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1. Introduction

1

A class of versatile point processes was introduced in [10] by M. Neuts and further
extended by Lucantoni in [8]. The first class of point processes has been referred
to as N-processes in the queueing literature and the second one to batch markovian
arrival processes (BMAP). They are a wide generalization of Poisson processes and
they encompass a large class of numerically tractable point processes as special cases.
For instance, in [6], Markov modulated Poisson processes, a subclass of batch markovian
arrival processes, were used to model the superposition of voice sources. The N/GI/l/oo
queue was studied in [13] and the results therein were extended to the case of batch
markovian arrival processes in [8]. In all cases, the analysis was based on the matrix
geometric methodology introduced by M. Neuts in [11, 12].

Queueing systems with vacations have been widely studied. A complete survey article
can be found in [5]. In [2], a pseudo-conservation law for a multiclass queueing system
with vacations is studied and [7] contains the analysis of the M/G/l queueing system
with finite buffer under more sophisticated vacation schedules.

The contributions of this paper can be found in the approach used and in the results
obtained in the analysis of a queueing system under a very general vacation schedule.
In fact, the analysis technique used allows the derivation of these new results with very
little extra effort.

The approach used to analyze the queueing system with vacations under consideration
relies on the so-called Palm-martingale calculus [1, 4] instead of the usual matrix ap
proach [11, 12]. The analysis of a stochastic system via Palm-martingale calculus can be
divided into three parts. First, one establishes sample path relations between quantities
of interest. Then, one takes expectations in the sample path equalities derived. Palm
probabilities provide the natural link between the time and event averages typically
involved in expectations of sample path equalities [4]. The Palm probability framework
avoids the manipulation of empirical averages and limiting distributions, thus reducing
this step to mere computations. One typically obtains a relationship between Palm
probabilities and the stationary probability. Finally, with the help of martingale calcu
lus, one relates the Palm probabilities obtained in the previous step to the stationary
probability. Hence, the basic element needed to analyze a stochastic system in equilib
rium via Palm-martingale calculus is an underlying stationary point process admitting
a stochastic intensity. In contrast with the classical matrix approach, this is the only
mathematical structure required. (Of course, one still has to find the appropriate point
processes to carry out the analysis). Therefore, one should expect that some currently
open problems in queueing theory can be successfully solved via Palm-martingale cal
culus. In order to illustrate the methodology, we rederive some results obtained in [13]
and [9] via Palm-martingale calculus.
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The second contribution of this paper is the extension of results contained in [13J and
[9J. The vacation schedule considered here is more general than the one in [9J since we
allow server vacations to start when a customer joins an empty system or at departures
that leave behind a non-empty system. In the former case the server vacation will be
called a server set-up time. The vacation schedule considered here does not allow service
interruption. In the model under study, the vacation length distribution can be different
in both cases and is independent of the queue length and system workload. Our problem
formulation allows also the server to take consecutive vacations. Furthermore, the input
process considered here is more general than the one in [9J since it allows batch arrivals.
However, it is hard to compare specific results since the vacations analyzed in [9J can
start only at the end of a busy period whereas in this paper, they start at departures
that do not start a busy period or at arrivals that start a busy period (set-up times). In
that sense, the residual vacation time seen by an arrival finding an empty system in the
vacation schedule analyzed in [9] corresponds to the server set-up times of this paper.
On the other hand, this paper does not address computational issues and factorization
issues as respectively done in [9, 8].

This paper is divided as follows. The notation and results used related to Palm
martingale calculus can be found in [1J and [3J. Section 2 contains a brief summary
of results needed in Palm probability and martingales. In section 3, BMAP-processes
are introduced emphasizing their properties from a Palm-martingale calculus viewpoint.
Section 4 contains the description of the BMAPIGll1 queueing system with server va
cations analyzed. In section 5 we obtain formulas of relevant distributions at event
times, i.e., arrival times and departure times. Some of these results appear elsewhere
[13, 9] and are derived here to illustrate Palm-rnartinagle calculus. In section 6 we
compute the moment generating function of the queue length vector. In section 7 we
derive the characteristic function of the the workload vector. The results obtained are
particularized to the BMAP IGI/1 queue without vacations in section 8. In section 9,
the results obtained are also particularized for the M/GI/1 queueing system with server
vacations. The conclusions are contained in section 10.

2. Overview of Palm Probability and Martingales

In this section, we present a brief summary of results in Palm probability and martin
gales used in this paper.

We introduce the notation related to Palm probability. A formal presentation on this
subject and further details can be found in [lJ.

