,j = T if and only if i = j :S a
or (j > a and A,j-a+b = T), and A2 is the a x b matrix satisfying A2i ,j = A,j for all
1 :S i :S a, 1 :S j :S b

= AI; (fa @ 9b+l @ ... @ 9n); (A2 @ In-b)

and by repeating this manipulation finitely many times, and using induction on the number
of layers of u2, the term can be rewritten in the form required.

7.4 Decomposition of causal links

Every morphism can be expressed as a term satisfying conditions 1, 2, 3, 4, and 5 of normal
form.

Proof

Every morphism can be expressed as a term satisfying conditions 1, 2, 3 and 4. Suppose
that

B(I); P(I); ... ;P(7' - 1); B(7')

is such a term. We show by induction on 7' that this is equal to a term satisfying conditions
1, 2, 3, 4, and 5, with no more than 27' - 1 layers.

Firstly, if Om,n is the m X n dimensional matrix with all entries F and UI, U2 are any
morphisms of the category A from [k] to [m] and from [n] to [k] respectively then Os»: UI
= U2; Ok,m = On,m' This follows from the fact that Om,n is the sequential composition of
a morphism from [m] to [0] with a morphism from [0] to [n], and the fact that [0] is both
initial and final in A.

This result implies that if a term is in layered form and for some k all entries of Bk are F,
then the morphism expressed by the term is equal to a matrix all of whose entries are F.
Such a matrix is in normal form.

From now on we may assume that for each k the matrix B k has at least one entry T. Then next
stage of the proof is the case when 7' = 2. By the result on the decomposition of morphisms
of B proved in an earlier section we have B(I) = B1(I); B2(I), B(2) = B1(2); B2(2) where

• B1 (1) has at least one entry T in each column

• B2 (1) has exactly one entry T in each row

• B 1 (2) has exactly one entry T in each column

• B2(2) has at least one entry T in each row

If B2(I) and B1(2) are both square then B(I); P(I); B(2) is already in the form required. If
P(I) has dimension l x l then B2(I) and B1(2) must both be square. Suppose B2(I) is not
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square. Then there are permutations AI, A2 and a morphism B3(1) of B such that B2(1) =
AI; (j.l @ B3(1)); A2, where j.l is the Ox1 matrix. Therefore

B(l); P(l); B(2) = B1 (1 ); AI; (j.l @ B3(1)); A2;P(l); B(2)

= B1 (1 ); AI; (j.l @ B3(1)); (91 @ ... ® 9k); A3; B(2)

for some permutation A3 and 91,'" ,9k E A U {I}, where P(l) has dimension k x k

B1(1);A1; ((j.l;9t} @(B3(1);(92@93@"'@9k)));A3;B(2)

= B1 (1 );AI; (j.l ® (B3(1); (92 @ ... @ 9k))); A3; B(2)

since [0] is an initial object,

B1(1); AI; B3(1); (92 @ @ 9k); (j.l @ h-t}; A3;B(2)

= C;(92@ @9k);D

for some morphisms C, D of B. By induction on k this is equal to a term of the form required.
If B1 (2) is not square there is a similar proof.

Now suppose that 7' > 2 and use induction on 7', Suppose we have a term

B(l); P(l); ... ;B(r - 1); P(r - 1); B(7')

Without loss of generality

B(l); P(l); ... ;P(7' - 2);B(r - 1)

satisfies condition 5. In particular there is an entry T in each row of B(T - 1), and so in
each row of B(7' -1); P(T -1); B(7'). By the case 7' = 2, B(7' -1); P(r - 1); B(7') is equal to
a term B1; P; B2 satisfying conditions 1, 2, and 3, and since there is an entry T in each row
of B1, P, B2 there is an entry T in each row and each column of Bl. Therefore

B(l); P(l); ... P(T - 2); B1; P; B2

satisfies conditions 1 and 5, and it is straightforward to check that the substitution of
B1; P; B2 for B(r - 1); P(T - 1); B(7') leaves the term still satisfying conditions 2, 3, and 4.

7.5 Ordering

Every morphism can be expressed as a term in normal form.

Proof

Given a term satisfying conditions 1, 2, 3, 4 and 5, a judicious choice of permutations to
pre- and post-multiply the matrices B; will transform it into an equal term in normal form.
Therefore every morphism can be represented by a term in normal form.
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8 Representation Theorem

We are at last ready to describe the bijection between the set of morphisms of the category
A and the set CCH. First we will give a map U from the set of terms to the set CCH, such
that any two terms which represent the same morphism have the same image under U. We
prove that U is surjective, and finally that the restriction of U to the set of terms in normal
form is injective. Since every morphism of the category A is equal to a term in normal form
this proves that there is a bijection between the set of morphisms and CCH.

