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Abstract

Many key-value stores have recently been proposed as

platforms for always-on, globally-distributed, Internet-

scale applications. To meet their needs, these stores often

sacrifice consistency for availability. Yet, few tools ex-

ist that can verify the consistency actually provided by a

key-value store, and quantify the violations if any. How

can a user check if a storage system meets its promise

of consistency? If a system only promises eventual con-

sistency, how bad is it really? In this paper, we present

efficient algorithms that help answer these questions. By

analyzing the trace of interactions between the client ma-

chines and a key-value store, the algorithms can report

whether the trace is safe, regular, or atomic, and if not,

how many violations there are in the trace. We run these

algorithms on traces of our eventually consistent key-

value store called Pahoehoe and find few or no viola-

tions, thus showing that it often behaves like a strongly

consistent system during our tests.

1 Introduction

Internet applications often rely on globally distributed,

highly available storage systems to meet the promise of

ubiquitous 24x7 operation. The main challenge in build-

ing a globally distributed system is dealing with network

partitions. Brewer’s CAP principle [6] states that any

shared data system can provide only two of the following

three properties: consistency, availability, and partition

tolerance. Since partitions are inevitable in wide-area

networks, storage system designers are only left with the

option of trading-off consistency for availability. Tradi-

tional systems such as databases and file-systems choose

to sacrifice availability and only offer strict consistency.

However, many Internet services such as social networks

or media-sharing sites favor availability over consistency.

To fill this gap, several new key-value stores have

been built recently (e.g., Dynamo [11], BigTable [8],

PNUTS [9], Cassandra [7], S3 [17]) that offer weaker

consistency guarantees in order to provide higher avail-

ability. Although many of these stores were initially

designed with consistency semantics specific to certain

applications, their use has spread widely under the as-

sumption that these weaker semantics are sufficient for

many web services. These systems offer a smorgasbord

of semantics ranging from row-level atomicity to various

forms of eventual consistency [19]. Some systems do not

even provide a precise specification of their consistency.

In this paper, we consider how to assess and measure

the consistency actually observed by the clients when

using these key-value stores rather than assuming the

worst-case consistency that is promised. Although some

applications may tolerate weak consistency, users can

still become dissatisfied if inconsistency happens fre-

quently or severely. Knowing the actual consistency de-

livered has two benefits. First, users can verify whether

a key-value store provides its promised level of consis-

tency. Second, users can make an informed decision in

choosing among key-value stores, or a service level from

a single key-value store (e.g., least expensive but still

provides adequate consistency for their workloads).

This paper makes the following contributions: Sec-

tion 2 presents algorithms that, given a trace of opera-

tions obtained from the clients, can verify whether the

trace is safe, regular, or atomic [14]. Unlike previous

work, our methods incorporate these three successively

stronger consistency levels within one simple frame-

work. Moreover, our algorithms quantify the severity of

violations. Section 4 then presents experiments with our

highly available key-value store, Pahoehoe, using micro-

benchmarks similar to those in the YCSB cloud bench-

mark [10]. These experiments show that even though

1



Pahoehoe only promises eventual consistency, there are

relatively few violations of atomicity in failure-free exe-

cutions. Section 5 discusses future work.

In this technical report, we have included all the proofs

for the paper in Appendix A. In addition, we present an-

other algorithm for checking atomicity, called the cali-

bration algorithm, in Appendix B.

2 Consistency checking

In this section, we present algorithms that check whether

a certain consistency level has been achieved in an execu-

tion. A key-value store can be viewed as a collection of

registers, each identified by a key. Lamport [14] defines

three kinds of consistency semantics on registers: safe,

regular, and atomic. Lamport’s original definition does

not allow multiple writers. Pierce and Alvisi [16] have

extended the definition to allow multiple writers and we

summarize this definition as follows.

An operation on the register is either a read (i.e., get)

or a write (i.e., put). Using a global clock, we assign each

operation a start time and a finish time. We say opera-

tion A time-precedes operation B, written as A < B, if

A finishes before B starts. If neither A < B nor B < A,

then A and B are said to be concurrent with each other,

written as A||B. It is easy to see that this time prece-

dence relation imposes a partial order on the operations.