On a probability space (O,~) we consider a stationary stochastic process Z(t), t E R, a
measurable set B, and a simple point process N = (Tn)nEz, i.e., such that Tn < Tn+l'
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with the standard labelling convention, T; ~ 0, n ~ 0 and t; > 0, n > O.

For each n E I, define the operator fhn which associates to a trajectory wEn, a new
trajectorylJrnwobtained byshiftingwbynpointsofN, e.g., Z(Tm,fJTnw) = Z(Tm+n,w).
It is customary to use the notations Z(Tn) = Z(O) 0 fhn and loTnwEB = IB 0 OTn. In
order to simplify the notation, we let,

1 Z(s)N(ds)
(O,t]

( IBoOsN(ds)
J(O,t]

and in particular, N(o,t] = f(o,t] N(ds).

E Z(Tn)I{0<Tn9}'
nEZ

L I{OTnwEB}I{O<Tn~t},
nEZ

If AN = E[N(o,l]] < 00, the Palm probability of B with respect to N is defined as,

E[l IB 0 ()sN(ds)]
pRr(B) = _--,-(0--,:,1-,--;],------

E[j N(ds)]
(0,1]

Similarly, the Palm expectation of Z(.) is given by,

E[j Z(s)N(ds)]
ERr[Z(O)] = _-,-(0~,1] _

E [/0,1] N(ds)]

The Palm probability is invariant under fhn, i.e., PRr(B) = PRr(()TnB).

If N' = (T~)nEZ is another simple point process (with the standard labelling convention),
the so-called exchange formula relates the Palm probabilities associated to two point
processes,

For the notation and results related to martingales the reader is referred to [3]. The
main result needed in martingale theory is presented in the sequel. Let ~t be a filtration
of the probability space (n,~, P) and N a stationary point process adapted to ~t with
(P,~t)-stochastic intensity At and rate A = E[N1] . Then, if Z(t) is a non-negative
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~r-predictableprocess, we have,

4

In fact, this last equation is the link between time and event averages mentionned earlier
[4] and is nothing but the definition of stochastic intensity of a point process combined
with the definition of Palm probability associated to that point process.

3. Palm-martingale Analysis of BMAP

Batch markovian arrival processes (BMAP) were introduced by M. Neuts in [10] and
further extended and refined by Lucantoni in [8]. In this section we derive the main
properties of BMAP via Palm-martingale calculus.

Let (Xt,~;) be an irreducible positive recurrent continuous time Markov chain on a
finite state space E = {I, ... , L} with equilibrium distribution 1t'. The process X, will
be referred to as the phase of the batch markovian arrival process. The jump times of
Xt (the jumps can be from a state into itself) form a point process (Tn)nEl. We associate
to this point process a sequence of marks (Un)nEl with values on N.

In this paper, the marked point process A = (Tn, Un)nEl will be the used to generate
the input process to a single server queue with server vacations and set-up times. If
ii; > 0, the mark ii; will represent the size of the batch of customers arriving at time
i.: If it; = 0, no customer will join the queue at time i; and thus, i; will not be an
arrival time to the queueing system. The marked point process A= (Tn,Un)nEZ is such
that,

1. A admits a (P, ~x)_ stochastic intensity AX,.

2. The marks of A and the phase are conditionally independent of the arrival time
given the phase just before the arrival. Their conditionnal moment generating
function is given by,

with I:j pij(I) = 1. Note that, as opposed to [8], we allow transitions from a state

into itself regardless of the value of o:

We briefly examine some properties of A = (Tn, Un)nEl needed throughout the paper
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using the Palm-martingale methodology. Let,

s, = L Un l (O< i; ::; t),
nEl

be the aggregated batch count up to time t, i.e., the total number of arrivals in ]0, t].
Consider the sample path equality,

zNt1(X
t = j) = 1(Xo = j) +L:1(0 < i; ::; t) (zNtn 1(Xt n = j) - zNr;; 1(Xt;; = j))

nEl

1(Xo = j) + I (z Ns1(X
s = j) - zNs-l(Xs- = j)) A(ds),

J]O,t]

where, in the above equations, if Z(t), t E R, is a stochastic process, Z(T;;) and Z(s-)
denote the value of Z(.) just before a point of A. Let Yij(t) = E[1(Xo = i)1(Xt = j)zNt].

