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Abstract
A large body of data-flow analyses exists for analyzing and optimi-
zing sequential code. Unfortunately, much of it cannot be directly
applied on parallel code, for reasons of correctness. This paper
presents a technique to automatically, aggressively, yet safely ap-
ply sequentially-sound data-flow transformations, without change,
on shared-memory programs. The technique is founded on the no-
tion of program references being “siloed” on certain control-flow
paths. Intuitively, siloed references are free of interference from
other threads within the confines of such paths. Data-flow transfor-
mations can, in general, be unblocked on siloed references.

The solution has been implemented in a widely used compiler.
Results on benchmarks from SPLASH-2 show that performance
improvements of up to 41% are possible, with an average improve-
ment of 6% across all the tested programs over all thread counts.

1. Introduction
It has long been known that classical compiler optimizations,
i.e., sequentially-sound transformations based on data-flow analy-
sis frameworks [20], cannot be directly applied on parallel code,
even under conditions that would be correct for the sequential
case [28, 22, 24, 32, 36, 6]. The problem stems from asynchronous
updates. Classical methods were not designed to reason about them
under a multiplicity of interleavings [22, 36]. Parallel-code opti-
mization has hence been specially addressed, in mainly two ways:

• Devise analyses and optimizations from the ground up, or adapt
existing sequential analyses and optimizations, often using spe-
cialized program representations [41, 22, 37, 24, 32, 36].

• Assume the program to be well-synchronized, i.e., free of data
races, and restrict the scope of classical transformations to the
synchronization-free regions (SFRs) of the code.

The first has been used to analyze and optimize the so-called ex-
plicitly parallel program (EPP). An EPP is shared-memory code
in which parallelism is expressed using the cobegin/coend con-
struct, or some equivalent. The second is how all production C/C++
compilers that we are aware of, such as the GNU C/C++ Compiler
(gcc) and Open64, currently optimize multithreaded code.

The SFR approach promises sequential consistency (SC) [23, 1]
to the programmer, if the code is data-race free. The EPP approach
usually gives “full SC”, i.e., SC even in the presence of data races.

1.1 Limitations of Past Approaches
Since the EPP approach ensures interleaving semantics, it can pro-
duce overly conservative results on well-synchronized programs.
The reason is that to assure full SC, all conflicting accesses that
could be performed by two threads, without them performing in-

tervening synchronizations, have to be modeled [42].1 Such ac-
cesses do not exist in well-synchronized code, since they would be
data races. Thus, it would be easier to deduce in well-synchronized
code, for example, whether the expression x+x is even.

Second, neither Pthreads [18] nor OpenMP [33] currently de-
fine semantics under data races. Neither do the current drafts of the
C and C++ standards.2 Implementations already take advantage of
this fact, for example, by reordering memory operations on possi-
bly shared locations. Therefore, it appears wasteful to artificially
restrict an analysis not to do the same.

Third, since the EPP approach typically relies on IRs (interme-
diate representations) that go beyond traditional sequential IRs, it
can incur high infrastructure costs. For instance, an EPP IR may in-
clude special nodes like ψ- and π-functions [41, 24]. It may include
edges to reflect properties peculiar to a parallel setting, such as con-
flicts [24] and synchronizations [37, 32]. To exploit the information
borne by these new nodes and edges, existing transformations will
have to be reworked. Hence, incorporating the approach into a com-
piler either means a from-scratch enterprise, or extending a serial
compiler’s phase or recasting it to a parallel IR. Whichever way, the
undertaking is expensive. In contrast, this paper’s approach allows
for the direct reuse of existing data-flow transformations.

In the SFR approach, data statements (i.e., synchronization-
free statements [2]) are modeled without concurrency consider-
ations. For example, may-definition maydef and may-use mayuse
sets, which form the basis of data-flow analyses, do not account for
concurrent accesses at data statements. These accesses are consid-
ered only at synchronizations. In compilers like gcc, this presently
happens automatically, albeit exceedingly conservatively, because
synchronizations are viewed as fully opaque. It should be empha-
sized that data-race freedom is essential for this approach.

1.1.1 The Pitfall of Simply Extending Optimization Scopes
Consider the multithreaded program in Figure 1, which uses the
Pthreads library [18]. The snippets in the columns, along with
initialization and termination code, fully constitute the program.
The left and right snippets are only executed by threads h1 and h2
respectively. The only shared variables X and Y are initialized to 0.
Despite accesses of X not being protected by a lock, the program is
data-race free. (The two threads coordinate on Y, which is always
accessed with a lock held.) This program always outputs 0.

In the left snippet, the only access of X is the read on Line 0. A
compiler, on examining it in isolation, might conclude that an op-
portunity to propagate through critical sections exists, from Line 0
to Line 8. Interestingly, this would preserve data-race freedom, un-

1 Accesses of the same location, all of which are not reads, conflict [40].
2 Java and .NET presently do define limited semantics for data races, though
it remains unclear whether this can be done usefully and fully correctly [39].
The approach presented here would require adjustment for those languages.
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X == Y == 0
Thread h1 Thread h2

0 t1 := X
1 pthread mutex lock(l)
2 Y := 1
3 pthread mutex unlock(l)
4 do { pthread mutex lock(l)
5 t2 := Y
6 pthread mutex unlock(l)
7 } while (t2 == 1)
8 t3 := t1
9 print(t3)

0′ do { pthread mutex lock(l)
1′ t4 := Y
2′ pthread mutex unlock(l)
3′ } while (t4 == 0)
4′ X := 11
5′ pthread mutex lock(l)
6′ Y := 2
7′ pthread mutex unlock(l)

Figure 1. The two snippets comprise the program, which always
prints 0. If X were copy propagated from Line 0 to Line 8, the result
would be data-race free, but 11 would always be printed instead.

like many past examples of invalid transformations, such as bitfield
manipulations and register promotion [6]. Nevertheless, it is incor-
rect since the transformed program would always output 11.3

The root of the problem is that the right snippet updates X when
running concurrently with the left snippet. Because detecting this
requires more analysis, and potentially of a whole-program nature,
current compilers follow the SFR approach and safely avoid the
problem because a synchronization like pthread mutex lock, as
well as any procedure that may transitively call it, is regarded as
having a possible side-effect on all globally visible data.

1.1.2 Benefits of Judiciously Extending Optimization Scopes
The opaque treatment of synchronizations has the adverse conse-
quence that legally exploitable opportunities could, at the same
time, get blocked. For instance, consider another hypothetical pro-
gram consisting of the left snippet in Figure 1 but a different right
snippet, one that does not update X. As before, assume that only h1
executes the left snippet and h2 the right snippet. In this situation,
it would be correct to copy propagate X from Line 0 to Line 8.

We now discuss an example, derived from real code, where syn-
chronization opacity hinders the recovery of useful knowledge that
is obfuscated by IR lowering. Figure 2 displays a critical section
originally from SPLASH-2’s FMM benchmark [47]. The only dif-
ference from the original are the calls to the LockedPrint proce-
dure, which FMM itself provides. LockedPrint writes to stdout,
under the protection of a lock. The calls have been randomly in-
serted to illustrate the additional complexities posed by an arbitrary
number of nested critical sections to the recovery process.

Modern compilers often work with a variant of the Static Single
Assignment (SSA) Form [12] that takes into account aliasing ef-
fects and indirect memory operations, such as the HSSA Form by
Chow et al [11]. gcc’s Memory SSA Form is akin to HSSA [31].
Therefore, for pedagogical reasons, we base our discussions on
HSSA.

Figure 2 also shows the critical section’s lowered HSSA Form,
in which special constructs, called “χ assignments” and “μ opera-
tions”, denote ambiguous definitions and uses [11]. The χ assign-
ments on Lines 3, 6 and 11 are examples—they signify that a possi-
ble side-effect of the preceding calls, including concurrent effects,
is the changed global variable G Memory.4 Since these calls can
have other side-effects, such as changed heap objects, there can be
more χ assignments between Lines 3 and 4, 6 and 7, and 11 and 12.

3 The example assumes a fair scheduler, so the program is guaranteed to
make progress. It would have to be modified for the case of a nonpreemptive
uniprocessor scheduler, by suitably inserting thread-yielding operations.
4 For brevity, μ operations have not been shown.

LOCK(G Memory->count lock);
my id = G Memory->id;
LockedPrint("%d\n", my id);
G Memory->id++;
LockedPrint(...);
UNLOCK(G Memory->count lock);

⇓⇓⇓
0 t1 := G Memory
1 t2 := &(t1->count lock)
2 pthread mutex lock(t2)
3 t ′ := χ(G Memory)

.

.

.

4 t3 := t ′->id
5 LockedPrint("%d\n", t3)
6 t ′′ := χ(G Memory)

.

.

.
7 t4 := t ′′->id
8 t5 := t4+1
9 t ′′->id := t5

10 LockedPrint(...)
11 t ′′′ := χ(G Memory)

.

.

.
12 t6 := &(t ′′′->count lock)
13 pthread mutex unlock(t6)

Figure 2. A critical section originally from SPLASH-2’s FMM
program, and its lowered HSSA Form. Lowering hides the equiva-
lence of the pointers t2 and t6. A challenge is to recover such knowl-
edge under multithreading, by safely applying classical methods.

All lines except 2, 5, 10 and 13 are purely data statements. Un-
der data-race freedom, concurrent effects need not be accounted for
against them, because the χ assignments against synchronizations
account for these effects. This, however, stymies a classical opti-
mizer from establishing the equivalence of t2 and t6. A standard
application of a pointer analysis will not uncover this equivalence.
If t2 and t6 had nonsingleton may-points-to sets, nothing can be said
about their equivalence.5 Likewise, no equivalence conclusions can
be drawn if t2 and t6 have empty must-points-to sets. We shall later
see, in Section 4.7.1, how a classical optimizer can be transparently
empowered to safely regain such knowledge.

1.2 A New Approach: The Siloed-References (SR) Technique
This paper presents a two-step technique for extending the scope
of arbitrary classical optimizations across synchronizations. First,
program references to objects that can be statically proved to be free
of cross-thread interference are determined. The specific attribute
our analysis identifies is the siloed property. Informally, an object
reference is “siloed” on a procedure f if no other thread writes
(reads or writes) the object whenever a thread is executing a path
in f in which it reads (writes) the object. Second, the IR’s maydef
and mayuse sets are narrowed using these siloed references—this
unveils previously blocked classical transformation opportunities.
Since these abstractions are only narrowed, the outcome of the
technique is not the same as synchronization removal [10, 5, 7, 35].

Our methods use two existing compiler algorithms, designed for
sequential programs, as building blocks. They are a flow-insensitive
interprocedural pointer analysis, and a transformation to an HSSA-
like form. The former is used to derive aliasing information. Its
usage is valid because it is known that flow-insensitive schemes re-
tain correctness in a multithreaded context [36, Page 71]. The usage
of the latter is also valid because synchronizations are, by default,
treated as opaque procedure calls. They can hence affect all glob-
ally visible memory. By generating new symbols at these calls, the
HSSA conversion phase conservatively models the asynchronous
updates that could occur in a data-race-free program.

