

Keyword(s):

Abstract:

Context-Aware Privacy Design Pattern Selection

Siani Pearson, Yun Shen

HP Laboratories
HPL-2010-74

Privacy, Design Patterns, Context Awareness

User-related contextual factors affect the degree of privacy protection that is necessary for a given context.
Such factors include: sensitivity of data, location of data, sector, contractual restrictions, cultural
expectations, user trust (in organisations, etc.), trustworthiness of partners, security deployed in the
infrastructure, etc. The relationship between these factors and privacy control measures that should be
deployed can be complex. In this paper we propose a decision based support system that assesses context
and deduces a list of recommendations and controls. One or more design patterns will be suggested, that
can be used in conjunction to satisfy contextual requirements. This is a broad solution that can be used for
privacy, security and other types of requirement.

External Posting Date: July 6, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: July 6, 2010 [Fulltext]
Published and presented at TrustBus 2010, Spain, May 16, 2010. The original publication is available at www.springerlink.com

Copyright Springer-Verlag 2010. The original publication is available at www.springerlink.com

Context-Aware Privacy Design Pattern Selection

Siani Pearson and Yun Shen

HP Labs Bristol
Long Down Avenue

Stoke Gifford
Bristol BS34 8QZ UK

{Siani.Pearson, Yun.Shen@hp.com}

Abstract. User-related contextual factors affect the degree of privacy
protection that is necessary for a given context. Such factors include:
sensitivity of data, location of data, sector, contractual restrictions, cul-
tural expectations, user trust (in organisations, etc.), trustworthiness of
partners, security deployed in the infrastructure, etc. The relationship
between these factors and privacy control measures that should be de-
ployed can be complex. In this paper we propose a decision based support
system that assesses context and deduces a list of recommendations and
controls. One or more design patterns will be suggested, that can be
used in conjunction to satisfy contextual requirements. This is a broad
solution that can be used for privacy, security and other types of require-
ment.

1 Introduction

There is increasing awareness that privacy should be integrated into design rather
than being bolted on afterwards, and for the need to take privacy into account
[?]. New regulations, consumer concerns and high profile cases of personal or
sensitive data exposure are forcing companies to design more privacy-aware sys-
tems. Contextual and environmental factors should be taken account of in prod-
uct and service design, but this can be very complex. Sometimes the time and
expertise to do this is not readily available even with the presence of system ad-
ministrators: this is especially the case for dynamic environments. User-related
contextual factors affect the degree of privacy protection that is necessary for a
given context. Such factors include: sensitivity of data, location of data, sector,
contractual restrictions, cultural expectations, user trust (in organisations, etc.),
trustworthiness of partners, security deployed in the infrastructure, etc. The re-
lationship between these factors and privacy control measures that should be
deployed is too complex to be modelled in a tabular form. By breaking the com-
plex modelling issue down to relatively simple rules and combining these using
the proposed reasoning engine, we are able to model the complex relationships
mentioned above.

The core problems we address in this paper are:

– How to aid product and service design, whilst taking into account the context
and environment in which the product or service is to be deployed.

2 Siani Pearson, Yun Shen

– How to help non-expert developers/architects locate design patterns [?] that
are particularly relevant to their problem space.

In essence, our solution to these problems is a system that gathers context
relating to the design required and inputs this to a rule-based system, to trig-
ger decisions about which control measures it could be appropriate to use within
that context. The tool helps to determine appropriate design patterns that could
be used to address privacy, security and other requirements. The solution is tar-
geted at non-expert developers and architects. It may be useful in management
products for servers, storage, networking, etc., in cloud environments and in
other domains.

The rest of the paper is organised as follows. We describe our solution in
Section 2. A detailed example is further discussed in Section 3 showing how the
system can generate a list of candidate privacy design patterns with regard to
specific contextual factors. We consider related work in Section 4 and finally
conclusions are given in Section 5.