Multiplying the above sample path equality by 1(Xo = i) and taking expectations,
yields after standard martingale manipulations,

Yij(t) 1(i = j)7rj +E[1(Xo = i) I (zNS1(X

s = j) - zNs- 1(Xs- = j))A(ds)]
JjO,tj

1( i = j)7rj +E [1(Xo = i) I zNs - (if s L 1(Xs- = l)1(Xs = j) -
JjO,tj I

-1(Xs- = j))A(ds)]

1(i = j)7rj +E [1(Xo = i) It (L: zNs1(X
s = 1).IPlj(Z) - zNs1(X

s = j».j )ds].
Jo I

Defining the vector Yi(t) = (Yij(t))jEE, the previous equation can be rewritten in matrix
form as,

Yi(t) = Yi(O) +I t

Yi(s)D(z)ds,

where the matrix D(z) = (Dij(z)kjEE has entries,

and for j E E, Yij(O) = 1(i = j)7ri' Solving the integral equation (3.1),

Yi(t) = Yi(O)exp{D(z)t},

(3.1)

s.e.,
Yij(t) = E[1(Xo = i)1(Xt = j)zNt] = 7ri exp{D(z)t}I ..,

tJ

where here and in the sequel, the (i,j)-th entry of a matrix B will be denoted by Blij.
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A similar notation will be used for vectors. Therefore after conditioning, [10, 8],

E[1(X t = j)zN'IXo = i] = exp{D(z)t}I ..,
'J

and adding with respect to i and j,

E[ZN.] = 1rexp{D(z)t}e,

where here and in the sequel, e will denote the all-ones column vector.

Letting z = 1 in equation (3.2) implies,

P(Xt = jlXo = i) = exp{D(l)t},

()

(3.2)

(3.3)

for all t 2: 0, i.e., D(l) is the intensity matrix of the Markov chain X t so that D(l)e = 0
and 1rD(l) = O.

The customer arrival rate is, [8],

In the sequel we will let D = D(l), D' = D'(l), Do = D(O) and to avoid trivialities,
we will assume that Do #- D.

We define the simple marked point process A = (Tn, Un)nEZ by deleting the points of
Awith zero batch size. Thus, A = (Tn' Un)nEZ is the actual input process to the queue
and the number of arrival times during ]0, t] is,

At = L 1(0 < t; :::; t) = L 1(Un > 0)1(0 < i: :::; t).
nEZ nEZ

We evaluate AA, the rate of A, and E~[Uo]. Since [1],

and,
P(Tt > t) = E[1(Nt = 0)] = 1rexp{Dot}e,

Combining the last two equations, taking derivatives and letting t = 0,
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Finally, from the definition of the Palm probability P~ ( .),

Note that, since u; 2: 1, p~ a.s, we have E~(Uo] 2: 1.

4. The BMAP/G/l Queue with Vacations

'/

(3.4)

In the sequel, we assume that the queueing system under study is in equilibrium. The
queue length and system workload at time t are will be denoted by Qt and W(t).

4.1 Notation

As mentioned in section 3, the sequence of arrival times to the queue is denoted by
Tn' nEZ, and its associated counting process by A. The sequence of departure times
will be denoted by (T~),nEZ and its associated counting process is denoted by D. Thus,
D, is the number of departures in ]0, t], i.e.,

o, = L 1(0 < T~ < t),
nEZ

and the departure rate is AN = E[D1 ] .

Services start at times Sn, n E Z. The sequence of service demands (an)nEZ is i.i.d. with
distribution H(.) such that H(O) = O. We also let <jJ(u) = E[exp{-uao}}.

Let B( t) be the "busy server indicator", i. e., B( t) = 1 if the server is busy at time t
and B(t) = 0 if it is idle. The server is idle either when it is on vacation or when the
system is empty .

Let R(t) be the residual service time at time t. If the system is empty at time t, then
R(t) = O. If B(t) = 0 and the system is not empty, R(t) is equal to a full service. If
B(t) = 1, it is equal to t - T{(Ot), where Ot is the shift operator, [1]. Thus,

{

0
R(t) = a

t-T{(Ot)

if Qt = 0
if B(t) = 0 and Qt > 0
if B(t) = 1

where a denotes an independent random variable distributed according to H(.). The
sequence of jump times discontinuities of R(t) is denoted by (T:nnEZ and its associated
counting process by ~. Thus, the number of jump discontinuities of R(.) in the time
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R(t)

t, 51 T2 T{ 52

T il Til
1 2

U, = 2 U2 = 1

T'2
Til

3

53

T'3

Figure 4.1: The residual service time

interval ]0, t] is,
Ll t = L 1(0 < T: s. t).

nEZ

Note that the rate of Ll is equal to the customer input rate, i.e., )w = E[Nl ] = E[Ll}] =
E[D l ] . Since Ll has jump discontinuities either at the arrival times with non-zero group
size finding an empty system or at the departure times leaving a non-empty system
behind, we have, [1],

(4.1)

where f is a random variable. The notation introduced in this section is shown in figure
4.1.