1.2.1 Advantages
Because the SR Technique sharpens key data-flow abstractions, it
permits arbitrary bidirectional classical data-flow analyses across
synchronizations, in well-synchronized programs. As far as we
know, this is a first. Previous work on program transformations for

5 A sound may-points-to set is never ∅ because a pointer will always point
to something. (“Special” pointer values, such as NULL, are modeled by
separate targets.) So nonsingleton here means two or more elements.
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the data-race-free model only considered what was effectively for-
ward data-flow through a lock synchronization, and backward data-
flow through an unlock synchronization [39]. This is insufficient,
for instance, to expose the equivalence of t2 and t6 in Figure 2. And
in previous work for the full SC model, synchronization knowledge
was only used to eliminate conflict edges in the EPP IR [32, 42].

The second important advantage is that the technique needs
no new IR constructs, no modifications to the semantics of exist-
ing constructs, and no changes to existing phases. In fact, exist-
ing phases are treated as black boxes. Because the technique only
prunes maydef and mayuse sets, dropping a phase that implements
it into a serial compiler’s phase-pipeline will automatically “ener-
gize” downstream data-flow phases to better optimize parallel code.

1.3 Paper Overview
The rest of this article is organized as follows. Section 2 lays out
the requisites for our work. Section 3 shows how to build an ab-
straction called the Procedural Concurrency Graph (PCG) that en-
ables the calculation of concurrency and interference information.
Siloed references are computed from the PCG, using the algorithm
presented in Section 4. This section also explains how a data-flow
analysis can take advantage of the computed information. An im-
portant tradeoff involving interference is described in Section 5.
Experiments on an implementation in gcc are reported in Section 6.
Finally, Section 7 discusses related work, and Section 8 concludes.

2. Preliminaries
The term “object” in this paper has the sense used in the C
Standard—it means any named piece of storage in the execution
environment [19]. To simplify the presentation, our usage of this
term will encompass procedures. Two objects are distinct if either
their lifetimes or address ranges are not identical. Thus, if x is a
struct variable with field f, then x and x.f are distinct objects
(although the first contains the second). As in the C Standard, we
use the term lvalues for syntactic expressions that refer to objects,
such as x and x.f. Specific and arbitrary lvalues will be displayed,
respectively, with typewriter and italicized fonts.

2.1 The Program’s Call Universe
A program comprises parts for which an IR is available, and parts
for which it is not—we call the former user code. A procedure in-
voked in user code is either defined, abstracted or inscrutable. It is
defined if its IR is known, abstracted if undefined but with a sum-
mary capable of describing its effects at call sites, and inscrutable if
undefined and not abstracted. These classes form the sets Fd , Fa
and Finscr—together, they constitute the program’s call universe.

If STMTS( f ) is the set of statements in a defined procedure f ,
then U = ∪ f∈Fd STMTS( f ) is the set of all user-code statements.
An s ∈U is either non-call code or a call.6 The function proc maps
a call to the callee in Fd ∪Fa ∪Finscr, and non-call code to �.

2.2 Synchronizations
It is posited that a subset of Fa ∪Finscr are synchronizing proce-
dures, and that the program utilizes them to attain data-race free-
dom [2]. A “synchronization” is a synchronizing-procedure call.

Let Usync be the set of all synchronizations in U . Statements
in a fixed subset Ůsync of Usync are postulated to have changeable
maydef and mayuse sets. All other user-code statements, i.e., U −
Ůsync, have fixed maydef and mayuse sets—these will be referred to
as the program’s “unaffected statements”.

6 Indirect calls are modeled as sets of direct calls to possible targets. This is
to simplify the presentation; the implementation retains indirect calls as is.

There is full latitude in choosing Ůsync. As will be shown in Sec-
tion 5, the choice influences the precision of the PCG and depends
on the PCG’s intended use. For instance, if unblocking optimiza-
tion opportunities is the goal, Ůsync consists of synchronizations
whose maydef and mayuse sets are to be sharpened. Ůsync are then
the “interesting synchronizations”, as far as this goal is concerned.

2.3 On Lvalues
An lvalue can refer to several objects. For example, if r is a pointer
variable that is only assigned the returned value of a malloc call,
then the lvalue *r denotes all objects created at that allocation site.

2.3.1 Aliasing
Lvalues alias if they name overlapping objects. For instance, if
p and q are pointer variables, *p and *q alias if p and q target
overlapping objects. By this definition, p and q themselves do
not alias because they name nonoverlapping objects in C. Hence,
aliasing in this paper is not a points-to relation. The predicate x ∼ y
is true if the lvalues x and y may alias. We use the set-aliasing
operator ≈ to find the may-aliases in the lvalue sets X and Y :

X ≈ Y = {z | ∃x ∈ X ,∃y ∈ Y.
(
x ∼ y∧ (z ≡ x∨ z ≡ y)

)
}, (1)

where u ≡ v is true iff u and v are identical lvalues. As an example,
if ∗p∼ y, ∗p �∼ ∗q, ∗q �∼ x, then {∗p,x} ≈ {∗q,y} = {∗p,y}.

2.3.2 Renaming Assumptions
Without loss of generality, local variables in user code are assumed
to be appropriately renamed so that no two defined procedures de-
clare local variables with the same name. Also assumed is an SSA-
based IR for defined procedures that takes into consideration alias-
ing effects and indirect memory operations, such as HSSA [11].
For instance, HSSA renames two occurrences of *r to different
versions if r is redefined between them, even if *r is not redefined.
These two assumptions ensure that identical lvalues, irrespective of
where they occur in user code, always name the same set of objects.

2.3.3 Important Lvalue Sets
Suppose L is the set of all lvalues that may be accessed in user
code. An object is either user-visible or user-invisible, depending
on whether there is an lvalue in L that refers to it. Not all objects
existent in a run are user-visible. For example, external library state
that cannot be referred to by any lvalue in L is user-invisible.

Our analyses are underpinned by a bunch of lvalue sets: Lh,
Linscr, Ri, Wi, Ri, W i, SYNC and SYNC. Most of them, as well as
sets derived from them, contain only lvalues for user-visible ob-
jects. This is because the SR Technique prunes maydef and mayuse
sets, which normally are subsets of L .7 Exceptions are the SYNC
and SYNC sets, which may include virtual lvalues for covering sync
objects strictly internal to undefined procedures.

Lh: User-visible objects allocated on the heap. We represent by
Lh a subset of L that covers all user-visible objects that may be
allocated on the heap. To ascertain Lh, only undefined-procedure
calls need to be considered. It is assumed we are given a set H ⊆
L covering all user-visible heap objects that may be allocated by
abstracted-procedure calls. For instance, if malloc is an abstracted
procedure, and if r is assigned its result, then *r is in H . When
inscrutable-procedure calls are absent, H is a safe choice for Lh.
But not when they are present, since they could allocate heap
objects and later expose them to user code in myriad ways. Since
exposure implies being accessible through some pointer-type lvalue

7 It may sometimes be more convenient to model all user-invisible objects
with a single virtual lvalue ui, and to define L as including ui.
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in L , the following is a conservative formulation for Lh:

Lh =⎧⎨
⎩

H if proc(s) �∈ Finscr∀s ∈ U ,
{∗x | x ∈ L ∧ (type of x is T*

where T is not void)} otherwise.
(2)

It should be stressed that the second case in Equation (2) is
very conservative. For example, if none of the invoked inscrutable
procedures have pointer parameters or return pointers, and if none
of the pointer variables in L have external linkage [19], then
choosing just H for the second case is also safe.

Linscr: User-visible objects immediately accessible in inscrutable
procedures. Let Laddr ⊆ L be the set of all variables and pro-
cedures whose addresses are taken in user code.8 Let Le ⊆ L be
the set of all variables and procedures that have external linkage.
An lvalue is immediately accessed in a procedure f if a memory
operation m in f reads or writes it. m is then an immediate access.
The following lvalue set conservatively covers user-visible objects
that may be immediately accessed in any inscrutable procedure:

Linscr = Laddr ∪Le ∪Lh. (3)

There is potential for greater accuracy by calculating Linscr
differently for different categories of inscrutable procedures. For
instance, inscrutable procedures that belong to external libraries
predating the user code can never explicitly access lvalues in Le.
Therefore, Linscr for that category can be set to just Laddr ∪Lh.

The static call graph models both defined and undefined pro-
cedures. For an inscrutable-procedure call-graph node, procedure
lvalues in Linscr will cover all of its immediate successors.

Ri, Wi, Ri, W i: User-visible objects that may be immediately ac-
cessed. We denote the sets of lvalues that may be immediately
read and immediately written at a statement s as Ri(s) and Wi(s).
Determining these sets is simple when proc(s) ∈ {�}∪Fd .

But when an undefined procedure g is called at s, there is the
issue of accounting for the accesses that occur in it and procedures
that it reaches in the call graph. Our approach is to include in Ri(s)
and Wi(s) the reads and writes immediate to procedures that lie
in a call-graph path of undefined procedures starting at g. In other
words, the treatment is as if g, along with any undefined proce-
dure that it may reach in the call graph without going through a
defined procedure, were inlined at the call site s. Thus, the effects
of undefined-procedure calls are accounted for on the caller’s side.
This is basically a context-sensitization—it avoids spuriously con-
flating the undefined procedure’s effects over several call sites.

An example is the call pthread mutex lock(l). Its Ri(s) =
{l,∗l} and Wi(s) = {∗l}. (A synchronization is a read, and con-
servatively, also a write since the state of the operated-on sync
object can change.) Another example is r := scanf(p, q). Its
Ri(s) = {p,q,∗p,stdin,∗stdin} and Wi(s) = {r,∗q,∗stdin}.9

We postulate the existence of the partial functions R̆i and W̆i
that give the immediate read and immediate write sets when s is
either an abstracted-procedure call (such as the previous scanf and
pthread mutex lock invocations) or not a call. These functions

8 Use of the & operator is not a requisite for an “address-taken” qualification.
In C, procedure and array names can be directly assigned to pointers [19].
9 *qmay not be written, for instance, if assignment suppression is used [19].
But including *q in Wi(s) is safe since these sets encode “may information”.

can be used to compute Ri(s) and Wi(s) for any s, as shown below:

Ri(s) =

⎧⎪⎨
⎪⎩

largs(s) if proc(s) ∈ Fd ,

largs(s)∪Linscr else if proc(s) ∈ Finscr,

R̆i(s) otherwise,
(4)

Wi(s) =

⎧⎪⎨
⎪⎩
{ret(s)} if proc(s) ∈ Fd ,

{ret(s)}∪Linscr else if proc(s) ∈ Finscr,

W̆i(s) otherwise.
(5)

The first two cases in Equations (4) and (5) are when s invokes
a defined or inscrutable procedure. They use the partial functions
largs and ret, which give the set of argument lvalues and the lvalue
assigned the returned result for an invocation s. That is, if s is z :=
f(x1, x2, ..., xk), then largs(s) = {x1,x2, . . . ,xk} and ret(s) =
z. Because the second case in both equations coincides with an
inscrutable-procedure invocation, Linscr is included in Ri(s) and
Wi(s). The third case is when proc(s) �∈ Fd ∪Finscr. Since this
corresponds to either non-call code or an abstracted-procedure call,
Ri(s) and Wi(s) can be simply expressed as R̆i(s) and W̆i(s).