A valid total order is one that conforms to this partial

order. Given a total order, each read has a unique most

recent write, if any. A register has the following seman-

tics if there exists a valid total order that satisfy the cor-

responding conditions.

A register is said to be safe if a read not concurrent

with any writes returns the value of the most recent write,

and a read concurrent with some writes returns any value.

A register is said to be regular if a read not concurrent

with any writes returns the value of the most recent write,

and a read concurrent with some writes returns either the

value of the most recent write, or the value of one of the

concurrent writes.

A register is said to be atomic if every read (regardless

of whether they are concurrent with any writes or not)

returns the value of the most recent write. It is easy to

see that safety is weaker than regularity, which is in turn

weaker than atomicity.

2.1 High level approach

Our checker is an offline algorithm that processes a

global trace of client interactions with a key-value store.

We first describe the requirements of traces and then out-

line our technique for checking consistency and estimat-

ing the number of violations.

A global trace consists of a list of read/write (i.e.

put/get) requests from all clients to a key-value store.

Along with each request, we obtain the value retrieved

or stored, and the operation’s start and finish times at the

client. We obtain a global trace by merging individual

traces from multiple clients. As long as the relative or-

derings and overlapping relations among all operations

are preserved, our checker does not need precisely syn-

chronized timestamps across clients. Moreover, since

the above semantics are independent of operations across

keys, we split the global trace by key and process each re-

sulting trace separately. To distinguish different writes to

the same key, we assume that each write writes a unique

value, and that before any operations start, each register

contains a default value.

Given a trace, our approach to check whether a trace

satisfies safe, regular, or atomic semantics is as follows.

We first construct a directed graph called the precedence

graphwhere a vertex represents an operation and an edge

indicates that the source operation should happen before

the target operation. We then add three kinds of edges:

time, data, and hybrid. As presented below, there are dif-

ferent rules for adding edges in the graph, depending on

the desired consistency semantics. If the resulting graph

is acyclic (i.e. a DAG), then we conclude that the trace

satisfies the consistency semantics in question, otherwise

the semantics are violated. To determine if the graph

is acyclic, we perform a depth-first search (DFS) on the

graph by first treating all added edges as the same and re-

moving duplicate edges between the same two vertices.

For proofs of this approach, see the technical report [5].

To quantify the severity of consistency violations, we

count the number of cycles during the DFS. The counter

is incremented whenever a cycle is detected. We realize

that this counter is coarse because an edge can be part of

multiple cycles, but we believe it is still informative. We

plan to devise a more refined metric in the future. For

example, one possible refinement is to count the mini-

mum number of edges that need to be removed to make

the graph acyclic.

2.2 Checking safety

The following algorithm checks whether a trace is safe:

Step 1. Remove all the reads that are concurrent with

some writes from the trace. These reads can be removed

without consequence because by the definition of safety,

the values returned are allowed to be arbitrary values.
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Figure 1: Examples of precedence graphs: (a) An unsafe

trace. (b) A safe but not regular trace. (c) A regular but

not atomic trace.

Step 2. (Time rule) For all operations A and B
where A < B, add an edge A → B. We call these

edges time edges.

Step 3. (Data rule for safety and atomicity) For ev-

ery read R and write W such that R reads W ’s value,

add an edge W → R. We call these edges data edges.

We call W the dictating write of R, and R one of W ’s

dictated reads. Since we assume that every write writes

a different value, every read has only one dictating write,

but a write can have zero or more dictated reads. If there

exists a read that does not obtain any write’s value or

the default value, we abort the checking by declaring the

trace being unsafe. We exit early because now unsafety

is caused by the lack of edges, not the excess of them. We

note, however, that such violations are unlikely to occur

in real key-value stores because key-value stores tend to

return values that have been previously written.

Step 4. (Hybrid rule for safety and regularity) For

every write W ′ and read R, where W ′ < R, add an edge

W ′ → W , where W is R’s dictating write. We call these

edges hybrid edges (because their existence is due to a

combined consideration of time and data precedence).

This rule enforces that all writes time-preceding a read

should happen before the read’s dictating write: other-

wise the read would have obtained a different value.