4.2 The Server Vacations

We assume that services cannot be interrupted by a server vacation. We define,

E~[exp{ -u5dIQo- = 0]

E~[exp{ -u5dIQo- > 0].

(4.2)

(4.3)
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Thus, 'VA(.) is the characteristic function of the server set-up time. Similarly, IVD (.)
is the characteristic function of the vacation duration given that a departure leaves a
non-empty system behind. Moreover, we assume that if a batch of customers arrives
to an empty system, only one customer in the batch generates a server set-up time.
The independence assumptions on I liD( .) show that the server takes a vacation after a
departure leaving behind a non-empty system with probability IVD(O) and starts a new
service with probability 1 -IVD (0). A similar statement holds for set-up times.

The definitions of 'VA ( .) and 'VD ( .) are quite general. In either case, we do not exclude
the possibility that 51 = 0 with positive probability. For instance, if 51 = 0 with
probability one, the system under study becomes the BMAP/GI/l queue analyzed in
[8]. Another important case is obtained if just after a departure that leaves behind a
non-empty system, we have 51 = 0 with probability one, and when a customer joins
an empty system, we have 51 > 0 with probability one, then we are considering a
system that only requires server set-up times, i.e., it only starts server vacations when
a customer joins an empty queue. This type of schedule is similar to the one analyzed in
[9]. The server set-up times of this paper correspond to the residual vacation time at the
beginning of a busy period for the vacations analyzed in [9]. Consecutive vacations, are
also covered by the present formulation if the number of consecutive vacations or set-up
times taken by the server is an independent random variable with moment generating
function Pi(· ), i = A, D. It is easy to show then that if Vi(·), i = A, D, is the moment
generating function of a single vacation period, then it suffices to take,

to analyze the case of consecutive vacations.

In order to simplify future equations we also define,

E~[exp{ -uT{}IQo- = 0] = Iv.4(U)¢(u)

E~[exp{-uT{}IQo- > 0] = IVD(U)¢(U)

(4.4)

(4.5)

4.3 The System Utilization

We evaluate now the system utilization, p = E[l( Qo > 0)]. From a utilization viewpoint,
the n-th customer brings a load equal to (Tn +Vn where Vn is the duration of the server
vacation before the service of the n-th customer starts. Hence, p satisfies the equation,

•
p E[l(Qo > 0)]

T"
)..NE~[l 1 l(Qs > O)ds]
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Using equation (4.1) and letting di = -/~(O), i = A,D,

p ANE~[o-o + Vo]

A.4E~[((]"o +Vo)l{Qo_=o}] + ANE~[(o-o + Vo)l{Qo=o}]

A.4(d.4E~[1{Qo_=o}] +dD(E~[Uo] - E~[l{Qo_=o}])), (4.6)

5. Distributions at Event Times

5.1 Distributions at Arrival Times

We begin with a general result.

Proposition 5.1 Let A be the point process of (non-empty) arrival times of a BMAP
process with phase process X t . For 0 :::; z, w :::; 1, the following equality holds)

AAE~ [zUowQo-1(Xo = j)] = q(w) (D(z) - Do) I
j

where q(w) = (q1(W), ... ,qL(w)) with qj(w) = E[wQo1(Xo =j)J.

Proof: From the definition of Palm probability,

(5.1)

= E[f zU' wQ'-l(Xs=j)A(ds)]
J]O,l]

= E[f zU' wQ'-l(Xs=j)A(ds))
J]O,l]

-E[ f wQ'-l(X
s =j)l(Us = O)A(ds)).

J]O,l]

On the other hand,

E [f /-,»: L l(Xs- = i)l(Xs = j)A(ds))
J)O,l) i

= E [f wQ·- L ux.. = i)Pij(z)A(ds))
J)O,l) i

E[11

w
Q•~ l(Xs = i)pij(z)Aids] .

•
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Letting z = 0 in the previous equation,

11

The result follows after combining the last two equations with the definition of D(z) .

•
Letting w = 0 in proposition 5.1,

AAE~[zUOl(Qo_ = O)l(Xo = j)] = y(D(z) - Do)l
i
,

where y = q(O), i.e., Yi = E[l(Qo = O)l(Xo = j)].

Letting w = 1 in proposition 5.1,

(5.2)

(5.3)

In particular, letting z = 1 in equation (5.3), we obtain the phase distribution at arrival
times,

1t'Dol·
E~[l(Xo = j)] = D J,

1t' oe

Note that taking derivatives with respect to z and letting z = 1 in equation (5.3) yields
equation (3.4).

