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HP offers many innovative products to meet diverse customer needs. The breadth of its product 

offerings has helped the company achieve unparalleled market reach; however, it has come with 

significant costs and challenges. By offering multiple similar products, a manufacturer increases 

its overall demand volatility, reduces forecast accuracy, and can adversely affect revenue and 

costs across the entire product life cycle. At HP, these impacts included increases in inventory-

driven costs and order cycle time, liabilities to channel partners, and costs of operations, research 

and development, marketing, and administration. Furthermore, complexity in HP’s product lines 

confused customers, sales representatives, and channel partners, sometimes driving business to 

competitors. HP developed two powerful OR-based solutions for managing product variety. The 

first, a framework for screening new products, uses custom-built return-on-investment (ROI) 

calculators to evaluate each proposed new product before introduction; those that do not meet a 

threshold ROI level are targeted for exclusion from the proposed lineup. The second, HP’s 

Revenue Coverage Optimization (RCO) tool, which is based on a fast, new maximum-flow 

algorithm, is used to manage product variety after introduction. By identifying a core portfolio of 

products that are important to order coverage, RCO enables HP businesses to increase 

operational focus on their most critical products. These tools have enabled HP to increase its 

profits across business units by more than $500M since 2005. Moreover, HP has streamlined its 

product offerings, improved execution, achieved faster delivery, lowered overhead, and 

increased customer satisfaction and market share. 
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_______________________________________________________________________ 

HP serves more than one billion customers (consumers, small to medium businesses, and large- 

enterprise customers in virtually every industry) in more than 170 countries on six continents. Its 

four business units offer products spanning enterprise storage and servers, personal systems, 

imaging and printing, software, services, and corporate investments. With 2008 revenues of 

$118B, HP is the global market-share leader in PCs, printers, and servers. It ships 48 million PCs 

annually and over one million printers weekly. One of every three servers shipped worldwide is 

an HP product. Its product lineup includes significant variety in nearly every offering, boasting 

more than 2,000 laser printer stock-keeping units (SKUs), more than 15,000 server and storage 

SKUs, and over eight million possible configure-to-order combinations in its notebook and 

desktop product lines.  

Although HP’s product offerings drove sales and market share, the variety of its product 

portfolio caused significant organizational complexity, created major operational and 

performance challenges, and caused HP to fall behind its competitors on a number of metrics. 

Although revenues grew each year, unplanned increases in operating costs eroded its profits, 

partly because of complexities, such as increases in inventory-driven costs, product design costs, 

channel liabilities, and rework. As variety increased, forecasting accuracy decreased, resulting in 

excesses of some products and shortages of others. In 2002, HP’s inventory turns were lower 

than many of its competitors, and shortages and excesses were rampant. Despite high inventory 

levels, major deals were lost because products were not available to meet demand. By 2004, 
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HP’s order cycle time (OCT) was unpredictable, and its average OCT was nearly twice that of its 

leading competitor, adversely affecting customer satisfaction and making it difficult to win 

accounts although product quality was high. Across all HP businesses, ineffective management 

of complexity was diminishing the benefits of HP’s broad, diverse product portfolio. 

The challenge was not simply that the variety was difficult to manage; more fundamentally, 

measuring the true costs and benefits of variety was difficult. Many product-line complexity 

costs are hidden, i.e., not captured in standard accounting systems and difficult to measure 

systematically and fairly. To estimate the impact on overhead costs of adding a single SKU or 

product feature to the product line seemed almost impossible. In many cases new products 

strained existing resources, but did not give rise to new direct overhead costs. It was only in 

aggregate that we began to see the cost impacts. Estimating the impact of variety on inventory-

driven costs required sophisticated statistics and stochastic modeling capabilities that the teams 

(i.e., marketing and product management) who managed product portfolios did not have. 