2 Framework Overview

Our approach is to use a specialised tool in order to aid a designer to make
decisions. It is a type of decision-based support system that interacts with de-
signers in order to gather appropriate context, and that assesses this context and
outputs a list of recommendations and controls that it would be appropriate for
the designer to use within this context. One or more design patterns [?] will be
suggested, that can be used in conjunction to satisfy contextual requirements.
(Further information about design patterns and how they are extended within
our solution will be given in Sections 3 and 4). The solution is rule-based and
functions as an expert system. A domain expert (or experts) will create the rules
and patterns, based upon industry standard techniques and patterns for specific
domains. There can be a feedback process by which an architect can choose a
lower ranked pattern and this goes to improve the selection process. In the rest
of this section, we consider in more detail the component parts of this system
and their interactions, both internal and external.

An overview of the system is shown in Figure ??. An expert administrator
can tailor the rules if required, and the user of the system is the designer that
wishes to obtain advice about which controls (in the form of design patterns)
they should consider using for their situation. The user interacts with the system
via a questionnaire, which asks the user questions about their current goals,
context and preferences. This questionnaire could be static, but ideally would
be generated via an expert system such that the questions will vary according
to the previous answers of the user. When the questionnaire is completed, the
system outputs a ranked list of design pattern candidates. For example, it might
suggest usage of Design Pattern 1 for the current context, with confidence being
1.0, and also Design Pattern 2, with confidence that this is appropriate for the
current context being 0.8.

Context-Aware Privacy Design Pattern Selection 3

A central aspect to this approach is the mechanism that selects design pat-
terns in a context-aware manner, such that design pattern candidates are se-
lected with regard to the context (e.g. customer requests, regulations, policies)
and pre-defined rules/knowledge base. This mechanism includes:

1. a rules repository that has two major kinds of rules: rules that apply to a
context handler and rules that apply to a design pattern selection processor

2. a context handler that quantifies the context factors by applying contextual
rules

3. a design patterns repository that contains fine-grained design patterns with
additional parameters relating to selection criteria

4. a pattern selector which (either through a graphical user interface (GUI) to
manually or a programmed process to automatically) selects a list of design
pattern candidates by finding a reasonable matching between the parameters
expressed in the design patterns and the selection criteria generated by the
context handler and the pattern filter rules.

context

Rules

Repository

Context

Handler

Pattern

Selector

Design

Patterns

Repository

Design

Pattern

Candidates

Context

Specific

Selection

Criteriauser

GUI

GUI

Admin

Fig. 1. Context Aware Design Pattern Selection

The main features of the system are as follows:

– Design Stage Context is collected from the user (in this case, the designer)
through the GUI. The user can specify contexts using pre-defined keywords
such as sensitive information, limited contractual restrictions, etc.

– Context Processing Rules (CPR) are defined by system administrator to
handle contextual information specified by user. CPR will process applicable
contextual information and output a set of selection criteria based on the
context processing rules combination configuration

4 Siani Pearson, Yun Shen

– Context Processing Rules Combination (CPRC) are defined to com-
bine the results generated by the CPR process

– Selection Criteria are generated by the CPRC and used by the design
pattern selection rules

– Design Pattern Selection Rules (DPSR) process selection criteria gen-
erated by the CPRC to determine a list of design pattern candidates that
are close to the contextual information input by the user

– Design Pattern Selection Rules Combination (DPSRC) defines the
algorithm to output a ranked list with regard to the DPSR

The generic process works as follows. A set of fine-grained design patterns
are carefully formulated. Each design pattern has a criteria field in which a list of
parameters relating to different context setup and selection criteria are defined.
Two sets of rules are also constructed: one is context-related and another is
pattern selection-related. The context handler responds to specific context setup
at the design stage. Context-related rules are applied to quantify contextual
information, e.g. ‘sensitivity is high’ is converted to ‘sensitivity = 1.0’. After
this process, contextual information collected through the GUI from the user
is transformed into a list of quantified selection criteria. The pattern selector,
either as a GUI or automatic process, applies a set of selection rules to match
the previously generated selection criteria against the design patterns stored in
the repository. The pattern selector outputs a list of design pattern candidates
with a double value identifying how suitable the design pattern is to a specific
context. We take an approach similar to Thesaurus [?]; this enables a better
interaction between the system and the users.