Lvalues that are immediately accessed at the granularity of a
defined procedure f can be computed as follows:

Ri( f ) =
⋃

s∈STMTS( f )

Ri(s), W i( f ) =
⋃

s∈STMTS( f )

Wi(s). (6)

SYNC, SYNC: Sync objects. Synchronizations communicate us-
ing sync objects. Locks, barriers and condition variables are exam-
ples of sync objects. A partial function SYNC is posited that gives
an lvalue set covering the user-visible and user-invisible sync ob-
jects that may be immediately or transitively accessed at a synchro-
nization.10 SYNC can be used to find SYNC( f ), the set of lvalues
for all sync objects that may be accessed by a thread executing f :

SYNC( f ) =
⋃

s∈Usync∩STMTS( f )

SYNC(s). (7)

Although user-invisible sync objects are not exposed to user
code, they may be needed for analysis, such as when building the
PCG. They will then be named by the virtual lvalue uisync.

2.4 Notational Conventions
Names of program-wide sets use a calligraphic font for the main
lettering—e.g., Fd , FFOLLOW and Lh. Functions with a procedure
domain may sometimes have names that share common letters with
other names—e.g., Ri and Ri, W i and Wi, and Ii and Ii. A bar on top
is then used to distinguish them. A subscript i is used when a set
only consists of immediately accessed lvalues. An index that maps
a notation to its pertinent equation and/or section is in the appendix.

3. Building the Procedural Concurrency Graph
The PCG indicates whether a pair of procedures may concurrently
execute, and if so, objects accessed in one that may “interfere” with
objects accessed in the other. Our approach to building the PCG is
to begin with a solution that is possibly imprecise but assuredly
correct, and to then subject it to a series of transformations, called
refinements, that progressively improve its precision.

3.1 PCG Definition
A PCG is the labeled undirected graph Gp = (Fd ,E , Ii), where
Ii : E �→ 2L is the immediate interference function. Nodes in Fd
correspond to the defined procedures in user code. An edge (a,b)∈
E means that the execution of a by one thread may overlap with

10 An object is transitively accessed at a call site s if it is immediately
accessed in a procedure that lies in a call-graph path from the callee at s.
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an execution of b by a different thread—this is the standard MHP
(may-happen-in-parallel) relation [29]. Then, Ii

(
(a,b)

)
is the set of

lvalues on which a and b may immediately interfere. Since a could
run in parallel with itself, Gp can have self-loops.

3.1.1 Immediate Interference
The overlapping regions of two control-flow graph (CFG) paths P
and P′, executed by different threads, are subpaths p1 p2 in P and
p3 p4 in P′—where p1 through p4 are points—such that p1 abuts p3
and p2 abuts p4 in some interleaving. Given this, two procedures f
and f ′ are said to immediately interfere on an lvalue x if there exist
two immediate accesses, m of x in f and m′ of an lvalue x′ in f ′, for
which the following conditions simultaneously hold:

C1. m and m′ conflict—i.e., at least one is a write, and x aliases x′.

C2. m and m′ either lie in the overlapping regions of paths in f and
f ′ that are executed by different threads, or there are no unaf-
fected statements whose maydef and mayuse sets prevent them
from ending up in such regions due to a sequentially-sound
transformation based on data-flow analysis frameworks [20].

From the above definition, f and f ′ also immediately interfere
on x′. Therefore, immediate interference is a special kind of con-
flict [40]. We say that f and f ′ “may immediately interfere” on x
(and x′) if each of the above conditions only may hold.

Condition C2 is a disjunction of two clauses. The first covers
the situation of an interleaving in which m and m′ abut, and are
executed by different threads. The second conservatively antici-
pates the emergence of such situations after a class of sequentially-
sound transformations. Recall from Section 2.2 that for an unaf-
fected statement, the maydef and mayuse sets are fixed. So an un-
affected statement always prevents the movement of an access m′′

across it if the lvalue involved in m′′ belongs to its maydef set, or if
m′′ is a write and the lvalue involved belongs to its mayuse set.

For the may-immediately-interfere case, Condition C2 is as-
sumed true unless there is evidence to the contrary. Refinement 3
exemplifies how evidence to the contrary falsifies the condition.

3.2 The Initial PCG
The initial PCG G0

p = (Fd ,E0, I0
i ) is a complete graph with self-

loops, and has an I0
i that is set so that

I0
i
(
(a,b)

)
= (Ri(a) ≈W i(b))∪

(
W i(a) ≈ (Ri(b)∪Wi(b))

)
(8)

for all (a,b) ∈ E0, where ≈ is as defined by Equation (1).
Equation (8) finds all lvalues that may satisfy Condition C1;

these approximate the may-immediate interference between a and
b because Condition C2 can always be regarded to hold for them.

Observe that accesses in defined procedures called from a or b
do not affect I0

i
(
(a,b)

)
. As an example, if b invokes c ∈ Fd , then

the immediate accesses in c do not affect I0
i
(
(a,b)

)
. These accesses

interfere with those in a only if c and a can execute in parallel.11

But then, I0
i
(
(a,c)

)
would capture this interference.

3.3 Iteratively Improving a PCG’s Precision
A refinement maps a PCG Gj

p = (Fd ,E j, I j
i ) to Gj+1

p . Thus, given an
initial G0

p, a sequence G1
p,G

2
p, . . . can be generated by successively

applying refinements. All refinements, by definition, possess the
following two properties: E j+1 ⊆ E j, and I j+1

i (e) ⊆ I j
i (e) for all

e ∈ E j+1. Hence, the PCG sequence converges.
A refinement is a concurrency type if I j+1

i = I j
i /E j+1, where

‘F/A’ denotes the restriction of a function F to a subset A of its
domain. It is a purely interference type if E j+1 = E j. While the

11 It is also possible for c and a to not execute in parallel—e.g., a and b
begin running together, a finishes before b, and b invokes c after a finishes.

two types are not mutually exclusive, the identity refinement is the
only one that is both a concurrency type and a purely interference
type. This paper only explores refinements that are one of these
two types. But clearly, there could be other types of refinements
depending on how E j+1 and I j+1

i are related to E j and I j
i .

The purpose of a refinement is to improve the precision of a
PCG. As more refinements get invented (each capitalizing on a
different class of opportunities), the likelihood of an accurate PCG
for the general multithreaded program increases. And the more
precise a PCG, the less conservative is the immediate interference
between a pair of procedures. This translates into a potentially
larger set of siloed lvalues, as Section 4.3 will show.

3.3.1 A Thread-Based Classification of Procedures
Several of the refinements in this paper are formulated using a spe-
cial classification of a program’s invoked procedures. This classifi-
cation, which is specific to a POSIX-like threading model, catego-
rizes every invoked procedure, whether defined or undefined, into
one or more of the following groups: “start routines”, spawners,
spawnees and “follow routines”. A procedure is a start routine if
it may be the entry point of a spawned thread. It is a spawnee if
it may be executed by a spawned thread. It is a spawner if it may
create a thread and return with the created thread still running. It is
a follow routine if a thread may invoke it after that thread returns
from a spawner. These categories are respectively represented by
the sets FSTART , FSPAWNEE, FSPAWNER and FFOLLOW .

Start routines are often easily recognizable. For instance, they
are targeted by the third argument of a pthread create call.

Start routines, and every procedure they call-reach (i.e., reach
in the static call graph), are conservatively marked spawnees.

Procedures that call-reach a spawner are conservatively also
spawners. This is a recursive definition—its base case is every
undefined procedure that is a spawner, such as pthread create. A
procedure does not become a spawner by the mere act of spawning
a thread. It is not a spawner if the created threads are not existent
on its return. Thus, procedures that create threads and wait for them
to exit before returning are not spawners.

A conservative set of follow routines can be obtained thus: (1) a
procedure whose call site lies in a control-flow path that starts just
after a spawner’s call site is a follow routine;12 and (2) procedures
call-reachable from follow routines are also follow routines.

There is a subtlety about follow routines. Consider two succes-
sive calls to pthread create. The second one is a follow rou-
tine.13 But this will not cause its start routine f (and procedures
call-reachable from f ) to become a follow routine. This is because
start routines are not traditional callbacks. So pthread create
call-graph nodes will not have outgoing arcs. When a thread calls
pthread create, execution of the start routine occurs in a differ-
ent thread. Since the call graph only models the call path in the
invoking thread, the pthread create node will just be a sink.

3.3.2 Concurrency-Type Refinements
Refinements 1 and 2 below are of the concurrency type. Because
their only effect on the immediate interference function is to restrict
it to the new edge set E j+1, they can be formally stated by just
describing their effects on E j. All of the refinements in this paper
are provably sound—i.e., the new PCG never omits an immediate
interference or happens-in-parallel event that occurs at run time.

12 Because the path starts just after the spawner’s call site, spawners them-
selves are not follow routines unless they are called in the path.
13 The discussion here is assuming a context-sensitization, so the attributes
for the second call are not merged with those for the first.
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0 GetArguments();
1 InitGlobalMemory();
2 InitExpTables();
3 CreateDistribution(...);

4 CREATE(ParallelExecute,...);
5 WAIT FOR END(...);
6 printf(...);
7 PrintTimes();

Figure 3. An excerpt from the main procedure of SPLASH-2’s
FMM benchmark. Calls preceding CREATE perform initialization
tasks. Calls after WAIT FOR END are to output procedures.

Refinement 1.

E j+1 = E j −{(a,b) | a �∈ FSPAWNEE ∧b �∈ FSPAWNEE}.

Soundness Proof. Since a,b �∈ FSPAWNEE, the main thread is the
only thread that can execute a and b. Hence the claim.

Refinement 2.

E j+1 = E j −{(a,b) | a �∈ (FSPAWNEE ∪FSPAWNER ∪FFOLLOW)}.

Soundness Proof. Let a �∈ (FSPAWNEE ∪FSPAWNER ∪FFOLLOW).
Since a �∈ FSPAWNEE, only the main thread can execute a. A thread
spawned by the main thread may still be running when a is entered.
Or the main thread may call a spawner when an invocation of a is
active. The other two possibilities are that the main thread spawns
a thread after a returns, or that it never spawns a thread. The first
two cases cannot happen because a �∈ FFOLLOW ∪FSPAWNER. And
under the last two, a cannot run in parallel with any procedure.

Note that (a,b) signifies an unordered pair, so the subtrahend in
Refinement 2 is the set of all unordered pairs for which at least one
of the components in the pair satisfies the stated predicate.