Because the cost impacts of variety were so difficult to measure, debates over new-product 

introductions were often very one-sided. Marketing teams could argue that new products would 

generate incremental revenue; however, making a counter argument that the introductions would 

impact cost, let alone objectively weighing these costs and benefits against each other, was 

difficult. Without clear standards for evaluating product proposals in a balanced way, HP was 

unable to implement an effective process for systematically managing product proposals. 

Once products were launched into the portfolio, it was difficult to measure and manage their 

impact. Few standards existed for how and when to remove a product from the portfolio. 

Rationalization decisions were often made based on a product’s individual revenue; however, 

this metric neglects key elements of the product’s importance, such as the value of a low-revenue 
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product in fulfilling a high-revenue order. Moreover, the cost structure and impact of variety 

differed dramatically from business to business within HP. Some businesses, such as high-end 

imaging and printing products and business-critical servers, faced high variety-driven costs 

associated with creating, developing, testing, and launching new SKUs. However, their processes 

for reviewing and approving new SKU introductions did not incorporate a comprehensive, 

quantitative cost assessment. SKU introduction decisions were often based on a business case 

from marketing for the benefits rather than a balanced and data-driven view of incremental costs 

and benefits, making it easy for variety to proliferate. 

Other businesses, such as HP’s Personal Systems Group (PSG), which sells configurable PC 

products, had comparatively low per-SKU costs, but high costs for simultaneously managing 

inventory and availability on many underlying parts. In PSG, most orders do not ship until every 

product is available; a stockout of a single product can delay an entire order. Because of 

difficulties in maintaining adequate availability across its vast product line, PSG’s average OCT 

was not competitive, and the lack of predictability and long lead times frustrated customers.  

Over the past five years, HP has made managing product variety a strategic business priority. 

It has developed and implemented two OR-based solutions that have helped HP dramatically 

improve its performance, resulting in bottom-line profit improvements of more than $500M. In 

this paper, we present these two methodologies, describe the details of their application in PSG, 

and present the substantial quantitative and qualitative benefits obtained through the broad use of 

these tools across many HP businesses. 

Solutions 

 
The first solution, a process for screening new-product proposals before introduction, is driven 

by OR-based supply chain analytics for measuring the true cost impact and projected return on 
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investment (ROI) of proposed products. We evaluate the projected complexity-adjusted ROI for 

each proposed new product, prior to its creation, using a complexity ROI calculator; this 

calculator is developed for each business through a one-time analysis of the up-front and ongoing 

cost impacts of introducing and managing products. Products that do not meet a threshold ROI 

level are targeted for exclusion from the proposed lineup (Cargille et al. 2005, Olavson and Fry 

2006, Melia and Cargille 2007). 

The second solution, the Revenue Coverage Optimization (RCO) tool, is used to manage 

product variety after introduction. RCO analyzes order history to rank products along the 

efficient frontier of portfolio size and order coverage—defined as the portion of the number, 

revenue, or margin of orders that can be completely fulfilled by products in the portfolio. By 

helping to identify a core portfolio of products that are important to order coverage, the RCO 

results enable HP businesses to increase operational focus on their most critical products, and 

make data-driven rationalization decisions.  

Because these two tools address different aspects of managing product variety, their use 

varies according to each business’ requirements. Businesses that incur significant one-time costs 

for each new-product launch might emphasize a screening process that uses complexity ROI 

calculators to quantitatively evaluate proposed new variety. Businesses with highly configurable 

product lines emphasize RCO to help them identify the product offering “sweet spot” that covers 

the majority of orders; thus, they can achieve operational efficiencies through improved focus on 

these products. Some businesses, such as PSG, heavily use both. 

Figure 1 shows HP’s overall portfolio management approach, highlighting the role of these 

OR solutions at each phase.  
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Figure 1: HP follows a two-phased approach that involves up-front screening of new-product proposals 
for ROI and ongoing evaluation and reprioritization of the product portfolio using RCO. Both phases 
rely heavily on OR to provide a data-driven framework for decision-making. 
 