5.2 Distributions at Departure Times

The result in this section was also obtained in [13, 8]. We present here a derivation
based on Palm-martingale calculus. Let Y; = zQtl(X

t = m). The process Y; satisfies
the evolution equation,

Y; = Yo + [ (~- ~- )A(ds) + [ (~- ~- )D(ds).
A~~ A~~

Letting t = 1, taking expectations, assuming equilibrium and using the definition of
Palm probability P~(.) we obtain,

AN(Z - 1)E~[1(Xo = j)zQO] =E[[ zQ.- (zU'l(Xs = j) - l(Xs- = j))A(ds)]
JjO,lj

=E[ [ zQ.- (zu. L ux.. = i)l(Xs = j)-
JjO,lj i
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-l(Xs- = j))A(ds)]

=E [11

zQs (~l(Xs = i)Pij(Z ).i - l(Xs = j).j )ds]
,

= 11

~qi(z)Dij(z)ds.
,

Therefore, letting qdz) be the row vector with j-th component E~[l(Xo = j)zQo], we
get,

(5.4)

However, equation (5.4) is not suitable for the computation of the phase distribution
at departures, «o: = E~[l(Xo = 1)], 1 <1<L.

5.3 Phase Distribution at Departure Times

For 0 < z ~ 1 we define,

E[zNuol(X,ro = j)!Xo = i]
E[exp{ D(z )O"o} I..J

'J

f exp{D(z)t}I ..H(dt).JR+ 'J

where the service independence was used, and let A(z) = (A;j(z)). Similarly, we let

fA' '(z). ,'J

fD,ij(Z)

E~ [zNT
{ 1(XT{ = j)IXo = i, Qo- = 0],

E~ [zNT
{ 1(XT{ = j)IXo = i, o« > 0],

and r.4(z) = (fA,ij(Z)) and rD(z) = (fD,ij(Z)). Hence, to summarize,

Furthermore,

A(z)

rVA(z)

rvn(z)

E [exp{D(z)O"o}] ,

E~ [exp{D(z)SdIQo- = 0],

E~[exp{D(z)SdIQo > 0].

(5.5)

(5.6)

(5.7)

r.4(z) = E~ [exp{D(z)T{}IQo- = 0] =rv.4(z)A(z),

rD(z) = E~ [exp{D(z)T{}IQo > 0,]=rvD(z)A(z).

In the sequel we let A = A(l) and ri(l) = r i , i = A, D.

(5.8)

(5.9)
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In this section we compute 1rD as a function of y = (Yl'" .,yL) where Yj = E[1(Qo =
0)1(Xo = j)]. From the exchange formula [1], taking into account that under P~(.) we
have a.s., 0 < T{ :::; T{' and using equation (4.1),

DT"
1

ANE~[l(Xo =j)]=ANE~[L l(XT,: = j)]
k=l

=ANE~[l(XT{= j)]
= AAE~[1(Qo- = 0)1(XT{ = j)] +

+ANE~[1(Qo > 0)1(XT{ = j)]. (5.10)

But,

A.4E~[1(Qo- = O)l(XT{ = j)] =~ AAE~[l(Qo- = O)l(Xo = i)]T.4Iii' (5.11)
i

and from proposition 5.1 with z = 1 and w = 0,

(5.12)

we get,

Similarly,

ANE~[l(Qo > 0)1(XT{ = j)] =~ ANE~[l(Qo > 0)1(Xo= i)]TDli{ (5.13)
i

From,
E~[l(Qo > O)l(Xo = i)] = no; - E~[1(Qo = O)l(Xo = i)],

and equation (5.4) with z = 0,

ANE~[l(Qo = O)l(XT{ = j)] = AN1rDTDl
j
+yDoTDI{ (5.14)

Thus, combining equations (5.10), (5.11), (5.12), (5.13) and (5.14) in vector form,

(5.15)

The matrix T D is stochastic and 1rr D = tt, Therefore, 1rD is the unique positive
solution of the linear system of equation (5.15) such that 1rDe = 1.
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A closed form can be derived by noting that the matrix r D - I - e1r is invertible,

In order to simplify future equations we let,

(5.17)

z. e.,
(5.18)

From the previous derivation we also obtain the following two lemmas.

Lemma 5.2 The following equality holds}

ANE~[1(Qo > 0)1(Xo = j)] = Y(F + Do) I
j
+ AN1rj.

where Y = (Yl"'" yL) with Yj = E[l(Qo = O)l(Xo = j)].

