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Abstract—We envision a conference room of the future where
depth sensing systems are able to capture the 3D position
and pose of users, and enable users to interact with digital
media and contents being shown on immersive displays. The key
technical barrier is that current depth sensing systems are noisy,
inaccurate, and unreliable. It is well understood that passive
stereo fails in non-textured, featureless portions of a scene. Active
sensors on the other hand are more accurate in these regions and
tend to be noisy in highly textured regions. We propose a way
to synergistically combine the two to create a state-of-the-art
depth sensing system which runs in near real time. In contrast
the only known previous method for fusion is slow and fails to
take advantage of the complementary nature of the two types of
sensors.

I. INTRODUCTION

In the future, users in a conference room will be able to
naturally interact with large, immersive display walls without
needing to use dedicated controllers or wear special markers.
Depth sensing systems will be able to capture in real time the
3D shape, pose, and positions of users in the room and use that
information to enable highly engaging experiences for seam-
less collaboration, data visualization, or 3D entertainment.
Depth sensing is therefore a key enabling technology that new
products can leverage to deliver enhanced functionalities that
provide differentiation in the marketplace.

At the same time, depth sensing is also one of the hardest
fundamental challenges of computer vision. 3D reconstruction
using passive stereo with multiple cameras is a well-studied
problem and to date they still will not work reliably in
many cases. Non-textured and featureless regions of a scene
are particularly challenging for stereo as there simply is
insufficient visual information for establishing correspondence
across multiple cameras. The possible solution is to propagate
information from textured pixels to the non-textured pixels.
Most of the community’s efforts are focused on this problem
which is named disparity optimization in [1]. A number of
excellent optimization methods have been proposed, and the
state-of-the-art methods are either based on belief propagation
(BP) [2], [3] or graph cuts (GC) [4]. Both BP and GC are
formulated in an energy-minimization framework [5], where
the objective is to find a disparity solution that minimizes a
global energy function. Nevertheless, these methods are known
to be quite fragile in practice and slow.
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Alternative, laser range scanners can provide extremely
accurate and dense 3D measurement over a large working
volume [6], [7], [8], [9], [10], [11]. However, most of these
high-quality scanners measure a single point at a time, limiting
their applications to static environments only.

Recently, a new class of active depth sensing system based
on the time-of-flight (TOF) principle is emerging: [12], [13],
[14], [15], [16]. The TOF principle is similar to that of LIDAR
scanners with the advantage that whole scene is captured at
the same time. A typical TOF system features a near-infrared
(NIR) pulse illumination component, as well as an image
sensor with a fast gating mechanism. Based on the known
speed of light, the system coordinates the timing of NIR pulse
wave emissions from the illuminator with the gating of the
image sensor, so that the signal reflected from within a desired
depth range is captured exclusively. The amount of pulse signal
collected for each pixel corresponds to where within the depth
range the pulse was reflected from, and can thus be used to
calculate the distance to a corresponding point on the captured
subject.

TOF sensors are generally of low resolution: 320× 240 or
less. Most sensor fusion approaches using TOF sensors aim at
enhancing the resolution of depth maps by combining it with a
single passive camera. By assuming that depth discontinuities
always corresponds to color discontinuities, Yang et. al. [17]
used a high-resolution color image to reduce the depth ambi-
guities after up-sampling from a low-resolution (64×48) depth
image acquired from Canesta sensors [14] via joint bilateral
filtering. Kopf [18] also employed joint bilateral filter during a
number of image operations, e.g., tone mapping, colorization,
stereo matching, to improve up-sampling results. The main
difference between these two methods is that in [18], joint
bilateral filter is applied to the depth image directly, which will
oversmooth depth discontinuities. [17] instead uses a voting
scheme, which better preserves the depth discontinuities and
is more robust to the noisy. However, the complexity of [17] is
much higher than [18], since the number of depth hypotheses
used for voting is generally large (60 in [17]). TOF sensors
are able to sense depth even in non-textured regions regardless
of the low resolution. In fact they perform poorly on heavily
textured surfaces for which stereo excels. This offers hope
that we may finally be able to build reliable depth sensing
systems. The advantage and disadvantage of the active and
passive sensors are listed in Table I. As can be seen, active
and passive sensors complement each other.