New-Product ROI Screening Framework 

HP screens proposals for new SKUs, features, product bundles, and platforms prior to investing 

in them. The screening process begins with a detailed analysis of the cost structure and drivers in 

each business and product line—cost relationships that are generally obscure and not captured in 

accounting systems. A team of OR professionals spends one to three months developing a model 

of how business costs respond to increases in product variety. It captures the cost relationships 

and codifies them into a set of guidelines and an ROI calculator that the business can deploy for 

to evaluate new-product proposals. As costs change, the business can update the calculator’s 

parameters, enabling it to evaluate proposals on an ongoing basis. 

We identify the major cost drivers that product variety impacts. First, we examine the 

complete life cycle, from conception through post-life support (i.e., support after the product has 

been removed from the portfolio). Second, we examine the entire business cost structure, 

including fixed and variable costs. We use the cost categories (Figure 2) as a guide to ensure that 

we have considered all important cost elements. 

Prior to introduction: 
Complexity ROI screening

After introduction:
Portfolio Management with RCO 

• Identify and estimate cost impacts of variety, 
modeling relationships using activity-based 
costing, stochastic inventory modeling, and
other quantitative methods, as needed.

• Codify relationships into a complexity ROI 
calculator.

• Screen new SKU or feature proposals for
projected ROI using complexity ROI 
calculator. 

• Use RCO to segment portfolio into core high-
contribution offering and lower- contribution 
extended offering.

• Construct differentiated service offering to 
improve performance of core offering and 
reduce overhead associated with serving 
extended offering.

• Target select elements of extended offering for 
elimination or rationalization, as appropriate.
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Cost type Nature of relationship Cost categories 

Variable complexity 
costs 

Volume-driven • Material costs: volume discounts 
• Variability-driven costs: excess costs (financing, storage, 

depreciation, obsolescence, fire sales) and shortage costs 
(material price premiums, expediting, lost sales because of 
shortages) 

Fixed complexity costs Variety-driven • Resource costs: R&D, testing, product management, etc. 
• External cash outlays: tooling, costs to contract 

manufacturer 
• Indirect impacts of variety: manufacturing switching costs, 

warranty-program expenses, quality impacts, returns costs 
 
Figure 2: HP systematically assesses the cost impacts of product variety using a framework that captures 
major cost impacts along the full P&L and throughout the entire life cycle of each product.  
 

In our analysis, we distinguish between fixed and variable complexity costs. We define fixed 

complexity costs as those that scale with the number of products offered; therefore, the key cost 

driver is the number of SKUs or variants sold, regardless of each variant’s unit volume. These 

are the costs, such as research and development (R&D) or product marketing resources, that are 

required to bring new products to market and support them over their life cycles. To estimate 

variety-driven cost impacts, we use a mix of activity-based costing, regression analysis, and 

other techniques. For example, as variety increases, customers have more options and are more 

likely to return or exchange products. To quantify this, we use regression analysis to evaluate the 

impact of SKU variety on product returns cost, allowing us to estimate a rough relationship 

between the numbers of products offered and the cost of returns.  

We define variable complexity costs as those where the unit variable cost of an SKU or part 

increases because of insufficient volume to reach an operationally efficient scale; unit volume for 

a given SKU or variant is the key driver. Examples include material costs, which are higher for 

lower-volume parts because of inadequate negotiating leverage for the buyer or economies of 

scale for the supplier, and costs associated with demand variability, which result in significantly 

more excess costs (devaluation, excess and obsolescence) and shortage costs (freight expediting, 
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supplier price premiums, lost sales). Figure 3 shows an approach we use to estimate how excess 

and shortage costs related to demand variability scale up and down with volume. 
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Figure 3: HP models the relationship between product volumes and demand variability empirically as an 
input to measuring the impact of product variety on costs associated with demand variability. Greater 
product variety and less-concentrated demand result in higher variability, which in turn results in higher 
inventory-driven costs and shortage-related costs. Once the relationship is modeled at this level, calculations 
of inventory-driven costs and shortage costs can be embedded into calculators to automate the estimation of 
complexity cost impacts because of different volume assumptions. 
 