Lemma 5.3 The following equality holds}

(5.19)

ANE~[zQo1(Qo > 0)1(Xo = j)] = q(z)D(z) I. + YDol., (5.20)
z - 1 J J

where Y = (y!, ... , yL) with Yj = E[l(Qo = 0)1(Xo = j)].

Proof: We have, from equation (5.4),

ANE~[zQo1(Qo > O)l(Xo = j)] =ANE~[zQol(Xo= j)]- ANE~[l(Qo= O)l(Xo = j)]

q(z)D(z )1.
= J +yDol ..

z - 1 J

•

6. The System Queue Length

6.1 The Queue Length Moment Generating Function

In this section we compute qj(z) = E[zQo1(Xo = j)] where 0 :::; z < 1 and j E E.
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From the inversion formula, using the fact that on {Qo > O}, T{ = T{' and the definition
of D(z), [10],

E[l'(Qo> O)zQol(Xo = j)] = )..NE~[lT{ zQtl(Xt = j)dt]

T'
=)..NE~[zQo11

zNtl(Xt = j)dt]

i
T '

=)..NE~[zQoLl(Xo = i) 1 exp{D(z)t}I,.dt].
i 0 y

Hence, for 0 :s; z < 1,

E[l(Qo > O)zQol(Xo = j)] =

= )...4E~ [zU01(Qo_ = 0) L l(Xo = i)D-1(z) {T{D(z)exp{D(z)t}dtl ..] +
i io lJ

(T'
+)..NE~ [zQol(Qo > 0) L l(Xo = i)D-1(z) io 1 D(z)exp{D(z)t}dtlij]

t

= )...4E~ [zUOl(Qo_ = 0) L l(Xo = i)]D-1(z)(rA(Z) - I) I.. +
i Y

+)..NE~[zQol(Qo > 0) L l(Xo = i)]D-1(z)(rD(z) - I)lij
t

= y(D(z) - Do)D-1(z)(rA(Z) - I)l j +

+(q(:)~iz) + yDo)D-1(z)(rD(z) - I)I{ (6.1)

Since qj(z) = Yj + E[l(Qo > O)zQol(Xo = j)] and since for 0 :s; z < 1, the matrix
zI - rD(z) is invertible, it follows, after some algebra, that q(z) is given by,

for 0 :s; z < 1 with the boundary condition,

limq(z) = 1r.
zlI

6.2 Average Queue Length

(6.3)

As an application of the results obtained in this section we obtain the joint distribution
of average queue length and phase.
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We consider the matrices,

M(z) = (z -1)r.4(z)(zI - rD(z)f\

and

so that,

q(z) = y(M(z) +DoN(z)).

(6.4)

if r.4(z) =1= rD(z),
if r A(Z) = rv(z),

(6.5)

(6.6)

Let ~(z) be the Perron-Frobenius eigenvalue of D(z) and u(z) (resp. v(z)) be the asso
ciated left (resp. right) eigenvector. We assume that these eigenvectors are normalized
as follows,

u(z)v(z) 1,

u(z)e 1.

Since limzlI D(z) = D, we have,

lim~(z) 0,
zlI

limu(z) zr,
zll

lim v (z ) e.
zlI

Furthermore, the matrix ri(z),i = A,D, admits 'Yi(-~(Z)) as an eigenvalue and v(z)
(respt. u(z)) as its associated left (respt. right) eigenvector [13].

An elementary computation shows that,

where,

{l(z)

u(z)M(z)
u(z)N(z)

(z -1)'Y.4(-~(z))

Z-'YD(-~(Z)) ,

{l(z)u(z),
v(z)u(z),

(6.7)

(6.8)

(6.9)
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(6.10)

for 0:::; z < 1. A similar result holds for the right eigenvector v(z). Thus, u(z) and v(z)
are eigenvectors of M(z) with associated eigenvalue p(z) and of N(z) with eigenvalue
v(z).

Let

M limM(z),
zit

N limN(z).
zit

Taking limits as as z i 1 in equations (6.7) and (6.8), it follows that 1r and e are also
eigenvectors of M and N. The eigenvalue associated with 1r and e of the matrices M
and N is obtained by taking limits as z i 1 in equations (6.9) and (6.10) and taking
into account that [12],

t(l) = 1rD'e = AN.

We obtain,

(6.11)

p = limp(z)
zit

v = limv(z)
zit

where d, = - '~(O), i = A, D.

Therefore, from section 5.3,

1

1- ANdD '

dD - dA

1 - ANdt '

(6.12)

(6.13)

. q(z)D(z)
lim = yF +AN1r,
zit z - 1

which implies, applying L'Hopital's rule,

q'(l)D + 1rD' = yF + AN1r.