We remark that the hybrid rule is necessary. For ex-

ample, Figure 1(a) shows an unsafe trace, but only after

we apply the hybrid rule do we introduce a cycle. Ap-

pendix A includes a proof that, after applying all the

three rules for adding edges, we have a graph that is a

DAG iff the trace is safe.

2.3 Checking regularity

To check regularity, take the safety checking algorithm,

numbering as the safety checking algorithm, skip Step 1,

and revise Step 3 as follows:

Step 3. (Data rule for regularity) For every read R
and its dictating write W , if W ||R, then do nothing, oth-

erwise add a data edge W → R. Similar to safety check-

ing, if there exists a read that does not obtain any write’s

value or the default value, we abort the checking.

Appendix A contains a proof that this algorithm gen-

erates a DAG iff the trace is regular. Figure 1(b) shows

a safe but not regular trace. The reader can verify that,

if we had included Step 1 (i.e., disregarded R(0)), as in

the safety checker in the previous section, we would not

have been able to detect a cycle.

2.4 Checking atomicity

To check atomicity, take the safety checking algorithm,

skip Step 1, and revise Step 4 as follows:

Step 4. (Hybrid rule for atomicity) For every write

W ′ and read R, if there exists a path from W ′ to R con-

sisting of either time-edges or data-edges, then add an

edge W ′ → W , where W is R’s dictating write.

In other words, instead of checking whether there is

an edge from W ′ to R, we check whether there is a path

from W ′ to R. Figure 1(c) shows a regular but not atomic

trace. The reader can verify that, had we used the hy-

brid rule for safety and regularity, this hybrid edge would

not have been added (because there is no time edge from

W (1) to R(0)).
Appendix A includes a proof that the resulting graph

is a DAG iff the trace is atomic. A naiv̈e algorithm

for adding hybrid edges is based on all-pairs reachabil-

ity [18], which takes Θ(mn) ≤ Θ(n3) time. In fact, an

algorithm which instead calculates a DFS starting from

every vertex achieves the same bound. For a moderate

size graph with n = 1000, n3 is a billion, which is

likely to be too large. The n3 bound follows from the

graph having n2 edges. If we can reduce the number of

time edges from n2 to just n, then the running time of

the all-pairs reachability algorithm will be n2. Figure 2

presents an algorithm that adds the minimum number of

edges such that, for all operations A, B such that A < B,

there is a path from A to B. This algorithm runs in time

O(n log n) plus the number of edges to be added. The

reader can find the correctness and optimality proofs of

this algorithm in Appendix A. To see how this algorithm

helps, suppose the operations can be divided into n/k
groups, each of which contains k concurrent operations

yet each group follows another in sequence. Then this
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A := all intervals in increasing order of start time;

B := all intervals in decreasing order of finish time;

foreach (A ∈ A)

t := −∞;

foreach (B ∈ B such that B < A)

if (t < B’s finish time)

add edge B → A;

t := max(t, B’s start time);
else break;

Figure 2: Adding the minimum number of time edges.

algorithm adds about k2 · n/k = nk edges. When k is

relatively small, nk is close to O(n). Hence, the over-

all atomicity checking algorithm will run in O(n2) time.

For extremely concurrent traces (e.g., k = n/2), how-

ever, the atomicity checking algorithm still runs in O(n3)
time.

3 Pahoehoe

Pahoehoe, shown in Figure 3 is a cloud storage system

designed to offer extreme availability (> 4 nines), to

span multiple data centers, and to scale to hundreds of

petabytes using low-end commodity components. It of-

fers a key-value-based get-put interface.

Pahoehoe is composed of three main entities: proxies,

key lookup servers (KLS), and fragment servers (FS). On

a put, the proxy splits the value into multiple erasure-

coded fragments. The FSs are responsible for storing the

fragments, which form the bulk of the data. The KLSs

maintain a mapping of the user-provided keys to the loca-

tions of corresponding fragments. In a typical setup, each

data center has a few KLSs for availability and many FSs

for reliability and scaling capacity.

Currently, Pahoehoe only guarantees eventual consis-

tency because availability is paramount for our initial ap-

plications, which can tolerate temporary inconsistency.