3 Example of Our Approach

In this section we give a worked example where we base the representation used
upon the design pattern format used within [?], and show what the corresponding
rules look like in our system.

3.1 Design Stage Context

The supported privacy context is defined by the system administrator, i.e. de-
signer of our solution (and referred to within the GUIs and rules, as explained
above). It can include aspects such as:

– Sensitivity of data: {No Personally Identifiable Information (PII), PII, sen-
sitive}

– Location of (stored) data
– Potential locations of transferred data
– Sector
– Number of users of system
– Whether an anonymous data set could be usable
– Contractual restrictions

Context-Aware Privacy Design Pattern Selection 5

– Cultural expectations
– User’s role in the organisation
– Security deployed in the infrastructure
– Intent of system designer

Note that these are not the same as the context within the design pattern,
nor the intent of the pattern (see Section 3.8, where we refer to this privacy con-
text as a new category called ‘applicable context’ within the design patterns).

This Design Stage Context is collected from the user through the GUI. The
user can specify contexts using pre-defined keywords such as sensitive informa-
tion, limited contractual restrictions, etc. A natural language processing module
can also be applied in this stage. Examples include the following context, where
some phrases may be varied across pre-set options (e.g. {a large number, a small
number, one, no}; {personal information, sensitive information, not personal
information}):

1. Protected storage of data should be enabled over a large number of dis-
tributed servers in different countries.

2. Data is not sensitive personal information.
3. Assurances are required that the data cannot be re-assembled within a ju-

risdiction that is either not permitted to process the data set, or by a single
malicious entity within the storage chain.

4. There are limited contractual restrictions between data storage locations.

3.2 Context Handler (CH)

The Context Handler (CH) processes and quantifies context information input
by the user with regard to mutual agreement between the CH and Context
Processing Rules. For example, the CH will process the context stated above as:

1. data.Location is cross-border
2. data.Sensitivity is non-sensitive
3. purposeOfProcessingData is restricted
4. contractualRestrictions is limited

3.3 Context Processing Rules (CPR)

Context Processing Rules (CPR) are stored in the Rules Repository and re-
trieved by the CH. They are defined by the system administrator to handle
contextual information specified by the user. CPR will process applicable con-
textual information and output a set of selection criteria based on the context
processing rules combination configuration. For example:

1. CPR.r1: If (data.Location is undetermined or data.Location is cross-border)
then transborderDataFlow = true else transborderDataFlow = false;

6 Siani Pearson, Yun Shen

2. CPR.r2: If (data.Sensitivity = sensitive) then sensitivity of information =
1.0 else sensitivity of information = 0.0;

3. CPR.r3: If(securityLevel < idealLevel & transborderDataFlowRestrictions
= true) then sensitivity of information = 1.0

4. CPR.r4: If(purposeOfProcessingData is restricted) then limited usage = 0.4
else limitedUsage =0.0;

5. CPR.r5 If(contractualRestrictions is limited) then limitedLiability = 0.7;

3.4 Context Processing Rules Combination (CPRC)

Context Processing Rules Combination (CPRC) is defined to combine the results
generated by CPR process. An example is listed below. It will generate four
selection criteria: one criterion from CPR.r1, one criterion from maximum value
between CPR.r2 and CPR.r3, one criterion from CPR.r4 and one criterion from
CPR.r5.

1. CPR.r1 append max(CPR.r2, CPR,r3) append CPR.r4 append CPR.r5

3.5 Selection Criteria (Generated by CPRC)

Selection Criteria are generated by CPRC within the CH and are passed to the
Pattern Selector. They are used by the Pattern Selector in conjunction with
design pattern selection rules. For example:

1. Sensitivity of information = 1.0 (result from max(CPR.r2, CPR.r3))
2. transborderDataFlow = true; (result from CPR.r1)
3. limited usage = 0.4 (result from CPR.r4)
4. limited liability = 0.8 (result from CPR.r5)