The above refinements go after different concurrency-paring op-
portunities. Refinement 1 removes an edge if the involved proce-
dures can only be executed by the main thread. Refinement 2 ad-
dresses opportunities in which a spawned thread may execute at
most one of the procedures in an edge. The refinements do not de-
pend on knowledge pertaining to synchronization orders or thread
termination. More concurrency-type refinements can be devised if
calls to other thread-related procedures, such as pthread join and
pthread cond wait, are not handled opaquely.14

3.3.3 Demonstrations of Refinements 1 and 2 on Real Code
Figure 3 shows a code fragment from the main procedure of
SPLASH-2’s FMM benchmark [47]. The macros CREATE and
WAIT FOR END expand to calls to pthread create and pthread
join. Only the main thread executes the procedures invoked on
Lines 0 to 3, and on Line 7. Therefore, these procedures cannot ex-
ecute concurrently with each other. Refinement 1 detects this since
none of them belong to FSPAWNEE. Indeed, Refinement 1 also de-
termines that none of them can happen in parallel with themselves.

The first argument to CREATE is a start routine. Since the pro-
cedures invoked on Lines 0 to 3 are neither spawnees, spawners
nor belong to FFOLLOW , Refinement 2 discovers that none of them
can execute in parallel with ParallelExecute or any procedure
call-reachable from ParallelExecute.

This example also shows the complementarity of Refinements 1
and 2. That is, Refinement 1 will not detect that ParallelExecute
and its call-descendants cannot run in parallel with the procedures
invoked on Lines 0 to 3. And because PrintTimes is in FFOLLOW ,
Refinement 2 will not uncover that it is never concurrent with itself.

14 If some thread-related procedure is not modeled, it should be treated
opaquely, and not ignored, in order to ensure correctness.

3.3.4 Purely Interference-Type Refinements
As remarked in Section 3.3, purely interference-type refinements
only affect the immediate interference function Ii. Our first purely
interference-type refinement is based on the observation that lval-
ues that are only accessed before spawner call sites, in procedures
that are only executed by the main thread, can never interfere with
accesses that occur in concurrent procedures if the spawner call
sites are unaffected statements. Our second purely interference-
type refinement is based on the observation that under a certain
condition, two procedures that do not synchronize on common sync
objects cannot interfere in a data-race-free program.

A flow-sensitive refinement. A statement s2 “follows” a state-
ment s1 if s2 occurs in a control-flow path that starts just after s1.
Given a set of statements S′, we use follow(S′) to designate the
set of all statements each of which follows some statement in S′.
Let spawner( f ) be the set of all statements that invoke spawn-
ers in a defined procedure f . If the spawner call sites all belong
to U − Ůsync, their MOD-REF sets (which correspond to maydef
and mayuse sets) will ensure that any unsafe movement of shared-
object accesses across them by a data-flow analysis is blocked. This
presents a pruning opportunity, formalized in Refinement 3, be-
cause lvalues that are not accessed after spawner call sites can never
satisfy Condition C2. Notice that no edge-set effects are shown be-
cause for purely interference-type refinements, E j+1 = E j.

Refinement 3. If spawner call sites are unaffected statements, then

I j+1
i (e) = I j

i (e)−{x | x �∈ Ri(s)∪Wi(s)∀s ∈ follow(spawner(a))},
where e = (a,b) ∈ E j, and a �∈ FSPAWNEE ∪FFOLLOW .

Soundness Proof. Consider an a �∈ FSPAWNEE ∪FFOLLOW . It can
only be executed by the main thread. Because a �∈FFOLLOW , it can
run concurrently with another procedure only if it is a spawner.
Then, all statements executed in it until a spawner call site is
reached will not happen in parallel with any statement. Let Z
be the set of all lvalues immediately accessed only in statements
preceding spawner call sites, and not elsewhere in a. If no spawned
thread accesses an object covered by Z, the refinement trivially
holds. So suppose an object covered by a z ∈ Z is accessed by a
spawned thread h. Then the mayuse and maydef sets of the call site
s′′ that spawns h will factor in the read and write of z concurrently
performed by h. Now, mayuse(s′′) and maydef (s′′) are fixed since
s′′ ∈U −Ůsync. So they will always obstruct the unsafe movement
of z across s′′ by a data-flow analysis. Either way, Conditions C1
and C2 can never both hold. Hence, the immediate interference
between a and its PCG neighbors can never include Z.

The expression follow(spawner(a)) above can be ascertained by
finding basic blocks reachable in the CFG from spawner invocation
sites. It can also be used to calculate the program’s FFOLLOW . That
is, suppose RTC( f ) is the set of all immediate successors of a pro-
cedure f in the reflexive transitive closure of the static call graph.
Then, f ∈ FFOLLOW if there exists a procedure f ′ such that f ∈
RTC( f ′) and a call site of f ′ belongs to some follow(spawner(a)).

A refinement based on data-race freedom. Consider two proce-
dures a and b that may execute simultaneously. Equation (7) gives
their SYNC sets. If none of the lvalues in SYNC(a) and SYNC(b)
can alias each other, then a and b cannot immediately interfere
with each other, provided the no-chain condition specified in the
statement of Refinement 4 holds. a and b can make conflicting ac-
cesses of a data object (i.e., non-sync object) when they do not
overlap during execution.15 If the conflicting accesses were to oc-

15 For instance, by acquiring a common lock before calling a and b.
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cur when their executions overlap, an interleaving exists in which
the accesses are adjacent. But then, the program has a data race.

Refinement 4. If the program is data-race free and (a,b)∈E j, then

I j+1
i

(
(a,b)

)
= ∅ if SYNC(a) ≈ SYNC(b) = ∅,

and the “no-chain” condition holds, i.e., there are no procedures
f1 f2 . . . fn (n > 2) that satisfy three clauses: (1) f1 = a (or b), fn = b
(or a) can happen in parallel, (2) for at least one k, SYNCi( fk) ≈
SYNCi( fk+1) �= ∅ and fk, fk+1 can happen in parallel, and (3) for
all other k, a call of fk precedes a call of fk+1 in program order.
(SYNCi( f ) is the set of immediately accessed sync objects in f .)

Soundness Proof. We show by contradiction that I j+1
i

(
(a,b)

)
can

be set to ∅. Assume a and b immediately interfere on x—thus,
by Conditions C1 and C2, there can be an execution instance in
which accesses of x in a and b conflict and lie in overlapping
regions. Then, there must be a happens-before relation hb→ between
an sa ∈ STMTS(a) and an sb ∈ STMTS(b)—otherwise, the program
has a data race on x [3]. Happens-before is the irreflexive transitive
closure of the program order

po→ and synchronization order so→
relations [3]. Without loss of generality, let sa

hb→ sb. Then, there is a
chain of statements s1s2 . . .sm such that s1 = sa, sm = sb, and either
sk

so→ sk+1 or sk
po→ sk+1. If sk

so→ sk+1, then there exist procedures
fk and fk+1 such that SYNCi( fk) ≈ SYNCi( fk+1) �= ∅ and fk and
fk+1 can happen in parallel. If sk

po→ sk+1, then sk and sk+1 belong
to procedures fk and fk+1 that either are the same, or fk is called
before fk+1 in program order. Now, sk

so→ sk+1 for at least one k—
otherwise, an interleaving can be constructed that has a data race
on x. Hence, there is a set of procedures that violates the no-chain
condition. Thus, a and b cannot immediately interfere on x.

The no-chain condition holds if any of the three clauses is false.
It is not checked by our current implementation, though for all our
tested SPLASH-2 benchmarks, it holds whenever Refinement 4
is applied. That is, some clause is false whenever SYNC(a) ≈
SYNC(b) = ∅ by the time Refinement 4 is applied.

The no-chain condition, as presented, is conservative. It can be
tightened if other procedure-level information is used—e.g., the
absence of spinning synchronizations inside procedures.

3.3.5 Demonstrations of Refinements 3 and 4 on Real Code
The InitExpTables call on Line 2 in Figure 3 initializes Zero
and One, which are two global struct variables. Various proce-
dures call-reachable from ParallelExecute use these variables.
InitExpTables is sufficiently small that gcc inlines it when the
-O3 switch is turned on. Because ParallelExecute and all of its
call-descendants may run concurrently with main, Equation (8) in-
cludes Zero and One in the initial immediate interference sets be-
tween main and procedures in RTC(ParallelExecute) that ac-
cess these variables. Nevertheless, main is neither a spawnee nor
a follow routine, and statements in follow(spawner(main)) do not
access these variables. Hence, Refinement 3 removes Zero and One
from all of the above immediate interference sets.

We illustrate Refinement 4 by considering InitBox and Create
Boxes, two procedures call-reachable from ParallelExecute.
Since CREATE may spawn multiple threads, the two may run in
parallel. Both write into a global array called Local, so the initial
immediate interference set for the pair is nonempty.

Now, pthread mutex lock and pthread mutex unlock are
the only synchronizations performed when InitBox and CreateB
oxes are active. InitBox performs them through the callee Locke
dPrint. The locks held are all different, however, and InitBox
and CreateBoxes satisfy the no-chain condition. (FMM invokes a

barrier between CreateBoxes and InitBox, ensuring that the two
cannot happen in parallel.) So Refinement 4 reduces the immediate
interference between them to the empty set.

3.4 Dealing with Inscrutable Procedures
The description thus far of the PCG construction algorithm is ade-
quate for handling programs in which only defined and abstracted
procedures are called. We now show that the algorithm works even
when there are inscrutable-procedure calls, e.g., into arbitrary third-
party libraries distributed as pure binaries. The issue boils down to
understanding the effects of inscrutable-procedure calls on the con-
struction of the initial PCG and on Refinements 1 to 4.

3.4.1 Effect on Building the Initial PCG
Inscrutable procedures do not affect the PCG’s node set Fd . From
Equations (4) and (5), Ri and Wi are well defined in the presence of
undefined-procedure calls. Therefore, from Equation (6), Ri( f ) and
W i( f ) are well defined for all f ∈ Fd . Since Equation (8) remains
operable, inscrutable procedures pose no problems to building G0

p.

3.4.2 Effect on Refinements 1 to 3
But inscrutable-procedure calls may affect sets such as FSPAWNER,
FSPAWNEE and FFOLLOW ; these, in turn, affect Refinements 1 to 3:

• FSPAWNER: In the absence of information to the contrary, in-
scrutable procedures must be regarded as spawners. Then, every
inscrutable procedure g, and every procedure that call-reaches
g, must be added to FSPAWNER.

• FSTART : Suppose FSTART is initially the set of start routines,
obtained by ignoring all inscrutable-procedure calls. If there is
even one such call, every procedure in Linscr whose function
type is indicative of a start routine must be added to FSTART .

• FSPAWNEE: FSPAWNEE is just ∪ f∈FSTART RTC( f ).

• FFOLLOW : Let F ′
FOLLOW be initially the set of follow routines,

ignoring all inscrutable-procedure calls. If there is a call to an
inscrutable procedure g, every procedure in Linscr would have
to be included in F ′

FOLLOW because g could invoke all of them
after spawning a thread. FFOLLOW can then be obtained by
applying the algorithm in Section 3.3.1 using F ′

FOLLOW .

3.4.3 Effect on Refinement 4
The weak-ordering model of memory consistency prescribes an
algorithm for safely distinguishing synchronizations in a data-race-
free program [2, Page 75]. The idea is to mark a statement as a
synchronization if treating it as a data operation could lead to a
data race. We assume that inscrutable-procedure calls have been
appositely marked as synchronizations using this algorithm.