Its protocols are eager in that they provide a useful result

as soon as possible, thus providing the highest availabil-

ity. For example, a put returns success as soon as it has

updated any one of the KLSs and a minimum number

of FSs to ensure that the value is durable. The remain-

der of the put completes in the background. A get will

try the list of values referenced by the first KLS that re-

sponds, from newest to oldest, and will return as soon

as it succeeds. If none of the referenced values are avail-

able, it tries contacting other KLSs. Thus, puts can return

success before they are complete, and repeated gets may

sometimes return earlier versions after newer ones. More

Figure 3: Architecture of Pahoehoe.

details of these protocols can be found in [4].

4 Consistency provided by Pahoehoe

In this section, we present experiments that quantify the

actual consistency provided by Pahoehoe. Our setup con-

sists of 8 machines, 4 KLSs and 4 FSs, connected via

gigabit Ethernet. We mimic a two data-center environ-

ment with half the KLSs and FSs on each side of a wide-

area link. The link, emulated using NetEm, is configured

to 50ms average latency. Each machine has 2 dual-core

AMD Opterons 2216, 8GB RAM, and runs 64-bit De-

bian Linux 2.6.26. The FSs have 4x1TB 7.2K RPM SCSI

disks, and the KLSs have 4x15K RPM disks in RAID-10.

We use a workload similar to the YCSB [10] micro-

benchmarks. We have a single client machine (with 4

dual-core AMD 8220) that runs many (up to 128) concur-

rent processes issuing operations in a closed loop. The

operations are a mix of gets and updates, where an update

is a get followed by a put. For all these experiments, we

run 1000 operations with a 40%-60% get-update mix (i.e.

70%-30% get-puts as the 60% updates are in fact 30%

gets and 30% puts) and each value is 128KB. We mirror

values across data centers (one replica per data center);

puts complete as soon as one FS receives a value and one

KLS has the locations. We vary the number of keys, the

distribution for choosing keys (uniform and Zipfian), and

concurrency level. In our experiments, we co-locate the

client machine with the proxy and the traces are collected

at the proxy. We use Chirp [3] to merge the proxy traces

into a global, well-synchronized trace. Chirp is a toolset

that can calibrate machine clocks in a data-center, post-
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Figure 4: Violations vs. number of keys, 128 concurrent

processes.

collection to within micro-seconds. As in Section 2, a

violation means a cycle in the precedence graph.

Figure 4 shows the number of violations of each con-

sistency level as we vary the number of keys and distri-

bution. We find < 10% violations even when there is

only one key and all 128 processes continually read and

write that key. Also, violations drop to zero when there

are more keys than concurrent requests. Even though

operations in the Zipfian workload focus on a few items,

violations drop quickly. Figure 5 shows the number of

violations as we vary the number of processes. As ex-

pected, violations increase with number of concurrent

operations, and there are more violations with the Zip-

fian workload.

We note that there are only slightly more atomicity vi-

olations than regularity violations because of our system

implementation. For a trace to have an atomicity but not

a regularity violation, there must be a read that returns

the value of a concurrent write. A put tends to finish rel-

atively quickly in our system because puts return success

optimistically. Thus, a get only has a short window in

which to retrieve a value written in a concurrent put and

a put is concurrent with only a few reads, resulting in

few atomic but not regular violations. Moreover, we see

much fewer safety violations because in our system, it is

unlikely for a read to obtain a future write’s value, or a

past write’s value that has been replaced. Nonetheless,

these results confirm what many web applications rely

on today. In failure-free conditions, an eager, eventually

consistent protocol often achieves strong consistency.
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5 Discussion and Future Work

Obtaining a global trace. Our checker requires a global

trace merged from traces on different machines, with po-

tential clock skew. We used the Chirp toolset [3] to cal-

ibrate the timestamps obtained from different machines,

but we could also have just used NTP to achieve suffi-

cient synchronization.

Measuring consistability. There are many types of

failures in a data-center: disks failure, node failure, net-

work partitions, link flapping, etc. How these failure con-

ditions affect the observed consistency in weakly consis-

tent systems is still unexplored. Going further, we previ-

ously proposed the notion of consistability [2]; the ability

of a system to offer weaker consistency rather than be-

coming unavailable under failure. Consistability allows

us to simultaneously compare the consistency and per-

formance provided by different systems. This work has

shown how to measure the consistency provided solely

from the user’s perspective.