8.1 Definition - underlying partial order

If u is a term of the algebra, the underlying partial order U(u) of u is the element of CCH
defined structurally as follows;

• If u is a morphism of B from [n] to [m] then U(u) is the element ((VI un UV3, 5" f), (3, I)
for which IVi I = n, 1V31 = m, and if x, y E V then x 5, y if and only if x E VI, Y E V3

and u,l3(x),')'(y) = T

• If tEA then U(t) has three elements vI, v2, v3 labelled s,t,s respectively such that
vi 5, vj if and only if i 5, j

• U(ul;u2) is the element U(ul);U(u2)

• U(u10 u2) is the element U(ul) 0 U(u2)

By the representation of the morphisms of B, U(u) is well defined whenever u is a morphism
of B. It is straightforward to check that the left hand and right hand side of the axioms
introduced in the definition of the category A have the same underlying partial orders.
Therefore two terms which are equal in the algebra have the same underlying partial order.

8.2 Lemma - every element of CCH is an underlying partial
order

Given any element of CCH whose internal elements are labelled with the set A there is some
term u of the algebra whose underlying partial order is the element.

Proof

Use induction on the number of objects in the element of CCH which are neither minimal nor
maximal. If all the objects are either minimal or maximal then the element is U(u) for the
matrix u which has an entry T at place (i,j) if the minimal object labelled i is comparable
with the maximal object labelled i, and has an entry F at place (i, j) otherwise.

Suppose C is an element ((VI U V2 U V3, 5" f), (3, I) of CCH with V2 nonempty, and that
any element of CCH with fewer than 1V21 objects which are neither maximal nor minimal
is U(u) for some term U. Pick an object x which is minimal in V2. Let D be the element

(((VI U {x}) U (V2\{x}) U V3, -<,fD), (3D' I )

of CCH where
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• x rt VI U V2 U V3,

• y -< z if and only if y :::; z or y = x and x :::; z ,

• fD(y) = f(y) ify E V2\{x},

• (3D(y) = (3(y) if y =I x, (3D(X) = 1V11+1.

D has fewer objects which are neither maximal nor minimal than C, so D = U(u) for some
term u. Let E be the n x (n + 1) matrix which has entry T at place (i,j) if i = j :::; n or
j = n + 1, y :::; x where y E VI and f(y) = i, and entry F at place (i,j) otherwise. Then
C = U(E; (In @ f(x)); u), which is the underlying partial order of a term of the algebra, as
required.

8.3 If U(ul) = U(u2) then ul = u2

This is the second part of the Representation Theorem. The main work in proving this has
already been done, in the proof of normal form. Without loss of generality ul and u2 are
in normal form. We will show that they are the same term in normal form, by induction
on the number of layers of ul. The proof follows [DMM 89]. If ul is a morphism of B then
all elements of U(ul) are either maximal or minimal, and so u2 is a morphism of B, and
ul = u2 by the representation theorem for morphisms of B.

Suppose that ul is B(I)jP(I); ... ;P(r -1);B(r') in layered form. Let L(I) be the set of
elements of U(ul) which are not minimal but which are not greater than any non-minimal
element of U(ul). Let P(I) = 91 @ ... @9n' It is easy to see (using the condition of maximal
parallelism) that there is a bijection between the set {j : 9j = tEA} and the set of elements
of L(I) labelled t, such that an element e in L(I) labelled t is greater than ei, the minimal
element of U(ul) for which (3(ei) = i, if and only if B(1 kj = T where j is the corresponding
element of {j : 9j = t}.

By the partial ordering condition, Link2(B(I)j P(I), i,j) > 0 for some j if and only if there
is some element e of U(ul) which is not in the set L(I), which is greater than ei, and there
is no element f of U(ul) with e > f> e.. Hence the set

{i: there is some j such that B(l )i,j = T,9j = I}

is determined by U(ul). By the condition on independence of idles, the number of elements
of this set is equal to I{i : 9i = I} I. Therefore the multiset {9i : 1 :::; i :::; n} is determined by
U(ul), and hence the first part of the ordering condition ensures that P(I) is determined by
U(ul).