The derivation of q proceeds as follows. Taking derivatives and letting z = 1 in,

(M(z) + DoN(z))v(z) = (p(z) + v(z)Do)v(z),

(6.14)

(6.15)
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yields,

(M' + DoN')e + (M + DoN) v' = (,/ + v'Do)e + (p, + vDo)v',

where M' = M'(l), p,' = p,'(l), v' = v'(l), N' = N'(l) and u' = v'(l). On the other
hand, from equation (6.6),

q = q'(l)e = y(M' +DoN')e,

therefore combining these two last equations and taking into account that,

1t' = limy(M(z) +DoN(z))
zll

and that 1t'V' = 0,

q = p,'(l - p) + v'yDoe + y(p,I + vDo)v'.

The values of p,' and u' are obtained from equations (6.9) and (6.10),

(6.16)

p,'

v'

2dA>'N - 2dAdD >.'fv + >.'fv,1,(O) +dDf'(l)

2(1 - >'NdD)2

p,'(dD - dA) - >.;p, (,1,(0) - ,~ (0)) .

The values of v' and e"(l) are obtained by applying Theorem A.2.3 of [12} to D(z). We
obtain,

(6.17)

and
('(1) = -1t'D"(l)e - 21t'D'v'. (6.18)

Higher moments of the queue length can be obtained by successive derivation of equa
tions (6.2), (6.9) and (6.10) and repeated application of Theorem A.2.3 in [12] to D(z).

7. The System Workload

j)exp{-uW(O)}] and let '¢(u)E[l(XoFor 1 ~ j < L, we define 'lj;j(u)
('lj;l(U), ... ,'lj;L(U)). The process,

Yj(t) = exp{ -uW(t)}l(Xt = j),
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satisfies the sample path equality,

Yj(t) = Yj(O) + f (Yj(s) - Yj(s-))A(ds) +u rl(B(s) = l)Yj(s)ds,
Ao~ h

where B(.) is the busy server indicator. Taking expectations and following an approach
identical to that of section 3 and proposition 5.1,

LtPi(U)Dij(¢(u)) = -uE[l(B(O) = l)l(Xo = j)exp{-uW(O)}), (7.1)
,

where the service independence was used.

We compute next the right hand side of equation (7.1). Note first that for 0 ::; t ::; T{,

Nt
W(t) = W(O) + L 17k - (t - 5d+·

k=l

Then, letting 170 denote the duration of the service starting at 51 and applying the
inversion formula [1],

E [l(B(O) = l)l(Xo = j) exp{ -uW(O)}) =

= ANE~ [ fT{ ux, = j) exp] -uW(t)}dt)
lSI

= ANE~ [~l(Xo = i) exp{ -uW(O)}1170

l(Xt+sI = j)¢(u)Nt+SIeutdt]
,

= ANE~ [~ l(Xo = i) exp{ -uW(O)} (euuoexp{D (¢(U))170}- I) (uI + D(¢(u)) )-1
,

exp{D(¢(u)) 51}lij]'
(7.2)

To simplify the notation, let,

z, = L l(Xo = i) exp{ -uW(O)} (euuoexp{D(¢(u))l7o} - I) (uI + D(¢(u)) )-1
I

exp{D(¢(u))5dl
i
{

Then, from equation (4.1),

E[l(B(O) = l)l(Xo =j)exp{-uW(O)}] = AAE~[l(Qo- = O)Zj)+ANE~[l(Qo > O)Zj).
(7.3)

Let I7n,k, 1 :s; k ::; U«, be the service demand for the k-th customer arriving at time Tn.
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Since on {Qo- = O} we have p~ a.s.,

UO
W(O) = L O"O,k,

k=1

P~ - a.s.,

with O"O,k = 0"0 for some 1 :::; k :::; Uo, the first term in the right hand side of equation
(7.3) becomes using the service independence and proposition 5.1,

AAE~ [l(Qo- = O)Zj] =

= AAE~ [l(Qo- = 0)2;: l(Xo = i)¢>(U)UO-1 (A( ¢>(u)) - ¢>(u)I) (uI +D(¢>(u)) )-1
,

rvA¢>(u)) liJ
= ¢>tu) Y ( D (¢>(u)) - Do) (A (¢>(u)) - ¢>(u)I) (uI + D (¢>(u)) )-1r-, (¢>(u)) I{

(7.4)