3.6 Design Pattern Selection Rules (DPSR)

Design Pattern Selection Rules (DPSR) are used by the Pattern Selector to
process selection criteria generated by the CPRC to determine a list of design
pattern candidates that are close to the contextual information input by the
user. For example:

1. DPSR.r1. If (Sensitivity of information = 1.0) then DP1 = 1.0, DP2 = 0.6;
2. DPSR.r2 If (transborderDataFlow = true & limited usage > 0.3) then DP2

= 0.8, DP1 = 0.3;
3. DPSR.r3 If (limitedLiability > 0.5) then DP2 = 0.8, DP1 = 0.6

3.7 Design Pattern Selection Rules Combination (DPSRC)

Design Pattern Selection Rules Combination (DPSRC) defines the algorithm to
output a ranked list with regard to the DPSR. For example:

1. Max(DPSR.result.all.DP1) append Max(DPSR.result.all.DP2)

Context-Aware Privacy Design Pattern Selection 7

Result
The system outputs a ranked list of design pattern candidates.

1. DP1, confidence is 1.0
2. DP2, confidence is 0.8

3.8 Example Design Patterns

Our solution is independent of any particular format of design pattern: an ad-
ditional applicable context field just needs to be added into the pattern format
used that is reasoned about within the pattern selection process. We show below
some privacy-related design patterns that we have defined to illustrate the type
of patterns that might be deployed in the knowledge base. Note that these two
design patterns have the same set of Selection Rules which generate different
results with regard to specific contextual factors.

1. Design Pattern 1 (DP1) Obligation Management

Applicable Context:

– Sensitivity of data
– Location of (stored) data
– Potential locations of transferred data
– Cultural expectations
– Number of users of system
– Would an anonymous data set be usable?
– Contractual restrictions
– Security deployed in the infrastructure
– Conformance to existing agreements between parties or compatibility with

legacy systems

Selection Rule Repository: DPSR
Selection Rules: DPSR1.r1, DPSR1.r2, DPSR1.r3
Name: Obligation Classification: Data and policy management
Intent: to allow obligations relating to data processing to be transferred and
managed when the data is shared
Motivation: A scenario where this would be useful is when a service provider
(SP) subcontracts services, but wishes to ensure that the data is deleted after a
certain time and that the SP will be notified if there is further subcontracting
Context: You are designing a service solution. You want to make sure that
multiple parties are aware of and act in accordance with your policies as personal
and sensitive data is passed along the chain of parties storing, using and sharing
that data.
Problem: Data could be treated by receivers in ways that the data subject or
initiator would not like, and/or the data subject may be contacted in ways that
they would not like e.g. being contacted by a call centre when they had expressed
that they did not wish to be contacted. Furthermore, the original service provider

8 Siani Pearson, Yun Shen

may be legally liable if this happens (e.g. according to APEC accountability-
related legislation). In addition, data could be received by receivers in ways that
they would not agree with or is not conforming to the initial agreement between
parties, e.g. data subject or initiator changes the data transfer protocols or pre-
defined communication channels.
Solution: all the service providers use an obligation management system. Obli-
gation management can handle information lifecycle management, driven by
individual preferences and organisational policies. A scalable obligation man-
agement system could be deployed, driven by obligation policies and individuals
preferences that would manipulate data over time, including data minimisation,
deletion and management of notifications to individuals.
Consequences:

Benefits - privacy preferences and policies can be conveyed along the chain
and acted on in an operational manner.

Liabilities - extra workload in that users or organisations need to set obliga-
tions.
Known uses: Pretschner et al [?] provide a framework for evaluating whether a
supplier is meeting customer data protection obligations in distributed systems.
IBM proposed Enterprise Privacy Authorization Language (EPAL) [?] to to
govern data handling practices in IT systems according to fine-grained positive
and negative authorisation rights. Casassa Mont [?] discussed various important
aspects and technical approaches to deal with privacy obligations.
Related patterns: sticky policies (obligations can be stuck to data), identity
management (e.g. user-centric obligations managed by identity management sys-
tem)