Now for each tEA the set Hi :B(l)i,j = T} : 9j = t} is determined by U(ul), so the second
part of the ordering condition ensures that for each j with 9j E A the set {i : B( 1)i,j = T} is
determined by U(ul). Suppose now that 9j = I. The condition on independence of idles and
the second part of the ordering condition force the set {i : B(1)i,j = T} to be the singleton
whose element is the ph smallest element of

{i: there is some j such that B(lkj = T,9j = I}
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Hence B(I) is determined by U(ul).

Suppose that U(ul) is ((Vi U V2 U lt3, '5:, f), (3,/). There is only one element C of CCH
satisfying U(B(I); P(1)); C = U(ul). This is the element C =

(({II, ... ,In} U V2 \L (1) U lt3\L (1), ~, f), (3, /1 )

where 11,"" In are not in Vi U V2 U V3 ,

I ~ e, e, I E S if and only if

(e, I E V2 U V3 , I < e or I = Ii for some i.B(1 )i,j = T, e E V2 UV3 , ei < e)

(31(1j) = j for all j

The term u2 is the term B(l); P(I); u3 where U(u3)=U(B(2); P(2); ... ;B(r»=C, so by
induction on r , u3 is the term B(2); P(2); ... ; B(ro

) and ul, u2 are the same term, as required.

9 Summary

The algebra CCH is the algebra of morphisms of the cate~ory A. A is the symmetric strict
monoidal category generated by a non-identity object [11, and morphisms t : [1] - [1]
(t E A), V : [1] ® [1]- [1], /\ : [1]- [1] ® [1], under the following set of axioms.

• The identity object [0] is initial and final

• /\; (I (~/\) = /\; (/\ ® I) where I is the identity morphism on [1]

• (I ® V); V = (V ® I); V

• 1\; V = I

• V; /\ = (/\ ® /\); (I 0 X 0 I); (V ® V) where X : ([1]0 [1]) - ([1]0 [1]) is the symmetry
isomorphism

• 1\; (I 0 f) = I where f : [1] - [0]

• (I ® p); V = I where p : [OJ - [I]

• 1\;X = 1\

• XiV = V

• t; 1\ = 1\; (I ® t); (I 01\); (V ® I) whenever tEA

The smallset subcategory of A which is a symmetric strict monoidal category and contains V,
1\ is B. The algebra of morphisms of B is the algebra of bipartite histories, and is isomorphic to
the algebra of non-negative-dimensional matrices over the boolean algebra with two elements.
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10 Applications to Petri Nets and CCS

10.1 A connection with Petri Nets

Suppose there is a Petri Net with set of places P, and set of events E, such that there are no
events whose multisets of preplaces or postplaces are empty.

Form the algebra freely generated under .; _ and 0 by the set

{gen(e): e E E} U {gen(p) : pEP} U {gen(p,q): p,q E P (possibly p = q)}

where
gl 0 g2 is always defined;
gl; g2 is defined if and only if the string maxlabels(gl) is equal to the string minlabels(g2);
minlabels(gen(e)) is some ordering of the multiset of preplaces of e;
maxlabels(gen(e)) is some ordering of the multiset of postplaces of e;
minlabels(gen(p)) = maxlabels(gen(p)) = p;
minlabels(gen(p, q)) = p.q;
maxlabels(gen(p, q)) = q.p;
minlables(gl0 g2) = minlabels(gl).minlabels(g2);
maxlables(gl 0 g2) = maxlabels(gl).maxlabels(g2);
minlables(gl; g2) = minlables(gl), maxlables(gl; g2) = maxlables(g2).

There is a partial algebra homomorphism from this algebra to CCH (with E as the alphabet
A) sendinggen(p) to I, gen(p,q) to X(2,2), and gen(e) to Vr(e);te;As(e), where r(e) =
[multiset of preplaces of e] and s(e) = [multiset of postplaces of eI- Take the set of labelled
partial orders obtained by removing the maximal and minimal elements of the underlying
partial order of elements in the image of this homomorphism. This is exactly the set of all
partial orders of events which can be obtained by computations in the Petri Net. Moreover,
there is a bijection between the set of all partial orders of events obtained by computations
in the Petri net and the expressions

where
B I; PI; B 2 ; ... ; Pr- l ; n,

is an expression in normal form equal to an element in the image, and nl, n2 are the number
of generators in {t e : e E E} U {I} in PI, Pr- l respectively.

10.2 A model for CCS

In [FMM 90] the category A whose set of morphisms is CCH is given the structure of a CCS
model. The operations of CCH are defined on objects of the category, and the morphisms
represent proofs of computations from one object to another. See the reference for details.
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