To evaluate whether or not to introduce a new-product variant, we balance the complexity 

costs against its projected marketing and sales benefits. We recommend screening out low-value 

products, which are not necessarily the same as low-volume products. Screening products by 

volume overlooks the significant differences in complexity cost among different product types. 

Volume thresholds also miss that some high-volume SKUs could drive very little incremental 

revenue and margin, if they have a close substitute. Volume thresholds and rules of thumb can be 

useful, but only if they adjust for cannibalization effects and complexity cost differences between 

different SKU types. 
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Our solution is to screen based on complexity-adjusted margin: the incremental margin (with 

cannibalization effects subjectively estimated from marketing) less the incremental complexity 

costs. To keep the solution simple, we start with an exhaustive consideration of all possible 

complexity costs, and pare down that list to include only the most significant categories, for 

example those that drive roughly 80 percent of the complexity costs. We then capture complexity 

cost guidelines for those costs in easy-to-use spreadsheet calculators. Because the key 

complexity cost drivers vary across businesses, we develop a different calculator for each 

business, while leveraging common frameworks and techniques for complexity cost modeling. 

In some cases, constrained resources (e.g., R&D) might be a significant portion of the 

complexity costs; thus, we calculate a complexity ROI using our earlier distinctions between 

fixed and variable complexity costs: 

Complexity ROI = (Incremental margin – Variable complexity costs) / (Fixed complexity 

costs). 

Typically, HP businesses set their ROI hurdle fairly high (6:1 or greater), to ensure that the 

investment in introducing new variants is justified vis-à-vis other investments that HP could 

make with the same resources. Often we limit the costs that we include in the denominator to 

only those that represent the specific resource or resources that are constrained, moving some 

(non-resource-based) fixed costs to the numerator when we compute the ROI. 

Once the cost structure has been identified and major costs quantified, a cross-functional 

team, including supply chain, finance, and marketing representatives, validates the modeled cost 

relationships. A cross-functional core team and sponsorship team must go through the 

complexity-cost modeling journey together, to gain input and commitment from all functions on 

the cost guidelines that the ROI calculator will use going forward. The sponsorship team should 

include executives from the major functions impacted by the costs and benefits of variety: supply 
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chain, R&D, and marketing. To the extent possible, the team conducts the validation by 

comparing predicted results with actual data. However, because the relationships often do not 

show up directly in data, it is more important to obtain buy-in from the organizations that the 

calculator represents a reasonable model of costs than to prove conclusively that the modeled 

relationships are an exact predictor.  

Figure 4 shows an example of the main interface of a complexity ROI calculator used in 

HP’s Laserjet business. For ease of use and diffusion across a large number of users, we keep the 

calculator interface intuitive and graphical, despite considerable behind-the-scenes sophistication 

and modeling used to assess and capture the relationships that drive the calculations. The tool 

should require only inputs (e.g., projected volume and product type) that are readily available 

from marketing when making the case for a new SKU. More complex modeling (Figure 3) goes 

into making and calibrating the tool, but is not part of the user interface.   

Our complexity-analysis framework has proven to be flexible and effective. Wherever 

possible, we try to leverage the ROI approach and cost classification (Figures 2 and 3), and reuse 

components of calculator spreadsheets. However, because the key cost drivers and the impacts of 

product variety can vary significantly across business environments, a customized solution is 

typically required. The average cost to conduct a complexity-analysis project (i.e., the time 

required by the OR team and sponsoring organization) for one HP business is approximately 

$90K. 
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Figure 4: Users enter information on new-model proposals is into the calculator. The projected ROI for the 
model is shown, and detail on the cost impacts included. Color-coding is used to indicate whether a SKU 
achieves “green zone,” “yellow zone” or “red zone” ROI thresholds. 