Other forms of consistency. In this paper, we eval-

uated atomic, regular, and safe consistency. Many other

forms of consistency have been proposed in the litera-

ture. We plan to investigate what other semantics can be

checked efficiently and design algorithms to check those

semantics.

Monitoring consistency. Currently, our method for

checking consistency is an offline technique, which has

certain limitations. For example, consistency violations

often occur during unfavorable operating conditions such

as network partitioning, which does not happen very of-

ten. Consequently, in order to catch violations, one needs

to process a trace that spans a long period. Such a trace

may overwhelm the offline checker because the checker

analyzes the trace as a whole.
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We believe our techniques can be extended to provide

online checking of consistency. Namely, we can equip

users with a program that monitors the operations and is-

sues an alarm whenever a violation is detected. Such an

extension will prove useful in two ways. In the cloud,

all services are external, and users often want to monitor

the services to ensure that they meet their SLAs. Today,

these SLAs are expressed primarily by performance met-

rics, e.g., latency. With an online checker, these SLAs

could also include consistency to see if users are get-

ting what was promised. An online checker could also

change the way we architect our applications. For a sys-

tem that offers multiple consistency levels, instead of al-

ways choosing the most conservative semantics, applica-

tions could monitor the consistency and change the level

as needed. They could react to the needs of users, or

react to changes in the underlying system. For example,

in failure-free situations, applications could be optimistic

and as violations increase use more conservative levels.

6 Related work

Brewer’s CAP principle [6], later formalized and proven

by Gilbert and Lynch [12], states that among consis-

tency, availability, and partition-tolerance, only two of

these three properties can be attained simultaneously.

Since partition-tolerance is a must for global systems,

most key-value stores favor availability over consistency,

and many only promise eventual consistency [19]. We

have implemented Pahoehoe in a similar spirit, but we

plan to extend the system to provide get/put operations

with stronger consistency semantics. Different key-value

stores have chosen to provide different levels of consis-

tency. For example, Amazon’s S3 [17] and Dynamo [11]

only promise eventual consistency. Google Storage [13]

provides read-your-writes consistency. Cassandra [7]

provides quorum-based consistency and eventual consis-

tency. Voldemort [20] uses vector clocks to version data

items and resolve conflicts at read time (which may re-

quire user intervention). Finally, many cloud systems

are starting to provide atomic primitives that applications

can use to implement strong consistency.

In a seminal paper, Misra presented an elegant algo-

rithm [15] for checking atomicity. His algorithm works

by reasoning about the values of the register. The ob-

servation is that, at some point during the span of an

operation, the register assumes the value of the opera-

tion (either read or write). Atomicity stipulates that if

a value is replaced by another value, then the old value

is not allowed to re-appear in the future. Therefore, if a

trace violates this condition, then it is not atomic. Some-

what surprisingly, if a trace does not violate this condi-

tion, then it is atomic. In contrast, our algorithms reason

about the operations. We choose to reason about oper-

ations but not values because we aim to provide a com-

mon framework to check a variety of semantics, many of

which (e.g., safety and regularity) were introduced after

Misra’s paper. It is not immediately clear to us how to ex-

tend Misra’s algorithm to check, say, regularity, because

for regularity, a replaced value is allowed to re-appear.

Lamport [14] defines three consistency semantics:

safety, regularity, and atomicity. Besides these three,

additional semantics have been introduced in the liter-

ature. For example, k-atomicity, proposed by Aiyer et

al. [1], bounds the number of distinct recently completed

writes that may be returned by a read operation, and k-

regularity can be similarly defined. We could devise al-

gorithms to check for these semantics.

7 Concluding remarks

We have presented algorithms that help users check

whether a key-value store provides safe, regular, or

atomic consistency semantics. We have found that traces

from Pahoehoe, an eventually consistent store, often ex-

hibit strong consistency during failure-free runs of our

cloud-based micro-benchmarks. We plan to extend this

work in at least two ways. First, we plan on devising ef-

ficient online algorithms for checking consistency. Sec-

ond, we plan to extend the checker for other kinds of

consistency proposed in the literature.
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A Proofs

This section provides the proofs for all the claims in the

paper.