TABLE I
ADVANTAGE AND DISADVANTAGE OF ACTIVE AND PASSIVE SENSORS.

THE ENTRIES IN BOLD CORRESPOND TO THE ADVANTAGES.

Sensor Resolution Highly-textured Non-textured
region region

Active low Non-robust Robust
Passive High Robust Non-robust

The only prior art we are aware of that fuses depth estima-
tion from TOF sensor and stereo sensor is [19]. Our method is
superior as [19] does not take into account the complementary
nature of the two kinds of depth sensors and would weight data
from both subsystems equally regardless of whether the scene
is textured or non-textured. While they did not report running
times in their paper, since they employ belief propagation, a
very expensive operation, with the same camera and disparity
search resolution we expect their algorithm to require 30
seconds per frame for a 3-view setup and 15 seconds per frame
for a 2-view setup. In contrast, our system runs at 8 fps and
correctly takes into account the complementary nature of the
sensors.

II. ALGORITHM OVERVIEW

We propose fusing the two kinds of sensors in a synergistic
fashion, relying on passive stereo in highly textured regions
while using data from active depth sensors in featureless
regions. A photo of our experiment setup is shown in Fig.
1 (a) and a flow chart of our algorithm is shown in Fig. 1 (b).

One key challenge we faced is that data from the active
sensors are of a much lower resolution than those from typical
RGB cameras used in the passive subsystem. To address this
problem we developed an algorithm for up-sampling a depth
map at real time based on hierarchical bilateral filtering in Sec.
III-B.

For synergistic fusion, we make use of a TOF signal strength
image provided by the active depth sensor which indicates the
signal strength received at each sensor pixel. This allows us to
compute a TOF sensor confidence map. A stereo confidence
map is also computed based on local image features. The two
confidence maps are then incorporated into the cost function
used to populate the 3D volume created by a plane-sweeping
stereo matching algorithm.

III. FAST SENSOR FUSION

In this section, we present a method to combine TOF
and passive sensors to create a state-of-the-art depth sensing
system which runs in near real time. Our method is separated
into two steps as shown in Fig. 1 (b): camera calibration
and depth up-sampling (Sec. III-A and III-B) and confidence-
guided plane-sweeping stereo matching (Sec. III-C).

A. Camera calibration

Our depth sensing system combines a TOF sensor with three
stereo cameras. TOF sensor can produce a depth image and
a TOF signal strength image of 160 × 120 resolution with
an operational range up to about four meters. The TOF sensor

(a) Experiment setup.
TOF Depth image
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TOF active brightness image  
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TOF RGB image 

(640 x 480)

TOF depth image (1024 x 768) TOF active brightness image (1024 x 768)

Camera Calibration and depth up-sampling

Stereo left image 

(1024 x 768)

Stereo center image 

(1024 x 768)

Stereo right image 

(1024 x 768)

Confidence-guided plane-sweeping stereo

Depth from sensor fusion (1024 x 768)

(b) Algorithm overview.

Fig. 1. System overview. (a) is a photo of our depth sensing system and
(b) is the proposed framework. The inputs of our sensor fusion system are a
low-resolution (160× 120) depth image, a low-resolution (160× 120) TOF
signal strength image and a high-resolution (640×480) RGB image from the
TOF depth sensor (shown in green) and three high-resolution (1024 × 768)
images from passive stereo sensors (shown in blue). The output of the system
is a high-resolution (1024) depth image. Our system can be separated into two
steps. First, we up-sample the low-resolution images captured from the TOF
depth sensor and then register them with the passive stereo sensors. Second,
we compute a depth image from the images captured from the passive stereo
sensors and the registered depth and TOF signal strength images from TOF
depth sensor.

can also produce a 640×480 RGB image. The captured depth
image and TOF signal strength image can be mapped to the
RGB image via a lookup table using the depth image. We
thus captured a sequence of images of a calibration pattern
simultaneously from the TOF sensor and the stereo sensors,
and then use the calibration toolbox [21] to compute the
calibration/intrinsic matrix, radial distortion coefficients, and
projection matrix of each sensor as shown in Fig. 4.