Since on {Qo > O}, we have p~ a.s.,

Qo
W(O) = L O"k,

k=1

P~ - a.s.,

where O"k is the service demand of the k-th customer and O"k = 0"0 for some 1 :::; k :::; Qo,
the second term in the right hand side of equation (7.3) becomes, using the service
independence and equation (5.4),

ANE~[l(Qo > O)Zj] =

= ANE~[l(Qo > 0)2;: l(Xo = i)¢>(u)Qo-1 (A(¢>(u)) - ¢>(u)I) (uI +D(¢>(u)) )-1
,

rvD(¢>(u))lij]

1 (q (¢>(u)) D (¢>(u)) ) ( ) ( )
= ¢>(u) ¢>(u) -1 + yDo A(</J(u)) - </J(u)I uI + D(</J(u)) -1

r VD(¢>(u)) I{
(7.5)

Combining equations (7.4), (7.5), (5.8), (5.9) and (6.2) in matrix form,

1/J(u) = - </J~)y[r~4(¢>(U)) + D oD-1(</J(u))(rVD(</J(u)) - rVA(</J(u)))]
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[I + rD(¢>(u)) (¢>(u)1 _ rD(¢>(u)))-I]
[A(¢>(u)) - ¢>(u)/] [uI +D(¢>(u))r

l

,

where we used the fact that the matrices ri(z), A(z), rv;(z) and D(z) commute. Fi
nally, observing that,

and using equations (6.2), (5.8) and (5.9),

8. The BMAP/GI/l/oo Queue

For completeness, we particularize the results obtained to the BMAP/GI/1/oo queueing
system analyzed in [8]. This queueing system is a generalization of the N/GI/1/oo queue
originaly studied by Ramaswami in [13]. The server vacations are removed by letting
li(U) = ¢>(u), ,V,(U) = 1, ri(z) = A(z) and rv;(z) = 1, i = A,D.

For the BMAP/GI/1/oo queueing system, p = -AN¢>'(O) with AN = 1rD'e. Proposition
5.1 and equation (5.4) hold unchanged. Equation (5.17) becomes,

(8.1)

Therefore, the phase distribution at departure times is,

and propositions 5.2 and 5.3 hold with F given by equation (8.1). Equation (6.2) gives
the characteristic function of the queue length vector of the BMAP/GI/1/oo queue in
closed form,

q(z) = (z - l)yA(z)(zl - A(z)f\ o:s Z < 1.

For the workload, equation (7.6) becomes,

(8.2)

t/J(u)

t/J(O) 1r.

(8.3)

(8.4)
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These results were obtained in [13, 8].

The joint distribution of the average queue length and phase is given by,

and q is equal to,
q = Jl'(1 - p) + JlYv'.

The corresponding values of Jl and Jl' are given by,

1
1- p'

2p(1 - p) + A~4>"(O) - 4>'(O)t'(1)
2(1 _ p)2

(8.6)

The values of v' and e"(1) remain unchanged and are given by equations (6.17) and
(6.18).

9. The M/GI/! Queue with Server Vacations

The results obtained in this paper considerably simplify when the input to the queue
is a Poisson process, i.e., in the M/GI/1 case. For an M/GI/1 queue,

D(z) >.(z - 1),

D 0,

and thus,

ri(z) li(A(1-z)), i=A,D,

A(z) 4>(A(1 - z)).

Furthermore, equation (5.18) reduces to qD(Z) = q(z) (the so-called departure theorem)
and the PASTA property holds [4]. For consistency, we keep the notation, y = E [1 (Qo =
0)]. From equation (4.6), since for the M/G/1 queue, y = 1 - P we have,

1- AdD
y= ,

1 + A(d.4 - dD)

where d, = -I~(O), i = A, D. The system is stable if AdD < 1 and d.4 < 00.

(9.1)
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The queue length is obtained directly from equation (6.2),

where q(z) = E[zQo]. Furthermore, applying twice L' Hopital's rule we obtain the
Pollaczek-Khintchine formula for the M/GI/1 queue with the vacation schedule con
sidered,

Finally for the workload,

q(c/>(u)) u c/>('x(1 - c/>(u)))-c/>(u)

1jJ(u) = c/>(,X(1- c/>(u))) 1- c/>(u) u + ,x (c/>(u) -1)

10. Conclusions

(9.2)

In this paper we have studied the BMAP/GI/1/oo queue with server vacations and
server set-up times. The analysis, based on Palm-martingale calculus, studied the
system behavior between discontinuity jumps of the residual service times. We have
computed distributions of interest at arrival and departure times. The queue length
moment generating function vector has been given in closed form. The results obtained
have been particularized to the BMAP/GI/1 queue without vacations and the M/GI/1
queue with the same server vacation schedule.
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