For instance, if Linscr is the empty set, then inscrutable-
procedure invocations need not be regarded as synchronizations.
But in the situation that a call to an inscrutable procedure g should
be treated as a synchronization, the SYNC set of every defined
procedure that call-reaches g will include the virtual lvalue uisync.

Refinement 4 does not require a special handling of the above
two situations. It automatically will not apply in the latter situation
since SYNC(a) ≈ SYNC(b) will then be nonempty.

4. Enabling Optimizations on Siloed References
PCGs have several applications. One is determining a class of ref-
erences (i.e., accesses) in a multithreaded program on which clas-
sical optimization opportunities can be safely unblocked. Members
of this class have the read- and write-siloed properties on certain
intraprocedural paths. More precise maydef and mayuse sets can be
obtained by leaving out these references. This section proves that
the resulting sets always remain sound for a data-flow analysis.
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4.1 The Read-Siloed and Write-Siloed Properties
Let P be a control-flow path between two program points. We
say that an lvalue x is “read-siloed in a thread h on P” if once h
enters P, no other thread writes an object named by x until h exits
P. This definition is best understood by considering an execution
interleaving, such as the one below:

. . . s′1 s′2 s1 s′3 s′4 s′5 s2 s′6 s3 s′7 s′8 . . . sn s′m s′m+1 . . .

The boldface symbols s1 to sn are instructions executed by h, and
form the path P. s1 and sn are also the first and last instructions in
P. The lightface symbols are instructions executed by other threads.
If x is read-siloed in h on P, then any write of x by another thread
would have to precede s′2 or succeed s′m.16 Similarly, x is said to be
“write-siloed in h on P” if no other thread reads or writes x once h
enters P and until it exits P. If these definitions were true for all h,
we would just say that x is “read- or write-siloed on P”. P would
then be a read- or write-siloed path with respect to x.

There are numerous points about these definitions. First, they do
not mention an occurrence of x in P. An lvalue x can be read-siloed
in h even on a stretch of code free of x, so long as no other thread
updates x when h is at any point in this code stretch. Second, write-
siloed is a stronger property than read-siloed. If x is write-siloed
in h on P, then it is also read-siloed in h on P. Third, an lvalue y
that is read-siloed (write-siloed) on P in all threads has the salient
quality that a write (read or write) of y by any thread outside P can
only occur when no other thread is within the confines of P. This
trait is stronger than read- or write-siloed references within P being
just data-race free. It means accesses of y in P, including those
involving proper synchronization, are free of cross-thread effects.

4.2 The Siloed-on-a-Procedure Property
The siloed concept can be extended to whole procedures. Let
stmts(P) be the set of statements in a path P. Then, an lvalue z
is said to be “siloed on a procedure f ” if two conditions are met:

S1. z is write-siloed on every path P in f in which it may be
immediately written at a statement s and is not in maydef (s′)∪
mayuse(s′) of any unaffected statement s′ in stmts(P)−{s}.

S2. z is read-siloed on every path P in f in which it may be
immediately read at a statement s and is not in maydef (s′) of
any unaffected statement s′ in stmts(P)−{s}.

The set SOPi( f ) consists of lvalues siloed on f . As our work is
the first treatment of the siloed concept, the focus will be on this
simpler procedure-level variant, although working with the concept
at a finer granularity will likely yield more powerful results. In this
paper, siloed without qualification means siloed on a procedure.

4.3 Computing Siloed Lvalues
Let MHP( f ) be the set of neighbors of a procedure f in the pro-
gram’s PCG. Then f ’s overall immediate interference is

Ii( f ) =
⋃

f ′∈MHP( f )

Ii
(
( f , f ′)

)
. (9)

From Equation (9), it is clear that for every x ∈ Ii( f ), there is
some f ′ ∈ MHP( f ) such that f and f ′ may immediately interfere
on x. So lvalues in Ii( f ) may not be siloed on f . But those in

Si( f ) = (Ri( f )∪W i( f ))− Ii( f ) (10)

will be, as Theorem 1 shows. The subscript i, as usual, signifies that
only immediately accessed lvalues comprise the siloed-lvalue set.

Theorem 1. Si( f ) ⊆ SOPi( f ).

16 To preclude data races, s′2 and s′m should not be writes of x.

Proof. If x ∈ Si( f ), then x �∈ Ii( f ) by Equation (10). We prove that
if P is a path in f with a possible immediate write-access m of x
at a statement s, and x �∈ maydef (s′)∪mayuse(s′) for all unaffected
statements s′ in stmts(P)−{s}, then x must be write-siloed on P.
If not, there exist threads h and h′ such that when h is in P in some
execution instance, h′ performs an access m′ of an alias x′ of x.
Now, m′ is immediate to some f ′ ∈ Fd and is in a path P′ in f ′.
Since none of the unaffected statements in stmts(P)−{s} define or
use x, a data-flow transformation could move m to any point in P.
Then, because m and m′ also conflict, Conditions C1 and C2 can
both hold for x. Thus, x ∈ Ii

(
( f , f ′)

)
. So by Equation (9), x ∈ Ii( f ),

a contradiction. Condition S2 can be similarly proved for paths that
may immediately read x. Therefore, x ∈ SOPi( f ).

There is an important case for Equations (9) and (10) that
we highlight. If lvalues in SYNC( f ) do not alias with lvalues in
SYNC( f ′) for all f ′ ∈ MHP( f ), then Ii( f ) will be ∅ if the program
is given to be data-race free and if f and f ′ satisfy the no-chain
condition in Refinement 4. This is because Refinement 4 will force
all Ii

(
( f , f ′)

)
to ∅; Si( f ) will then equal Ri( f ) ∪W i( f ). Since

SOPi( f ) ⊆ Ri( f )∪Wi( f ), we would then have Si( f ) = SOPi( f ).

4.4 A More Accurate May-Definition Set
Let DU(s) be the set of all user-code lvalues z for which there is an
intraprocedural path from a potential access of z to the statement
s, or from s to a potential access of z.17 From a data-flow analysis
standpoint, it is enough if maydef (s) includes two groups of lvalues
when s is a synchronization: (1) those in L that could be written
at s by a thread h executing s; and (2) those in DU(s) that could
be concurrently written when h is executing s. The first group is
drawn from L , and not the possibly smaller DU(s), because iso-
lated definitions may be used, or may kill definitions, in concurrent
threads. But only those concurrent definitions that may kill defini-
tions in the current thread, or that may be later killed or used in the
current thread, need to be factored into maydef (s)—hence, DU(s)
is the superset for the second group. This suggests that

mayt
def (s) = W(s)∪ (DU(s)∩CW(s)) ⊆ maydef (s) (11)

is a more precise may-definition set for synchronizations, where

W(s′) = {x | x ∈ L ∧ (the thread executing s′ may

immediately or transitively write x at s′)},
(12)

CW(s′) = {x | x ∈ L ∧ (an execution exists wherein when

a thread is at s′, another thread writes x)}
(13)

for any statement s′.
It is easy to calculate W(s′) using the immediate-write sets Wi

and W i, which were defined in Equations (5) and (6):

W(s′) = Wi(s′)∪
{

∅ if proc(s′) = �,⋃
f ′∈RTC(proc(s′))W i( f ′) otherwise.

(14)

The first case in the above coincides with non-call code. The second
case coincides with a call. Besides Wi(s′), it includes the W i set of
every defined or undefined procedure that is call-reachable from s′.

CW(s′) models the parallel writes at s′. Lemma 1 states that for
any synchronization s, DUi(s)∩CW(s) and SOPi( f ) are disjoint.
DUi(s), which is a subset of DU(s), comprises lvalues z ∈ L for
which a potential immediate access of z at a statement s′ reaches
just before s, or is reached from just after s, by a path P in f
in which the unaffected statements among stmts(P)−{s′} do not

17 Interprocedural definition-use flow can also be modeled, by expediently
adding artificial assignments and uses to the CFG’s entry and exit nodes.
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access z. Theorem 2 uses Lemma 1 to prove an “upper bound” on
mayt

def (s) that is better than maydef (s).

Lemma 1. For all synchronizations s in f ,

DUi(s)∩CW(s)∩SOPi( f ) = ∅.

Proof. Consider an x ∈ DUi(s)∩CW(s). Since x ∈ DUi(s), there is
a path P in f from (to) a statement s′ that may immediately access
x, to just before (from just after) s, such that besides s′, none of the
unaffected statements in P access x. By Equation (13), an execution
exists in which when a thread is at s, another updates x. Because x
is not read-siloed on P, x �∈ SOPi( f ).

Theorem 2. For all synchronizations s in f ,(
maydef (s)− (DUi(s)∩SOPi( f ))

)
∪W(s) ⊇ mayt

def (s).

Proof. Let x ∈ mayt
def (s). Then x ∈ maydef (s). By Equation (11),

x∈W(s)∪(DU(s)∩CW(s)). If x �∈DU(s)∩CW(s), then x∈W(s).
If x ∈ DU(s)∩CW(s), then x is either in or not in DUi(s)∩CW(s).
If in, then x �∈ SOPi( f ) by Lemma 1. If not in, then x �∈ DUi(s),
since DUi(s) ⊆ DU(s). Either way, x �∈ DUi(s) ∩ SOPi( f ). So
x ∈

(
maydef (s)− (DUi(s)∩SOPi( f ))

)
∪W(s) always holds.

Theorem 2 can only be used to tighten the maydef sets of in-
teresting synchronizations, since the siloed-on-a-procedure notion
is stipulated on the other synchronizations (i.e., unaffected state-
ments) having fixed maydef and mayuse sets. Thus, by using Theo-
rems 1 and 2, maydef (s) of an interesting synchronization s can be
replaced by

(
maydef (s)− (DUi(s)∩Si( f ))

)
∪W(s).

The tightening of maydef sets may unfetter optimization oppor-
tunities. It may also lead to more accurate MOD sets for procedures
that call-reach interesting synchronizations.

4.5 A More Accurate May-Use Set
There is a similar result for mayuse sets. That is,(

mayuse(s)− (DDi(s)∩SOPi( f ))
)
∪R(s) ⊇ mayt

use(s),

where R(s) ⊆ L is the set of all lvalues that could be immedi-
ately or transitively read at s. DDi(s) ⊆ DU(s) involves immediate
writes, and is similar to DUi(s)—i.e., it is a set of lvalues z ∈ L
for which a potential immediate write of z at a statement s′ reaches
just before s, or is reached from just after s, by an intraprocedural
path P in which the unaffected statements in stmts(P)−{s′} do not
access z.

4.6 Using Siloed Information for Incremental SSA Updating
The HSSA Form can be rebuilt once the maydef and mayuse sets
are sharpened. This is a from-scratch computation. Instead, an in-
cremental approach is to examine the χ assignments and μ opera-
tions of an interesting synchronization s. Consider one such state-
ment, of the form t ′ := χ(t) (μ operations are similarly handled).
Clearly, t ∈ DUi(s). So if t is siloed on the procedure in question,
and t �∈ W(s), the SSA updater can propagate t into all uses of t ′.
The original χ assignment can then be removed as dead code.