B. Real Time Depth Image Up-Sampling

We next up-sample the depth and TOF signal strength
images captured from TOF depth sensor. We have previously
proofed that by enforcing the depth edges to be consistent with
the color edges, joint bilateral filter can be used to up-sample
the depth image up to 100× resolution [17]. However, it is
too slow for real-time applications. In this section, we present
a hierarchical method for real-time depth image up-sampling.

Let R be the vector of all depth hypotheses, Di
T be the up-



Fig. 2. Hierarchical up-sampling. (a) is the depth image in coarse scale, (b)
is the nearest up-sampling result of (a). The unconfident pixels are marked as
green circles, and blue squares are confident pixels with depth values sampling
from (a). The depth values of unconfident (un-sampled) pixels with four
confident neighbors are estimated as shown in (b) and then marked confident
in (c). (c) also shows that the depth values of the other unconfident pixels
except the unconfident edge pixels are estimated based on the updated depth
images. These unconfident pixels are also marked as confident after estimation
as shown in (d). The unconfident edge pixels are eliminated in the last step.
(e) shows that every pixel in the image are marked as confident.

(a) (b)

(c) (d)

Fig. 3. Evaluation using Middlebury data set [20]. (a) High resolution color
image; (b) Ground-truth disparity image; (c) Low resolution disparity image;
(d) Up-sampled high resolution disparity image.

sampled depth image using nearest neighbor method at scale
i, Ci

T = {0, 1} as a binary confidence map associated with
Di

T , IiT as the registered color image, p as a pixel in Di
T , and

q as another pixel in the neighborhood N(p) of p, the joint

bilateral up-sampling problem can then be expressed as:

Di,new
T (p) =

argmin
z∈R

1∑
q∈N(p) F (p, q) ·G(IiT (p), I

i
T (q)) · Ci

T (q)
·∑

q∈N(p)

F (p, q) ·G(IiT (p), I
i
T (q)) · Ci

T (q) · |z −Di
T (q)|,(1)

where F (p, q) and G(IiT (p), I
i
T (q)) are the spatial and range

weighting function of the joint bilateral filter, respectively,
|z − Di

T (q)| is the penalty cost value for assigning depth
hypothesis z to pixel q and Ci

T (q) = 0 identifies un-sampled
pixels. The updated depth image Di,new

T is then up-sampled
using nearest neighbor method and fed to the next scale
for further refinement. An example of our hierarchical up-
sampling method on a 3 × 3 depth image is shown in Fig.
2.

Figure 3 presents the visual evaluation of our up-sampling
method on the Middlebury data set [20]. We down-sampled
a high-resolution disparity image (treated as ground truth,
showing in Figure 3 (a)) obtained using structured light
scanning to a low resolution disparity image (Figure 3 (c)),
and then used our method to up-sampled the low resolution
disparity image to its original resolution based on the low
resolution disparity image and the high resolution color image
(Figure 3 (b)), and then compared the up-sampled disparity
image (Figure 3 (d)) and the original high-resolution disparity
image (Figure 3 (b)). Visually, there is little difference between
Figure 3 (b) and (d). Note that the black pixels in (b) are
invalid pixels where structured light scanning fails.

We use this hierarchical method to up-sample the registered
depth and TOF signal strength image. Finally, the 2D image
points of the up-sampled depth and TOF signal strength
image are projected as 3D points using the up-sampled depth
image and then captured back by the central stereo sensor.
Specifically, let a pixel location in the up-sampled depth image
be represented as a homogeneous 3-vector p = [x,y, 1]T , the
z-depth value of p be zp (obtained from the TOF depth image),
the calibration/intrinsic matrix of the TOF sensor be KT , and
projection/extrinsic matrix be PT = [RT |(−RT tT )], the 3D
point q corresponding to the 2D pixel p can then be computed
as follows

q = R−1
T (K−1

T zpp) + tT . (2)