2. Design Pattern 2 (DP2) Sticky Policies

Applicable Context:

– Sensitivity of data
– Location of (stored) data
– Potential locations of transferred data
– Number of users of system
– Would an anonymous data set be usable?
– Contractual restrictions
– Security deployed in the infrastructure

Selection Rule Repository: DPSR
Selection Rules: DPSR1.r1, DPSR1.r2, DPSR1.r3
Name: Sticky policies Classification: Policy enforcement
Intent: to bind policies to the data it refers to
Motivation: A scenario where this would be useful is to ensure that policies
relating to data are propagated and enforced along all chains through which the
data is stored, processed and shared
Context: You want to make sure that multiple parties are aware of and act in
accordance with your policies as personal and sensitive data is passed along the

Context-Aware Privacy Design Pattern Selection 9

chain of parties storing, using and sharing that data.
Problem: Data could be treated by receivers in ways that the data subject or
initiator would not like. The policy could be ignored, or separated from the data
it should refer to.
Solution: Enforceable sticky electronic privacy policies: personal information is
associated with machine-readable policies, which are preferences or conditions
about how that information should be treated (for example, that it is only to be
used for particular purposes, by certain people or that the user must be contacted
before it is used) in such a way that this cannot be compromised. When infor-
mation is processed, this is done in such a way as to adhere to these constraints.
These policies can be associated with data with various degrees of binding and
enforcement. Trusted computing and cryptography can be used to stick policies
to data and ensure that that receivers act according to associated policies and
constraints, by interacting with trusted third parties or Trust Authorities.
Consequences:

Benefits - Policies can be propagated throughout the cloud, strong enforce-
ment of these policies, strong binding of data to policies, traceability. Multiple
copies of data are OK, as each has the policy attached.

Liabilities - Scalability and practicality: if data is bonded with the policy,
this makes data heavier and potentially not compatible to current information
systems. It may be difficult to update the policy once the data is sent to the
cloud, as there can be multiple copies of data and it might not be known where
these are. Once the data is decrypted and in clear, the enforcement mechanism
becomes weak, i.e. it is hard to enforce that the data cannot be shared further in
clear, but must instead be passed on in the sticky policy form; therefore, audit
must be used to check that this does not happen.
Known uses: Policy specification, modelling and verification tools include EPAL,
OASIS XACML , W3C P3P and Ponder. Notably, a technical solution for sticky
policies and tracing services can leverage Identifier-Based Encryption (IBE) and
trusted technologies; this solution requires enforcement for third party tracing
and auditing parties. An alternative solution that relies on a Merkle hash tree
has been proposed by Pöhls [?]. A Platform for Enterprise Privacy Practices
(E-P3P) [?] separates the enterprise-specific deployment policy from the privacy
policy and facilitates the privacy-enabled management and exchange of customer
data.
Related patterns: obligations (obligations can be stuck to data), identity man-
agement (e.g. polices bound to data managed in identity management system),
audit, Digital Rights Management (DRM).

4 Related Work

Privacy design techniques are not a new concept: various companies, notably
Microsoft [?], have produced detailed privacy design guidelines. Cannon has
described processes and methodologies about how to integrate privacy consider-
ations and engineering into the development process [?]. Privacy design guide-

10 Siani Pearson, Yun Shen

lines in specific areas are given in [?,?]. In November 2007 the UK Information
Commissioners Office (ICO) [?] (an organisation responsible for regulating and
enforcing access to and use of personal information), launched a Privacy Impact
Assessment (PIA) [?] process (incorporating privacy by design) to help organi-
sations assess the impact of their operations on personal privacy. This process
assesses the privacy requirements of new and existing systems; it is primarily
intended for use in public sector risk management, but is increasingly seen to be
of value to private sector businesses that process personal data. Similar method-
ologies exist and can have legal status in Australia, Canada and the USA [?].
This methodology aims to combat the slow take-up to design in privacy protec-
tions from first principles at the enterprise level, see [?] for further discussion,
[?] for further background, and [?] for a useful classification system for online
privacy.