The Revenue Coverage Optimization (RCO) Tool  

After products or features have been launched into HP’s product portfolio, some costs of variety 

become sunk, and the variety management focus shifts from screening new products to 

maximizing value from the active portfolio. As products begin to sell in the marketplace, 

LaserJet variety cost-benefit calculator 

Model Number / Name of Proposed Model: ABC123 Estimated unaccounted costs of adding model

Platform: XXX Opportunity Costs:

Lost Sales Due to Stockouts -
Description: Total -

COGS + Contra-Revenue Impacts:

Product Category: 1 Inventory holding, storage and financing -
Excess & obsolescence / fire sales -

2 Expediting -
Price protection -

1 Spare parts inventory-driven costs -
Material cost volume discounts -

1 MOH (switching & setup) -
Refurb & returns -

2 Warranty -
Total -

1
Operating-expense Impacts:
Sales & Mktg OH -

Model Statistics Product data mgmt -
Projected lifetime (months) 15 Commodity mgmt -
Monthly volume 5,900 Mfg program mgmt -
SKUs added with Model 31 Planning & Forecasting -
List price $349 Product completion center -
Hardware net revenue / unit $329 Sr. mgmt attention for escalations -
Contrib. margin / unit $79 Test center -

Other unaccounted costs
Total -

Engine Requirements 
% of Monthly Total Avg Net Grand total -

Engines Volume Volume Volume Rev/Unit
110V NW BL 40 2,360 1,680 $596 ROI:
220V NW BL 40 2,360 1,680 $596 Incremental margin -
110V NW BL MIJ 10 590 420 $596 Adj. incremental margin -
220V NW BL MIJ 10 590 420 $596 Fixed cost -

ROI -

Incremental volume Cutoff values
Percent Incremental volume 45 Yellow  zone ROI 1:1
Total cannibalized units per month 3,245 Green zone ROI 7:1

Minimum % incremental to qualify

Forecast Monthly Lifetime Incremental …for green zone 45 0
Volume (units) 5,900 88,500 39,825 …for yellow zone 19 0
Hardware revenue $1,941,100 $29,116,500 $13,102,425
Contrib. margin $466,100 $6,991,500 $3,146,175

Cannibalization 
Related Product #1 Related Product #2
Name: ABC Name: DEF
% of cannib 80 % of cannib 20
Cannib'd units 2,596 Cannib'd units 649

Related Products Planned Adjusted Planned Adjusted
Projected lifetime (months) 17 17.0 14 14.0
Monthly volume 5,000 2,404 2,000 1,351
List price $369 $369 $299 $299
Hardware net revenue / unit $349 $349 $279 $279
IFS2 margin / unit $89 $89 $59 $59

$2.47M

$234K

ROI Assessment
$2.53M $2.53M

$459K

Cost impact

$12.6K

$3.6K 

$6.3K

$136K

$0.0K

$1.7K $3.7K

$2.3K
$7.7K

Which supply chain? 

$0.0K $0.0K
$0.0K 
$3.4K 

$0.0K

$96.5K $157.1K
$5.0K $10.0K

$9.6K

$10.2K

$49.3K

$0.7K 

$3.8K 

$177K $320K

$177K

$1.1K 
$1.5K

$12.5K

$118.4K$58.6K

$55K

$3.9K $8.3K

$4K

Cost impact
$17.5K $37.6K

Is the model being added as part of NPI? 
What kind of accessory is being added? 
Is new documentation required? 

$2K 

$0.0K 

$3.0K 

Is a new accessory required?