Theorem 1 The safety checking algorithm in Section 2.2

constructs a DAG iff the trace is safe.

Proof. If the graph is not a DAG, then there exists an

operation has to commit before itself, which is impossi-

ble. It remains to prove that if the graph (which consists

of the writes and the reads not concurrent with any writes

because we have removed the other reads) is a DAG, then

the trace is safe. Since the graph is a DAG, we can con-

struct a topological order that conforms to the DAG. We

note that there may be multiple such topological orders.

We claim that for every topological order, a read obtains

the value of its most recent write. Suppose this is not

the case, then there exists a write W ′ that is placed be-

tween a write W and one of W ’s dictated reads R. By

the construction of the hybrid edges, there should be an

edge W ′ → W . This is because R is not concurrent with

W ′, and W ′ is placed before R in the topological order,

which implies that W ′ < R. Therefore, by the hybrid

rule, there is an edge W ′ → W . However, such an edge

contradicts the topological order in which W is placed

before W ′. Therefore, the trace is safe. 2

Theorem 2 The regularity checking algorithm in Sec-

tion 2.3 constructs a DAG iff the trace is regular.

Proof. Again, the easy part is that, if the graph is not a

DAG, then there exists some operation that has to com-

mit before itself, which is impossible. To prove the other

direction, suppose the graph is a DAG. We first introduce

a few notions and notations that are helpful to our proof.

We call those reads that do not have incoming data edges

(because they are concurrent with their dictating writes)

green reads. We denote the set of reads dictated by a

write W by D(W ), and the set of green reads in D(W )
by D′(W ). A vertex is called ready if it has no incoming

edges.

We will use a special topological sorting algorithm,

described below, that maintains property P : a write W is

followed by D′(W ), and some green reads (but no writes

or non-green reads) may be interspersed among them. A

total order constructed with this property not only con-

forms to the DAG, but also satisfies the definition of reg-

ularity, because in this total order, a non-green read ob-

tains the value of its most recent write and a green read

obtains the value of one of its concurrent writes.

The topological sorting algorithm works as follows.

Since all reads have a dictating write, the algorithm starts

with picking a ready write W and removing all of W ’s

outgoing edges. It then tries to pick a read in D′(W ).
If there are no unpicked reads left in D′(W ), then we

look for another ready vertex. If there is a ready read in
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D′(W ), we pick that read. If there are no ready reads in

D′(W ), then we choose a read R in D′(W ) and follow

an incoming edge to R and repeat this reverse-path track-

ing until either a write is encountered, or we come to a

ready vertex. Since the remaining graph (as we remove

edges after we pick a vertex) continues to be a DAG (re-

moving edges from a DAG yields a DAG), this tracking

always terminates. If the terminating vertex is a write

W ′, then we observe that the path from W ′ to R consists

of only time edges or data edges but no hybrid edges, be-

cause a hybrid edge always goes from a write to another

write. By the hybrid rule, there is a hybrid edge from W ′

to W , contradicting the fact that W has been picked but

W ′ has not. Therefore, the terminating vertex is a read

R′. We claim that R′ is a green read, otherwise it has an

incoming data edge from its dictating write W ′. Since

R′ is ready, W ′ has been picked, and picked before W ,

contradicting the property P : that a non-green read is not

separated from its dictating write by other writes. There-

fore, we can pick R′ as the next vertex. And continue to

pick other vertices in the same manner described above,

until all vertices in D′(W ) are picked. Then we pick

other ready vertices. Since this algorithm maintains the

property P mentioned above, the resulting order satisfies

regularity. Hence the trace is regular. 2

Theorem 3 The atomicity checking algorithm in Sec-

tion 2.4 constructs a DAG iff the trace is atomic.

Proof. Again, the easy part is that, if the graph is not a

DAG, then there exists some operation that has to com-

mit before itself, which is impossible. To prove the other

direction, suppose the graph is a DAG. Again, we use

a special topological sorting algorithm as in the proof

for regularity checking. But this time, the property P is

stronger: a write W is always followed by D(W ) with

no other operations interspersed among them. A total or-

der constructed this way not only conforms to the DAG,

but also ensures that a read obtains the value of its most

recent write.