In addition to this body of privacy design guidelines, practical techniques can
be specified using design patterns [?]. These can be defined in various different
forms, ranging from fairly informal to formal, but all having substructure. Work
is currently in place to define these: for example, use-cases that drive cloud com-
puting are familiar ones and so design patterns to fit these have started to be
produced [?]. Some previous work has been carried out in the privacy design
pattern area, but not for cloud computing: [?] describes four design patterns
that can aide the decision making process for the designers of privacy protect-
ing systems. These design patterns are applicable to the design of anonymity
systems for various types of online communication, online data sharing, loca-
tion monitoring, voting and electronic cash management and do not address
use within an enterprise. In our system, we extend the usage of design pat-
terns to cover privacy architectural options and controls that can be deployed
- particularly within an organisation, with the option of providing detail right
down to example code level. Furthermore, we build upon this approach to allow
automated determination of a set of recommendations for designers. With the
existing guidelines, these are distributed and used in an off-line way, and it can
be difficult for developers to find appropriate advice.

In expert systems, problem expertise is encoded in the data structures rather
than the programs and the inference rules are authored by a domain expert.
Techniques for building expert systems are well known [?]. A key advantage of
this approach is that it is easier for the expert to understand or modify state-
ments relating to their expertise. Our system can also be viewed as a decision
support system. Again, there is a large body of preceding research [?]. Many
different DSS generator products are available, including [?,?,?,?].

Halkidis et al. [?] perform risk analysis of software systems based on the
security patterns that they contain. The first step is to determine to what extent
specific security patterns shield from known attacks. This information is fed to
a mathematical model based on the fuzzy-set theory and fuzzy fault trees in
order to compute the risk for each category of attacks. However, this approach
does not handle context information and there is no rule engine provided. There
has been related work carried out in the Serenity project (see especially [?,?]): a

Context-Aware Privacy Design Pattern Selection 11

general framework was proposed to develop secure applications based on security
patterns. They used an extension of TROPOS called SI* modelling framework for
modelling and analysis of security requirements. The context of security patterns
was discussed, and executable components can be selected upon client request
by matching the context of pre-defined patterns. Delessy et al. [?] also discussed
how to build upon two different approaches to secure SOA applications: model-
driven development and the use of security patterns. Laboto et al. [?] proposed
to use patterns to support the development of privacy policies. However, unlike
our approach, a rule engine was not proposed to automatically select appropriate
patterns at the design stage, and the focus was on security.

5 Conclusions

We have presented a novel approach for automatically selecting design patterns
based on context. Our approach enables contextual and environmental factors
to be taken account of in product and service design, by providing suitable
options for the given context to designers. This procedure is independent of
the chosen format of the design patterns. One or more design patterns will be
suggested, that can be used in conjunction to satisfy contextual requirements.
This is a broad solution that can be used for privacy, security and other types
of requirement. We are currently extending this approach within the EnCoRe
project [?] in order to generate privacy controls (with a focus on consent and
revocation mechanisms) that are appropriate for different contexts, such as: to
what level of granularity of data should the policy be attached? any economically
feasible mechanism to enforce the policy? whether compatible to legacy systems?
whether the obligations will be an extension of access control policies, or separate
policies that are dealt with in a separate manner? etc.

References

1. Information Commissioners Office: The Privacy Dividend; the business case for
investing in proactive privacy protection. (2010)

2. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press
(1977)

3. Miller, G. A.: WordNet: A Lexical Database for English. Communications of the
ACM Vol. 38, No. 11: 39-41.

4. Pretschner, A., Schtz, F., Schaefer, C., and Walter, T.: Policy Evolution in Dis-
tributed Usage Control. Electron. Notes Theor. Comput. Sci. 244 (2009)

5. IBM: The Enterprise Privacy Authorization Language (EPAL), EPAL specifi-
cation, v1.2, http://www.zurich.ibm.com/security/enterprise-privacy/epal/
(2004)

6. Casassa Mont, M.: Dealing with Privacy Obligations, Important Aspects and Tech-
nical Approaches, TrustBus (2004)

7. Phls, H.G.: Verifiable and Revocable Expression of Consent to Processing of Ag-
gregated Personal Data. ICICS, 279-293 (2008)

12 Siani Pearson, Yun Shen

8. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-P3P privacy policies and privacy
authorization. WPES ’02. 103-109 (2002)

9. Microsoft Corporation: Privacy Guidelines for Developing Software Products and
Services, Version 2.1a, http://www.microsoft.com/Downloads/details.aspx?