Let the calibration/intrinsic matrix of the central stereo
camera be KC and the projection/extrinsic matrix be PC ,
the corresponding 2D pixel location in the stereo camera be
pC = [xC ,yC , 1], then

pC ∼ KCPCq = KCPC(R
−1
T (K−1

T zpp) + tT ). (3)

Using Eqn. (2) and (3), we can map every pixel in the
depth and TOF signal strength image to the stereo camera.
However, due to occlusions, source pixels do not map directly
to a single pixel in the destination space. In this case, we
keep only the pixel which is closest to the center of central
stereo sensor. Also, there will be “holes” in these destination



images. We simply need to set the active brightness values to
zeros for these pixels. Zero active brightness value means that
the confidence of the TOF sensor is zero, thus we can use
the result from stereo matching to fill in these “holes”. The
resolution of the obtained depth and TOF signal strength image
is the same as the resolution of the stereo sensor: 1024×768.
This step is summarized in Fig. 5.

TOF RGB  

Image (640x480) 

Stereo left RGB 

image (1024x768) 

Stereo center RGB  

image (1024x768) 

Stereo right RGB

image (1024x768) 
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Undistorted stereo 

left RGB image 

Undistorted stereo 

center RGB image 
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R
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Fig. 4. Camera calibration.
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Fig. 5. Up-sample the depth and TOF signal strength images captured from
the TOF sensor.

The up-sampled TOF signal strength image provided by the
TOF depth sensor indicates the signal strength received at each
sensor pixel and allows us to compute a confidence map for the
depth image obtained from the TOF depth sensor. Let the TOF
signal strength image be B and noise be Gaussian distributed,
a confidence value at each pixel location p can be computed
based on B using a Gaussian function:

CT (p) = exp(− b2

2B(p)2
), (4)

where b is a constant used to control the shape of the
confidence function.

C. Confidence-Guided Plane-Sweeping Stereo

We finally integrate the contribution of the passive and
TOF sensors via confidence-guided plane-sweeping stereo.
Plane-sweeping stereo tests a family of plane hypotheses and
records for each pixel in a reference view the best plane using

some dissimilarity measure. The algorithm works with any
number of cameras, and images need not be rectified. In our
experiments, the z direction of the reference (central) camera
is used. For each plane d, the images captured from the left
and right stereo sensors are projected on the current plane d,
and rendered in the reference review (central) as IdL and IdR.
Let IC be the image captured by the reference stereo sensor,
the matching cost for each pixel location p at the reference
image is then computed for the left and right stereo sensor as:

ML(p,d) = ||IdL(p)− IC(p)||, (5)
MR(p,d) = ||IdR(p)− IC(p)||. (6)

The coarse left and right matching cost ML(p,d) and
MR(p,d) are very noisy, either local or global optimization
methods can be applied to them separately for de-noising, e.g.,
box filter, bilateral filter, joint bilateral filter, symmetric joint
bilateral filter, loopy belief propagation, graph cuts. In our
implementation, we used box filter which is the fastest.

The matching cost for each pixel is compared at each plane
hypothesis, and the smaller one is selected as correct:

M(p,d) = min(ML(p,d),MR(p,d)). (7)

A stereo confidence map can then be computed based on
local image features. Specifically, assume that the cost is
perturbed by Gaussian noise and dS(p) = argmind M(p,d)
is the plane corresponding to the lowest matching cost and
is the correct depth at pixel location p, we wish to estimate
the likelihood that dS(p) does not have the lowest cost
after the cost is perturbed. This likelihood is proportional to
exp(− (M(p,d)−M(p,dS(p)))2

2σ2
S

) for some σS that depends on the
strength of the noise. A stereo confidence value at each pixel
location p can then computed as the inverse of the sum of
these probabilities for all possible depths:

CS(p) = (
∑

d ̸=dS(p)

exp(− (M(p,d)−M(p,dS(p)))
2

2σ2
S

))−1.