The topological sorting algorithm works as follows.

The algorithm starts with picking a ready write W and

removing all of W ’s outgoing edges. It then picks all of

W ’s dictated reads, denoted by D(W ), one by one. After

all of D(W ) have been picked, the algorithm picks an-

other ready write, and repeat until all vertices are picked.

We show that this procedure will not get stuck as there

will always be a ready read in D(W ). To see this, sup-

pose at some point there are no ready reads in D(W ).
Then consider an arbitrary read R ∈ D(W ). Starting

from R, go back following an arbitrary reverse path un-

til a ready vertex is reached. Since the graph is a DAG,

eventually such a ready vertex will be reached. Suppose

this vertex is a read, denoted by R′. Then R′ 6∈ D(W )
(because all of D(W ) are not ready) and R’s dictating

write has been picked (because otherwise R′ cannot be

ready). However, this contradicts the topological sort’s

invariant that a write is always followed by its dictated

reads. Therefore, this ready vertex can only be a write,

denoted by W ′. By the hybrid rule, there should be an

edge W ′ → W because W ′ has a path to R, one of W ’s

dictated reads. This edge contradicts the fact that W has

been picked but W ′ has not. Therefore, it is always pos-

sible to order the vertices such that a write is followed by

its dictated reads. (We note that this proof is somewhat

analogous to that for Theorem 1 in Misra’s paper [15].)

2

Theorem 4 The algorithm in Figure 2 establishes that,

if one operation precedes another, then there is a path

from the former to the latter.

Proof. The outer loop maintains the invariant that, for all

vertices A1 and A2 where A1.s < A.s and A2.s < A.s,

if A1 < A2, then A1 →֒ A2 (i.e., there is a path from A1

to A2). The inner loop maintains the invariant that, for

all vertices B1 and B2 where B.f < B1.f < A.s and

B.f < B2.f < A.s, we have B1 → A and B2 → A.

At the end of the inner loop, the outer loop’s invariant

is maintained because the inner loop establishes that for

all B′ such that B′ < A, B′ →֒ A. To see this, let the

vertices traversed by the inner loop be B1 and those not

B2. The above claim is trivially true for B1. It is also

true for B2 because upon exit of the inner loop, there is

a B1 ∈ B1 such that for all B2 ∈ B2, B2.f < B.s
(because of the way t is maintained), namely, B2 < B1.

By the outer loop’s invariant, we have B2 →֒ B1, and by

the inner loop’s invariant, we have B1 → A. Therefore,

B2 →֒ A.

Theorem 5 The algorithm in Figure 2 adds the mini-

mum number of edges.

Proof. Let ALG denote the set of edges output by the

algorithm in Figure 2 and let OPT denote those by an

optimal algorithm, i.e., one that uses the smallest num-

ber of edges. At this moment, we do not know whether

the output from an optimal algorithm is unique, but non-

uniqueness does not concern us. By the end of this proof,

we shall establish that, indeed, this output is unique.

We claim that ALG ⊆ OPT. To see this, consider an

arbitrary edge e ∈ ALG, where e is from operation B to

operation A. Suppose that, by contradiction, e 6∈ OPT.

Then there is a path from B to A via some other edges

8



in OPT. Therefore, there exists an operation C such that

B < C < A. However, if there were such a C, then

ALG would not have added e from B to A, because of

the break statement in the algorithm. A contradiction.

Therefore, ALG ⊆ OPT.

By the definition of OPT, we conclude that ALG =
OPT. A corollary of the present theorem is that the out-

put of an optimal algorithm is unique. 2

B The calibration algorithm

We next present a different algorithm for checking atom-

icity called the calibration algorithm. To distinguish this

algorithm from the one presented in Section 2.4, we call

that algorithm the reachability algorithm (because its hy-

brid rule checks the reachability between vertices).

We first explain what cablibrationmeans. Let A.s and

A.f denote the start time and finish time of an interval A.

We call a data edge from A to B abnormal if A.f > B.f .

Note that, by this definition, a time edge can not be ab-

normal, because for a time edge A → B we always have

A.f < B.s < B.f . We observe that, for an abnormal

edge A → B, it does not matter, in terms of atomicity,

if we change A.f to B.f because A will not commit at

the “extra time” after B.f . A calibration for a data edge

is such a shortening of an operation. First, we have the

following lemma.