4.7 Examples
We now show how identifying siloed lvalues in some of the previ-
ous code fragments can expose optimization opportunities in them.

4.7.1 A Value-Numbering Opportunity
The critical section in Figure 2 is from FMM’s ParallelExecute
procedure. Now, InitGlobalMemory is the only FMM procedure
that writes G Memory. As discussed in Section 3.3.3, the PCG
reveals that InitGlobalMemory cannot happen in parallel with

fafafa:
1.0 LOCK(Lx)
1.1 LOCK(Ly)
1.2 ...y...
1.3 a(...)
1.4 UNLOCK(Lx)

aaa:
2.0 ta := x
2.1 y := ...
2.2 UNLOCK(Ly)
2.3 ...ta...
2.4 return

fbfbfb:
3.0 LOCK(Ly)
3.1 LOCK(Lz)
3.2 ...z...
3.3 b(...)
3.4 UNLOCK(Ly)

bbb:
4.0 tb := y
4.1 z := ...
4.2 UNLOCK(Lz)
4.3 ...tb...
4.4 return

Figure 4. A program in which different optimization opportunities
exist, depending on whether the UNLOCK on Line 2.2 in procedure
a is an interesting synchronization or an unaffected statement.

ParallelExecute. So ParallelExecute’s overall immediate
interference will not contain G Memory. Equation (10) then as-
certains that G Memory is siloed on ParallelExecute. Hence, by
Theorem 2, the χ assignments on Lines 3, 6 and 11 can be removed,
and t ′, t ′′ and t ′′′ can be replaced by G Memory. A value-numbering
pass will now be able to catch the equivalence of t2 and t6.

4.7.2 A Copy Propagation Opportunity
Assume that the left and right snippets in Figure 1 are from proce-
dures a and b respectively (a and b could be the same). Then, there
will be an edge between a and b in the PCG. By Equation (9), X
and Y will be in the overall immediate interference of both a and b.
Hence, by Equation (10), both X and Y will not be in either Si(a) or
Si(b). So no optimization opportunities on X or Y get unblocked.

For the second hypothetical program, from Section 1.1.2 (same
left snippet, but a different right snippet, one in which X is not
updated), X will be in both Si(a) and Si(b). So a copy propagation
opportunity involving X will get unblocked in the left snippet.

5. A Tradeoff Involving Interference
The reason for Condition C2’s second clause is that data-flow in-
formation conservatively killed at an interesting synchronization s,
due to maydef (s) and mayuse(s), could later flow through s, since
maydef (s) and mayuse(s) are alterable. This could allow the move-
ment of one or both of the accesses mentioned in Section 3.1.1, into
an overlapping region of execution. Thus, the fewer the interesting
synchronizations among Usync, the more the unaffected statements
in user code, and so the less the chance of two procedures immedi-
ately interfering as a result of a data-flow transformation.

On the other hand, not designating a synchronization s as inter-
esting could result in s unnecessarily killing useful data-flow infor-
mation. Therefore, there is a tradeoff between immediate interfer-
ence and the marking of synchronizations as interesting.

As an example, spawner call sites can be marked as interest-
ing synchronizations, since spawning imposes a synchronization
order [2]. But then, an unconditional application of Refinement 3
would not be guaranteed sound, because subsequent changes to a
spawner call site’s maydef and mayuse sets could lift a killing ef-
fect, which may allow the movement of an access across the site,
which in turn could change a noninterfering access into an inter-
fering one. Therefore, spawner call sites must belong to U −Ůsync
for Refinement 3 to be applicable.

Another example is in Figure 4. The only shared data objects
are x, y and z, which are always accessed holding the locks Lx,
Ly and Lz respectively. Procedures a and b are always invoked
with the respective lock pairs Lx, Ly and Ly, Lz held. Specimen
invocations are shown on Lines 1.3 and 3.3. Now, irrespective of
whether the UNLOCK on Line 2.2 is an unaffected statement, the read
of x on Line 2.0 cannot satisfy Condition C2. Hence, x �∈ Ii(a) for
the perfect Ii(a). So if Line 2.2 were an interesting synchronization,
this would permit the SR Technique to drop x from maydef (s2.2),
thus enabling the copy propagation of x from Line 2.0 to Line 2.3.
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On the other hand, marking Line 2.2 as an interesting synchro-
nization means a and b may immediately interfere on y. This is be-
cause there would then be no unaffected statements that block the
movement of y across Line 2.2. If Line 2.2 were instead an unaf-
fected statement, the accesses of y on Lines 2.1 and 4.0 cannot sat-
isfy Condition C2. Then, y �∈ Ii(b) for the perfect Ii(b). This would
allow the SR Technique to drop y from maydef (s4.2), if Line 4.2
were an interesting synchronization. This, in turn, would permit
the copy propagation of y from Line 4.0 to Line 4.3.

6. Experimental Results
We have implemented the SR Technique in revision 148810 of gcc,
a pre-release of version series 4.5 of the compiler. This section re-
ports measurements demonstrating how our implementation fared
on benchmarks from the SPLASH-2 suite [47]. Our test bed was
a four-socket 64-bit server, in which each socket was a 2.40GHz
quad-core Intel Xeon E7330 processor having a 1066MHz front-
side bus. A socket has two dies, with two cores per die. The per-
core L1 instruction and data cache sizes were 32KB each. The per-
die L2 cache was 3MB. The system ran Redhat Enterprise Linux 5
(kernel release 2.6.18), and had 32GB of available memory.

6.1 Compilation Details
In all our experiments, the -O3 switch was turned on. Our prototype
operates in gcc’s whole-program compilation mode. This is turned
on by the -combine and -fwhole-program flags, which require
all source files to be on a single command-line. Until recently, it
was the only way to do a whole-program interprocedural analysis
(IPA) in gcc. New LTO (Link-Time Optimization) support in the
current release series of gcc (4.5) should remove this deficiency.

6.1.1 Design of the SR Phase
An IPA-based SR phase was created to implement the SR Tech-
nique. To evaluate, we focused on opportunities enabled by the
technique in some of gcc’s existent phases that implement funda-
mental and commonly used optimizations. In particular, we quanti-
fied exposed opportunities in the following five arbitrarily selected
intraprocedural phases: pass ccp (conditional constant propa-
gator), pass fre (full-redundancy eliminator), pass copy prop
(copy propagator), pass merge phi (phase that merges directly
linked φ -nodes), and pass dce (dead-code eliminator). When in-
voked from within the SR phase, these were executed in the given
order, as part of an opts on srefs pass list.

The SR phase is structured as a loop. In each iteration, the
SR Technique is applied once, followed by an application of
opts on srefs. This “SR loop” is repeated until the IR no longer
changes. Applying the technique once means building the PCG
using the algorithm of Section 3, and sharpening data-flow abstrac-
tions using the algorithm of Section 4. Thus, the SR phase aims to
unfetter a maximal set of opportunities in opts on srefs.18

6.1.2 ‘Enabled’ and ‘Baseline’ Executables
Just prior to the SR phase, opts on srefs is repeatedly applied
until the IR reaches quiescence. Hence, executables produced with
and without the SR phase differ in the optimizations enabled by
the SR phase. We will refer to these executables as enabled and
baseline respectively. It should be noted that optimization effects
unblocked in phases downstream from the SR phase are included in
the enabled executables. These are due to a one-time use of siloed
information, unlike those unblocked in the opts on srefs phases.

18 “Maximal” because for a different opts on srefs pass order, a different
set of opportunities may be unfettered by the time the IR stops changing.

Program
Average |Si| after Refinements 1 to k Reductions
k = 1 k = 2 k = 3 k = 4 Edges Intf.

m-fmm 0.53 1.28 1.37 4.96 813 362
ocean-c 8.05 11.95 28.41 42.67 186 113
barnes 2.51 4.81 5.05 8.89 664 71
wr-spl 1.03 2.05 3.53 4.29 112 27
wr-nsq 0.84 1.81 3.11 3.70 109 19
lu-c 1.10 1.10 1.10 5.39 15 12
radix 0.54 0.54 0.54 2.33 3 2
fft 0.90 0.90 0.90 2.79 10 6

Table 2. Metrics showing how the Si set precision accrues with ad-
ditional refinements. ‘Edges’ are edges removed by Refinements 1
and 2. ‘Intf.’ are the Ii(e) sets pared by Refinements 3 and 4.

6.2 Benchmark Details
Table 1 shows the eight SPLASH-2 benchmarks used in our ex-
periments: m-fmm (Fast Multipole Method), ocean-c (Contiguous
Ocean), barnes (Barnes-Hut), wr-spl (Water-Spatial), wr-nsq
(Water-Nsquared), lu-c (Contiguous LU), radix (Radix), and
fft (FFT). The SPLASH-2 suite has a total of 12 “application”
and “kernel” benchmarks. The remaining four did not successfully
compile with the -combine/-fwhole-program combination.19

m-fmm is a slightly modified version of SPLASH-2’s implemen-
tation of the Fast Multipole Method. The modification was to out-
line two adjacent loops into their own procedure. This was done to
overcome a limitation in gcc’s IRA (Integrated Register Allocator)
phase, and is explained further in Section 6.4.2.

The ‘Problem Size’ column displays the inputs to our bench-
marks. These were always above the original defaults [47], and
were chosen, to the extent possible, to make the 16-thread execu-
tion times measurably significant; 16 was the maximum number of
threads used. The ‘Program Size’ section states benchmark sizes in
terms of total lines of source code, number of source files, and the
following at the start of the SR phase: total number of basic blocks,
and total number of defined procedures. Therefore, the ‘Files’ col-
umn is indicative of the length of a compilation command-line with
the -combine/-fwhole-program combination.

The ‘Static Synchronization Statistics’ section reflects the stat-
ic usage intensity of undefined synchronizing procedures. For
SPLASH-2, these are Pthreads library calls. For instance, 37% of
m-fmm’s 86 defined procedures are ‘Transitive Callers’—these pro-
cedures eventually reach the Pthreads library in the static call graph.
(By that measure, m-fmm is among SPLASH-2’s most Pthreads-
intensive programs.) Therefore, their data-flow abstractions, such
as MOD-REF sets, may be more conservative than necessary.

Among the synchronizations, pthread mutex lock and pth
read mutex unlock were the only ones treated as interesting.

There is built-in support in gcc for certain procedures, such as
puts and strtol. These are defined procedures, and are counted
in |Fd |. All other external library procedures used by SPLASH-2
can be abstracted, since they have specifications—e.g., Pthreads.