FamilyID=c48cf80f-6e87-48f5-83ec-a18d1ad2fc1f\&displaylang=en (2007)
10. Cannon, J.C.: Privacy: What Developers and IT Professionals Should Know. Ad-

dison Wesley (2004)
11. Patrick, A., Kenny, S.: From Privacy Legislation to Interface Design: Implementing

Information Privacy in Human-Computer Interactions. R. Dingledine (ed.), PET
2003, LNCS 2760, pp. 107-124, Springer-Verlag Berlin Heidelberg (2003)

12. Belloti, V., Sellen, A.: Design for Privacy in Ubiquitous Computing Environments.
Proc. 3rd conference on European Conference on Computer-Supported Coopera-
tive Work, pp. 77-92 (1993)

13. Information Commissioners Office: PIA handbook. http://www.ico.gov.uk/

(2007)
14. Office of the Privacy Commissioner of Canada: Fact sheet: Privacy impact assess-

ments. http://www.privcom.gc.ca/. (2007)
15. Information Commissioners Office: Privacy by Design. Report, www.ico.gov.uk

(2008)
16. Jutla, D. N., Bodorik, P.: Sociotechnical architecture for online privacy. IEEE

Security and Privacy, 3(2), pp. 29-39. IEEE (2005)
17. Spiekermann, S., Cranor, L. F.: Engineering privacy. IEEE Transactions on Soft-

ware Engineering, pp. 142. IEEE (2008)
18. Arista: Cloud Networking: Design Patterns for Cloud Centric Ap-

plication Environments. (2009) http://www.aristanetworks.com/en/

CloudCentricDesignPatterns.pdf

19. Hafiz, M.: A collection of privacy design patterns. Proc. 2006 Conference on Pattern
Languages of Programs, ACM, NY, pp. 1-13 (2006)

20. Russel, S., Norvig, P.: Artificial Intelligence A Modern Approach, 2nd edition,
Prentice Hall, Englewood Cliffs (2003)

21. Wikipedia, http://en.wikipedia.org/wiki/Decision_support
22. Dicodess: Open Source Model-Driven DSS Generator, http://dicodess.

sourceforge.net

23. XpertRule: Knowledge Builder, http://www.xpertrule.com/pages/info_kb.htm
24. Lumenaut: Decision Tree Package, http://www.lumenaut.com/decisiontree.htm
25. OC1 Oblique Classifier 1, http://www.cbcb.umd.edu/~salzberg/announce-oc1.

html

26. Halkidis, S.T., Tsantalis, N., Chatzigeorgiou, A., and G. Stephanides: Architectural
Risk Analysis of Software Systems Based on Security Patterns, IEEE TDSC, Vol.
5, No. 3, 2008.

27. Kokolakis, S., Rizomiliotis, P., Benameur, A., Kumar Sinha, S.,: Security and De-
pendability Solutions for Web Services and Workflows : A Patterns Approach,
Security and dependability for Ambient Intelligence, Springer, May 2009

28. Benameur, A., Fenet, S., Saidane, A., Khumar Sinha, S.: A Pattern-Based General
Security Framework: An eBusiness Case Study, HPCC, Seoul, Korea (2009)

29. Delessy, N. A., d Fernandez, E. B.: A Pattern-Driven Security Process for SOA
Applications, ARES: 416-421 (2008)

30. Lobato, L.L., d Fernandez, E. B., Sergio Donizetti Zorzo: Patterns to Support the
Development of Privacy Policies. ARES: 744-74 (2009)

31. EnCoRe - Ensuring Consent and Revocation. http://www.encore-project.info/