Lemma 1 The calibration of an edge does not affect the

atomicity of the trace.

Proof. If the original trace is atomic, then we take the

schedule for the original trace and this schedule should

be a valid schedule for the calibrated trace, because no

commit point will happen at a time in that “extra time” in

A after B has finished, for A → B. The reverse direction

is straightforward. 2

The calibration algorithm works as follows: (1) Ap-

ply the regularity checking algorithm described in Sec-

tion 2.3. (2) Apply the calibration procedure described

in Figure 6. In other words, for the calibration algorithm,

the difference between atomicity checking and regularity

checking is the calibration procedure. In contrast, for the

reachability algorithm in Section 2.4, the difference is a

more sophisticated hybrid rule.

We now explain Figure 6. Since the calibration of an

edge “shortens” an operation, it has the potential of cre-

ating more edges. Therefore, we repeatedly perform the

calibrations of edges (and add edges accordingly) until

no more calibration of edges can be performed. Figure 6

L := abnormal edges;

while (L 6= ∅) {
pick an arbitrary edge A → B from L;

A.f := B.f ;

foreach (C: A.fnew ≤ C.s ≤ A.fold) {
add time edge A → C;

if (A is write and C is read) {
add hybrid edge A → W where

W is C’s dictating write;

if (A → W is abnormal) {
add A → W to L;

}
}

}
foreach (C: A → C and

A.fnew ≤ C.f ≤ A.fold) {
remove A → C from L;

}
}

Figure 6: The calibration procedure for the entire trace.

describes a simple algorithm that carries out this proce-

dure. The benefit of applying the calibration procedure

is that the hybrid rule (which is the same as the hybrid

rule for safety and regularity) becomes simpler than the

one for the reachability algorithm.

We now prove the correctness of the calibration algo-

rithm.

Theorem 6 After all the edges have been added, the

precedence graph is a DAG iff the trace is atomic.

Proof. The proof is similar to that for Theorem 3. As

proved before, if a graph is not a DAG, then the trace is

not atomic. Suppose the graph is a DAG, we can easily

come up with a topological order, but the concern is that

we may place a W ′ between a W and R where W is R’s

dictating write. To avoid this from happening, we use the

following revised topological sorting algorithm. If dur-

ing the topological ordering, a write W has been picked,

then we repeatedly look for one of its dictated reads, de-

noted by D(W ), in the remaining vertices that has in-

coming degree 0 (i.e., a ready read). Now we claim that

there always exists such a ready read. In other words,

the above topological ordering always makes progress.

We prove this by contradiction. Suppose that all the un-

picked vertices in D(W ) are not ready. Then starting

with one of these reads R, we trace back to a ready ver-

tex. Suppose this vertex is a read R′ but R′ 6∈ D(W ). We

observe that the dictating write of R′ has been picked, be-
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cause otherwise R cannot be ready. However, our topo-

logical sorting always groups reads with their dictating

writes, but R is separated with its dictating write by W .

A contradiction. Therefore, this ready vertex is a write

W ′. We now claim that W ′ → R. This is because

by the traceback, W ′ →֒ R. This path may consist of

both time edges and data edges, but all the data edges

have been calibrated. Therefore, W ′ < R, which im-

plies that W ′ → R. By the construction of the extra

edges, W ′ → W , contradicting the fact that W has been

picked. Therefore, we can always group a write with its

dictated reads. 2

We believe that the reachability algorithm and the cal-

ibration algorithm are essentially the same algorithm in

terms of correctness, although we have not rigorously es-

tablished this equivalence. It is unclear to us which one

tends to be more efficient in actual traces. In addition, we

have noticed that, when we count the number of cycles in

the precedence graphs, these two algorithms sometimes

give slightly different counts. We have not tracked down

the source for this discrepency. One possibility is that,

at times, the calibration procedure may cause an opera-

tion to finish before it starts, i.e., making A.f < A.s for

some operation A. Whenever this happens, the trace is

not atomic. But how this situation may affect the count-

ing of cycles we do not fully understand yet.
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