6.3 Static Metrics of Improvement
Table 2 is a quantification of the effectiveness of our refinement-
based approach to constructing the PCG. We measured the size of
the Si set, averaged over |Fd |. From Equations (9) and (10), we
observe that as the PCG is refined, the overall immediate inter-
ference tends to decrease, which tends to increase the size of the

19 The failures seem to be related to cross-file IPA not being a routinely used
feature in gcc. This will likely change with LTO coming online.
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Program Problem Size
Program Size Static Synchronization Statistics

|Ri|max |W i|maxLOC Files BBS |Fd | Transitive
Callers

Direct
Callers

Sync
Sites

Critical
Sections

m-fmm 1048576 particles 4381 17 969 86 32 19 52 17 43 36
ocean-c 4098×4098 grid 4774 10 1670 35 4 4 37 4 129 185
barnes 1048576 particles 2887 15 465 50 7 7 21 5 50 50
wr-spl 1331 molecules 2670 23 447 35 7 7 37 8 64 51
wr-nsq 4096 molecules 2063 23 324 34 6 6 41 8 59 51

lu-c
6000×6000 matrix,

16×16 blocks 911 1 301 26 4 4 11 1 33 28

radix 335544320 integers 833 1 212 18 2 2 31 6 34 29
fft 67108864 data points 899 1 250 24 3 3 13 1 40 38

Table 1. The SPLASH-2 benchmarks used in our experiments. ‘LOC’ means total lines of code. ‘BBS’ is the total number of basic blocks
on entry to the SR phase. ‘Transitive Callers’ are defined procedures that transitively reach a Pthreads procedure. ‘Direct Callers’ are the
direct invokers among them. ‘Sync Sites’ are the counts of the Pthreads call sites. |Ri|max and |W i|max are the largest Ri and W i set sizes.

Program
Propagations φ -Node

Merges Eliminations Lock Pointer
EquivalencesConstant Copy

m-fmm 48 190 7 449 17
ocean-c 146 1334 2 2040 4
barnes 4 145 2 246 3
wr-spl 228 265 0 621 6
wr-nsq 317 311 93 677 8
lu-c 0 200 0 273 1
radix 0 187 0 277 6
fft 1 152 2 299 1

Table 3. Static metrics on a maximal set of optimization opportu-
nities that were enabled by the SR phase in opts on srefs.

siloed-lvalue set. Thus, the average |Si| and the precision of Si are
correlated. To check how the refinements affect this precision, we
measured the average |Si| over multiple compilations, successively
turning on the four refinements in this paper. The column ‘k = 1’
shows these measurements with just Refinement 1 turned on, the
column ‘k = 2’ shows them with both Refinements 1 and 2 turned
on, and so on. From these numbers, we observe that the average
increase in |Si| across all tested programs is 62%, 37% and 170%
on moving from k = 1 to k = 4. Refinement 4 is the most powerful
by this measure, at least for the benchmarks studied.

The last two columns show absolute reductions. The reductions
can also be expressed as percentages. For example, since the num-
ber of edges in G0

p is |Fd |(|Fd |+1)/2, the percentage edge reduc-
tions follow from Table 1: 22%, 30%, 52%, 18%, 4%, 2%, 3%.

The measurements in Table 2 were made on the last iteration of
the SR loop. They are therefore a conservative representation of the
improvements, which tend to be higher in the initial iterations.

Table 3 shows the total number of opportunities that were en-
abled in opts on srefs, at the end of the SR phase. An “op-
portunity” is an instance of an optimizing transformation. For ex-
ample, ‘Constant’ and ‘Copy’ are unblocked propagations of con-
stants and copies. ‘φ -Node Merges’ are unblocked opportunities
in pass merge phi. ‘Eliminations’ is the sum of unblocked op-
portunities in pass fre and pass dce. Since the numbers do not
include opportunities unblocked in downstream phases, Table 3 is
a conservative reflection of all the enabled opportunities.

The ‘Lock Pointer Equivalences’ column displays the number
of uncovered lock-pointer equivalences, of the kind discussed in
Section 4.7.1. Every such equivalence is indicative of a critical sec-

tion. We were therefore able to detect all of the critical sections in
the source code, except for two each in barnes and wr-spl. Al-
though the missed ones in wr-spl were because of an imprecision
in our may-alias information, the undetected ones in barnes were
due to lock-pointer accesses done through volatile variables.

6.4 Execution-Time Improvements
Figure 5 shows the execution times TB and TE of the baseline and
enabled executables, and the relative performance TB/TE . Each re-
ported time is the average of the last five of an eight-run experiment.
The graphs show that improvements can sometimes be substantial,
as in the m-fmm case, where it ranged from 41% to 19%.

In all of the tested benchmarks except two, relative improve-
ments of 5% or more were seen at one or more thread counts. As an
example, ocean-c exhibited improvements of 22% and 15% at two
and four threads. It uses a red-black Gauss-Seidel multigrid solver;
we suspect this benefits more from the enabled optimizations at
those thread counts. wr-spl showed 14% and 9% improvements at
two and 16 threads. Another example is barnes, which registered
15% and 11% improvements at four and eight threads.

The gains on fft and radix were at most 4% and 3%. Although
radix has six critical sections, they are all in one procedure.

The average improvements across all the tested programs at
thread counts 1, 2, 4, 8, 16 were 5%, 9%, 8%, 6%, 5% respectively.
Thus, the average improvement over all threads was 6%.

Since 37% of m-fmm’s defined procedures ultimately touch a
synchronization, it is perhaps unsurprising that the SR Technique
benefits it the most. A serial compiler would normally be unduly
conservative on opportunities associated with those procedures.

6.4.1 Analyzing the Relative Performance Trends
While m-fmm’s relative performance decreases with increasing
thread count, lu-c’s increases, from 1% to 7%. For the others,
there is no specific trend. Using simple arguments based on serial
fractions, we show below that even when the enabled performance
is always better than the baseline performance, the relative perfor-
mance trend can be either increasing, decreasing, or flat.

Assuming a program has a fixed serial part and the rest of it is
perfectly parallelizable, its execution time T (n) with n threads is

T (n) = T (1)f+
T (1)(1− f)

n
, (15)
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Figure 5. Relative performances of the enabled and baseline executables. Each graph’s right axis measures TB and TE , the execution times
in seconds of the baseline and enabled executables of a benchmark at thread counts 1, 2, 4, 8 and 16. The left axis measures TB/TE .
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Figure 6. Serial fractions, computed from execution-time measurements. For m-fmm, fE > fB always holds. For lu-c, fB > fE always holds.

where f is the so-called serial fraction [21]. Therefore, the pro-
gram’s relative performance, as a function of n, is

RP(n) =
TB(n)
TE(n)

=
TB(1)
TE(1)

(n−1)fB +1
(n−1)fE +1

, (16)

where fB and fE are the serial fractions of the baseline and en-
abled executables. These serial fractions can be determined from
observed run times [21]; Figure 6 shows them for m-fmm and lu-c.

Since RP(n+1)−RP(n) = κ(n)(fB− fE), where κ(n) is always
positive, RP(n + 1) ≥ RP(n) iff fB ≥ fE . Now, if the enabled opti-
mizations have a bigger impact on the parallel parts of the code, we
will have fB < fE . If they have a bigger impact on the serial parts,
we will have fB > fE . From Figure 6, the former appears to be the
case for m-fmm and the latter for lu-c. Hence the downward and
upward relative performance trends for m-fmm and lu-c.

6.4.2 Impact of Enabled Optimizations on Register Pressure
A secondary effect of enabling optimizations is that live ranges gen-
erally become longer. Hence, register pressure can increase. Reg-
ister allocators typically cope with register pressure by spilling to
memory. Because spilled code has costs, the enabling of optimiza-
tions can negatively influence the quality of the generated code.
Register allocation in gcc happens in the IRA phase, which is a
fairly recent addition—it replaced the old allocator in release series
4.4 [14], the series preceding our revision. In the original FMM pro-
gram, the SR phase exposed a number of common-subexpression
opportunities in VListInteraction, its hottest procedure. Sev-
eral of these were between expressions involving field-based array-
element accesses, in which one was deep inside a loop and the
other was outside of it, with another loop in between. Unblocking
them resulted in the extension of live ranges across entire loops;
this sufficiently strained the IRA phase that improvements from the
enabled optimizations were masked. We suppressed this register-
allocation artifact by outlining the two loops into their own proce-
dure. In the absence of the SR phase, the run time of this modified
FMM program, i.e., m-fmm, does not perceptibly change. Its statis-
tical execution profile also remains essentially the same.

6.5 Compile-Time Measurements
Table 4 shows the times for producing the baseline versions. The
‘SR Technique Statistics’ section displays data on compiling into
the enabled versions. Shown is the number of times the SR loop
iterated before the IR reached quiescence. This is exactly the num-
ber of times the SR Technique was applied for a benchmark. ‘To-
tal Time’ is the aggregate time over all these applications. An av-
erage per-application time for the SR Technique can therefore be

Program
Baseline
Time (B)

SR Technique Statistics A
BTotal

Time
No. of

Applications
Average
Time (A)

m-fmm 9.36 0.88 3 0.29 3%
ocean-c 26.88 9.95 4 2.49 9%
barnes 6.68 0.58 3 0.19 3%
wr-spl 5.93 0.87 3 0.29 5%
wr-nsq 5.22 2.97 11 0.27 5%
lu-c 2.47 0.36 3 0.12 5%
radix 1.93 0.56 4 0.14 7%
fft 1.75 0.33 3 0.11 6%

Table 4. Measurements of compilation times, in seconds. ‘B’ is the
time to produce the baseline executables. ‘A’ is the average time per
application of the SR Technique within the SR phase.

obtained—this is shown in column ‘A’. We thus see that the SR
Technique increases baseline compilation times by 5% on average.

7. Related Work
There have been numerous works in the broad area of multithread-
ed-program optimization. Some were discussed in Section 1. This
section covers other works in the area that are relevant to our effort.

7.1 Concurrency Analyses
Past analyses have utilized a variety of techniques for discover-
ing whether code fragments may execute in parallel. An early one,
by Bristow et al., built the Interprocess Precedence Graph, an ab-
straction for denoting the synchronization-imposed execution or-
dering among processes [8]. They modeled synchronization using
event variables, with set/post, clear/reset and wait being the
supported operations. Taylor proposed a state-based technique for
generating, via simulation, an Ada program’s “concurrency his-
tory” [43]. The resulting state space, however, can be exponential
in the number of “tasks”, i.e., groups of computations that may con-
currently execute.

A few projects calculated the MHP relation for Java [30, 25].
These were based on an abstraction called the Parallel Execution
Graph (PEG). A drawback with PEGs is that they combine the
CFGs of individual threads. Therefore, not only do they require a
bound on the number of coincident threads modeled, but they also
potentially grow in size with this bound.

Several projects tackled the concurrency-determination problem
by deducing complementary knowledge, such as partial execution

13



orders and the Cannot-Happen-Together (CHT) relation [9, 13, 27].
Of these, the “nonconcurrency” analysis by Masticola and Ryder
is perhaps closest to our refinement-based method of constructing
PCGs [27]. Their work computes the CHT relation by progressively
improving an approximation through a series of refinements. But
they diverge in several crucial ways from our work:

• No notion of interference. Ascertaining only the CHT relation
means that interference is at best either “none” or “anything”.

• The assumption of single-instance tasks. Their initial CHT
solution is Task(s)−{s} for each statement s, where Task(s) is
the set of statements in the task containing s. This is premised
on there being at most one instance of a task at any moment. In
a POSIX-like threading model, however, statements reachable
from a start routine may belong to multiple coincident tasks.

• Refinements specific to alternative parallel-programming mo-
dels. Their refinements were primarily designed for Ada’s ren-
dezvous synchronization mechanism and binary semaphores.