(8)
Let the depth image up-sampled from the TOF depth sensor

be DT , we combine the stereo sensors and TOF depth sensor
by using DT , the stereo sensor confidence CS and TOF sensor
confidence CT to update the matching cost:

MF (p,d)= (1−W (p))M(p,d) +

W (p)min((d−DT (p))
2, η), (9)

W (p)=
(1− CS(p))CT (p)

(1− CT (p))CS(p) + (1− CS(p))CT (p)
, (10)

where η is a constant to reject outliers. Let 1 − CT (p) in
Eqn. (10) be the stereo confidence from the TOF sensor and
1 − CS(p) be the TOF confidence from stereo sensor, (1 −
CS(p))CT (p) is then the fused TOF sensor confidence, (1−
CT (p))CS(p) the fused stereo sensor confidence, and W (p)
in Eqn. (10) the normalized fused TOF sensor confidence. The
behavior of W (p) with respect to the original TOF sensor
confidence CT (p) and the original stereo sensor confidence
CS(p) is presented in Fig. 6. Note that W (p) = 0.5 when the



confidence obtained from the stereo sensor and TOF depth
sensor is the same: CS(p) = CT (p).

0

0.5

1

0

0.5 C
T
(p)(p)

Fig. 6. Behavior of W (p) (Eqn. 10) with respect to the original TOF sensor
confidence CT (p) and the original stereo sensor confidence CS(p).

Depth values at each pixel location p are computed by
selecting the plane that corresponds to the minimum matching
cost:

D(p) = argmin
d

MF (p,d). (11)

Finally, to retain sub-pixel accuracy from the TOF depth
sensor, we can assume that the matching cost function is a
polynomial function, and sub-pixel accuracy can be obtained
by polynomial interpolation [17]. We also use the real-time
joint bilateral filtering method presented in [22] to smoothen
the obtained depth map.

IV. EXPERIMENT

We implemented the algorithm with a GPU acceleration,
and some results can be seen in Figure 7. The red and green
boxes show where the active sensor fails, and the blue and
cyan boxes indicated where passive stereo fails. Our algorithm
is able to produce depth maps that are visually superior to
those produced by the individual sensor subsystems. We used
1024×768 stereo cameras, and for 48 levels of stereo disparity
our algorithm is able to output depth maps at around 8 frame
per second.

V. CONCLUSION AND FUTURE WORK

We have presented a fast depth sensing system which takes
advantage of the complementary nature of passive stereo
sensor and active depth sensor in the paper. Our GPU imple-
mentation on a NVIDIA Geforce 9800 GTX GPU shows that
our system is able to output depth maps at around 8 frame per
second for 1024× 768 stereo cameras and 48 levels of stereo
disparity. An additional contribution of the paper is a real-
time depth image up-sampling method which is very useful
as the current available active depth sensors are all of very
low resolution. An unsolved problem in our system is that
it is invalid for large black regions as both the active depth
sensor and stereo sensor fail in this case.
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(a)

(b)

(c)

(d)

Fig. 7. Visual evaluation of the proposed method. From top to bottom: (a) Reference camera image; (b) Depth map obtained from TOF sensor; (c) Depth
map computed from stereo matching; (d)Fused depth map. The red box in (b) shows that active sensor is invalid for thin-structured objects because it is of
low resolution. The red box in (d) shows the improvement after sensor fusion. The irregular holes (in black color) inside the green box in (b) are due to the
incorrect depth values introduced by the texture variance inside the green box in (a). If the depth values are correct, the holes will be regular as shown in
the blue and cyan boxes in (b). The corresponding depth values computed from stereo vision are presented in the green box in (c), which shows that stereo
matching is more robust in this situation and can be used to improve the performance of the active sensor as presented in the green box in (d). The uneven
depth values in the blue and cyan boxes in (c) shows that stereo matching is very fragile for low-textured regions. However, the depth values obtained from
the active sensor is accurate as shown in the blue and cyan boxes in (b). The fused depth values are presented in the blue and cyan boxes in (d). As can be
seen, sensor fusion does greatly improve the performance of stereo matching on low-textured regions.