7.2 Interference on Shared Data
A past abstraction probably closest to the PCG is the Concurrency
Graph (CG), by Zhang et al [48]. Like the PCG, it is a labeled undi-
rected graph in which edges represent the MHP relation. Nodes,
however, stand for critical sections. But more importantly, the CG
has a coarse notion of interference. An edge is labeled I if con-
flicting accesses exist between the corresponding critical sections,
and labeled N otherwise. Zhang et al. used CGs for a purpose dif-
ferent from in our work—to assign locks to critical sections. They
assumed CGs to be given, and manually constructed them [48].

Rodrı́guez et al. presented extensions to the Java Modeling Lan-
guage for specifying the noninterference of methods [34]. They in-
formally described two kinds of interference: “internal” and “ex-
ternal”. Internal interference is when a concurrent thread alters
program invariants between a method’s entry and exit. External
interference is when pre- and post-conditions are violated due to
changes by a concurrent thread between a call and method entry,
and between a method exit and caller resumption. Their work did
not address the issue of automatically inferring interference.

In Hendren and Nicolau’s analysis of recursive data structures,
the concept of interference is synonymous with conflict [16]. Other
authors have considered interference as conflict combined with the
MHP relation [22, 36]. In our work, this would be analogous to an
edge in the PCG plus Condition C1.

There is a family of static analyses for determining whether an
object may thread-escape [10, 5, 7]. An object o thread-escapes if
it could be accessed by more than one thread [10]. This definition
lacks temporality. That is, even if o is accessed by threads in
disjoint time intervals, it still escapes. Although thread-escaping is
not the same as interference, the idea is nonetheless complementary
because threads can never interfere on objects that do not thread-
escape.

Praun and Gross devised a static analysis for Java to determine
conflicting object accesses [45]. This was based on an abstraction
called the Object Use Graph (OUG), which is built per abstract
object using symbolic execution. Conflict in their terminology has
the sense of interference in our work. There are, however, impor-
tant differences. Some of them are: (1) there is no counterpart to
Condition C2’s second clause; (2) to establish pairs of conflicting
accesses, OUGs need to be processed for pairs of conflicting events.

7.3 IR-Related Issues in the EPP Approach
A notable aspect of the EPP approach is that it usually relies on
specialized IRs. Examples of EPP IRs include the Parallel Control
Flow Graph [41, 17], the Parallel Program Graph (PPG) [37], the
CSSA Form [24], and the CSSAME Form [32].

0 a = 0;
1 b = 0;
2 cobegin
3 begin
4 LOCK(L);
5 a = 5;
6 b = a+3;
7 if (b > 4) {
8 a = a+b;
9 }

10 x = a;
11 UNLOCK(L);
12 end
13 begin
14 LOCK(L);
15 a = b+6;
16 y = a;
17 UNLOCK(L);
18 end
19 coend
20 print(x);
21 print(y);

�

0′ a0 = 0;
1′ b0 = 0;
2′ cobegin
3′ begin
4′ LOCK(L);
5′ a1 = 5;
6′ ��� � πππ���� ���	

7′ b1 = ta1+3;
8′ if (b1 > 4) {
9′ ���� � πππ���� ���	

10′ a2 = ta11+b1;
11′ }
12′ a3 = φ(a1, a2);
13′ ���
 � πππ���� ���	

14′ x0 = ta12;
15′ UNLOCK(L);
16′ end
17′ begin
18′ LOCK(L);
19′ �� � πππ��� ���	

20′ a4 = tb0+6;
21′ ��� � πππ���� ��� �
�	

22′ y0 = ta4;
23′ UNLOCK(L);
24′ end
25′ coend
26′ a5 = φ(a3, a4);
27′ print(x0);
28′ print(y0);

Figure 7. A program and its CSSA Form, by Novillo et al [32].
Since the code is well-synchronized, the π-function assignments
can be elided if the concurrent access of shared variables is ac-
counted for in the maydef and mayuse sets of the synchronizations.

Most EPP efforts, excluding some around the PPG and the
CSSAME Form [37, 32], have either ignored synchronizations [22,
36] or only modeled a simple event-variable-based version of it, in
which post and wait are the only supported operations, with no
options for resetting [28, 41, 24].

The PPG has special edges for depicting arbitrary synchroniza-
tion orders. But as far as we know, algorithmic methods for deduc-
ing them for a POSIX-like threading model have not been given.

The CSSAME Form is the CSSA Form after simplifications us-
ing certain kinds of mutual exclusion information [32]. Similar sim-
plifications directly follow with the SR approach, since it assumes
data-race freedom (unlike the EPP approach).

Specifically, the π-function is used by the CSSA and CSSAME
Forms to signify conflicting accesses. Its structure for a shared vari-
able v is π(v1,v2, . . . ,vn) [24]. Its value is one of the vis. Also, one
of the vis indicates v’s reaching definition in the current thread.
The other vis are v’s reaching definitions from concurrent threads.
In a memory model where data races are allowed, π-functions
are needed before uses that may conflict with potentially concur-
rent definitions [24]. Under data-race freedom, however, these π-
functions can be dropped if, between the maydef and mayuse sets
of the synchronizations, all the concurrent conflicting accesses are
modeled. The informal rationale for this is that in any interleav-
ing, a pair of conflicting accesses m1 and m2 by threads h1 and
h2 must be separated by a synchronization s′ performed by one
of them. Otherwise, using arguments similar to that in the proof
for Refinement 4, a sequentially consistent schedule can be con-
structed in which m1 and m2 are adjacent, implying the contradic-
tion of a data race. Since m1 and s′, or s′ and m2, are performed by
the same thread, a control-flow path always exists between a syn-
chronization and a conflicting access. Hence, for well-synchronized
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programs, it suffices to only model concurrent accesses at synchro-
nization points.

As an example, Figure 7 shows a program and its CSSA Form,
by Novillo et al [32, Pages 358, 360]. They present two theorems
that sanction the omission of a π-function argument in cases where
its reaching definition from another thread resides in a critical
section that holds the same lock. While the theorems are true
even for programs with data races, the SR approach subsumes
their implications for well-synchronized programs. For instance,
constant propagation opportunities within the first critical section
in Figure 7 would be exposed by their theorems. These would also
be exposed to a classical constant propagator by the SR approach.

7.4 Preserving SC on Weakly Consistent Hardware
There have been efforts on mapping code written for a memory
model that is presumably easy to reason about, e.g., SC, to more
relaxed memory models offered by the hardware [40, 28, 42]. Their
solution has been to insert special instructions, called “memory
barriers” (e.g., IBM POWER3’s sync and Intel x86’s fence), so
as to suppress the compiler and hardware from reordering code.
These efforts differ from the SR approach in a number of ways:

• Problem solved is different. Their goal is to provide the appear-
ance of SC, even in the presence of data races. The SR approach
is about effectively reusing classical optimizations on data-race-
free SC code, preserving both SC and data-race freedom.

• No reordering across synchronizations. Synchronization kno-
wledge is only used to remove IR conflict edges, since doing so
improves the results of the barrier-insertion analysis [40].

• A solution may not always be possible. There are programs,
such as the IRIW example [6], for which inserting barriers is
insufficient to realize SC on certain platforms.

7.5 Rule-Based Transformations for Data-Race-Free Models
There is work on syntactic elimination and reordering rules that
are safe on sequences (i.e., traces) of memory-related operations
in data-race-free programs [39]. Because of its phrasing as trans-
formation rules on sequences, it is unclear how to incorporate the
work into the existing phases of a serial compiler without nontrivial
engineering. A more significant point is that the rules only consider
opportunities that do not require information on cross-thread inter-
actions. In particular, the lock/unlock-related rules only allow for
the movement of code into critical sections, not out of them [39].

7.6 OpenMP Program Optimization
Optimizations for OpenMP programs, in general, either have used
the EPP approach [38, 17] or have been restricted to within paral-
lel constructs [44]. Satoh et al. used an IR called the Parallel Flow
Graph to model the intra- and cross-thread flow of information [38].
They developed data-flow analyses for reaching definitions, mem-
ory synchronizations and cross-loop data dependences. Huang et
al. observed that it is easier to optimize a high-level version of an
OpenMP program than a lowered threaded version; they used an IR
called the Parallel Control Flow Graph for this purpose [17].

7.7 Extending Sequential Optimizations to Parallel Code
Praun et al. showed how classical SSAPRE can be changed (man-
ually) to consume conflict information derived from OUGs [46].
Heffner et al. described modifications to three sequential object-
oriented optimizations in order to improve their effectiveness in the
presence of concurrency [15]. The modified versions were based
on a field-access analysis that maps every field fld to the duple
(locks, threads), in which locks is the set of locks held on every
access of fld, and in which threads is essentially a Boolean that in-
dicates whether a single thread or multiple threads access fld. No

distinction was made between read and write accesses. Moreover,
the results of the field-access analysis were consumed by the mod-
ifications in ways that were specific to each extended optimization.

For example, one of the modifications by Heffner et al. was to
limit the null safety-check optimizer to only those fields for which
threads indicated single-thread access. Another modification, to
the redundant-load elimination (RLE) optimizer, was to exclude
from the kill sets of monitor-enter statements those fields that were
protected by outer monitors or for which threads indicated single-
thread access [15]. The filtering effect was achieved by subclassing
the original RLE optimizer.

8. Conclusions
We presented an interprocedural static analysis that allows clas-
sical optimizations to be applied on data-race-free multithreaded
programs in more cases than when synchronizations are viewed as
opaque operations. We have shown that the additional precision is
useful for optimization, and produces superior performance.

It may also be possible to use a version of this analysis in a static
concurrency-bug detection tool, where viewing synchronizations as
opaque could obscure essential information.

Much of the precision of our analysis comes from Refinement 4,
which exploits the fact that C and C++ do not define semantics for
data races. The coming standards for these languages will likely
forbid them. As stated, Refinement 4 does not apply in all cases
in which it could. In particular, it does not yet account for differ-
ences in behavior between synchronization primitives. For exam-
ple, two procedures that both acquire but do not release the same
lock, and that perform no other synchronization on common sync
objects, must have empty interference sets, since any real interfer-
ence would reflect a data race. This probably has little bearing on
most existing code, but a C++ analog is likely to be important for
two procedures both reading the same C++0x atomic<T> variable.
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I0
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, Equation (8)

FUNCTIONS ON STATEMENTS
follow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
largs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
maydef , mayuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
mayt

def . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, Equation (11)
mayt

use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
proc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
CW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, Equation (13)
DDi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DU, DUi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Ri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, Equation (4)
R̆i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, Equation (12)
Wi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, Equation (5)
W̆i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

FUNCTIONS ON PROCEDURES
spawner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, Equation (9)
MHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Ri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, Equation (6)
RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, Equation (10)
SOPi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
STMTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
SYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, Equation (7)
SYNCi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
W i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, Equation (6)

OTHER SYMBOLS
� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
∼ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
≡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
≈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, Equation (1)
μ operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
π-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
χ assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
fB, fE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
stmts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
uisync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
TB, TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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