$320K

$18.8K

13.94:1 7.46:1

$2.39M

$0.0K $0.0K

$10.0K $18.8K
Cost impact

SF Mono

NPI 
Class I 

No

Low-Touch 
No
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transaction-level sales data become available, enabling more sophisticated analysis. RCO was 

designed to help HP understand the revenue trade-offs in managing product variety when a 

history of customer order data is available. Prior to implementing RCO, HP’s prevailing method 

of product portfolio management had been to judge products by their individual revenue or 

volume contributions in recent order history. However, researchers and business managers knew 

that when determining the importance of products in businesses with configurable products, 

examining each product in isolation would not suffice. A product that generates relatively little 

revenue on its own, such as a power supply, might be a critical component in high-revenue 

orders and essential to order fulfillment. To capture the interrelationship among products through 

orders, HP developed a new metric, order coverage, which represents the percentage of a given 

set of past orders that could be completely fulfilled from the portfolio. Similarly, revenue 

(margin) coverage of a portfolio is the revenue (margin) of its covered orders as a percentage of 

the total revenue from the data set. The concept of coverage provides a meaningful way to 

measure each product’s overall impact on a business. RCO is a deterministic optimization tool 

that finds the smallest portfolio of products that covers any given percentage of historical order 

revenue. It answers questions such as: “If I pick only 100 products, which ones should I choose 

to maximize revenue from orders containing only these products?” More generally, given a set of 

historical orders, RCO computes a nested series of product portfolios along the efficient frontier 

of order-revenue coverage and portfolio size.  

The black curve in Figure 5 illustrates this efficient frontier. In this example, 80 percent of 

order revenue can be covered with less than 27 percent of the total product portfolio, if we select 

those products according to RCO’s recommendations. One can use this tool to select the 

portfolio along the efficient frontier that offers the best trade-off—relative to business 
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objectives—between revenue coverage and portfolio size. The strong Pareto effect in the RCO 

curve presents an opportunity to improve on-time delivery performance. A small investment in 

improved availability of the top few products will significantly reduce average OCT. 

 

The portfolios corresponding to points along the efficient frontier are nested; the portfolio 

with 95 percent revenue coverage contains the one with 90 percent coverage. Thus, RCO 

provides a product ranking that yields a continuum of portfolio choices that are easily modified 

to adjust to changes in desired coverage level.  

The problem of generating a single portfolio on the efficient frontier is known as a selection 

problem. Its canonical formulation is an integer-programming problem that, for HP’s order-

history data sets, is too big to solve by standard methods. We found that the problem of 

generating a series of solutions along the efficient frontier can be posed as a parametric 

maximum-flow problem in a bipartite network (Balinksi 1970, Rhys 1970). The team developed 

a new, efficient, and exact algorithm to solve the parametric maximum-flow problem (Tarjan et 

al. 2006, Zhang et al. 2004, 2005a, 2005b). This algorithm, called Simultaneous Parametric 

Maximum Flow (SPMF), is several times faster than best-known prior-solution techniques for 

the same problem on the large real-world data sets that we faced (Babenko et al. 2007). It is also 

much easier to implement than previous algorithms. In the new algorithm, the parametric 

maximum-flow problem A is converted to a special nonparametric maximum-flow problem B. 

Figure 5: This chart shows revenue
coverage vs. portfolio size achieved by
RCO (black) and four other product-
ranking methods, applied to the same
historical data. The four other curves, in
decreasingly saturated grays, are based on
ranking by the following product metrics:
revenue impact (the total revenue of orders
containing the product), maximum
revenue of orders containing the product,
number of units shipped, and individual
product revenue.  
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Solving B gives the chain of nested solutions to problem A at all break points of the parameter. 

The special nonparametric maximum-flow problem B is solved by a new flow-balancing 

method, which redistributes the flows over a number of arcs either around a closed loop or 

among all the arcs incident to a vertex. This flow-balancing method differs from two main types 

of maximum-flow algorithms in the literature—the augmenting-path method (Ford and 

Fulkerson 1956) and the preflow-push-relabel method (Goldberg and Tarjan 1986, 1988). Tarjan 

et al. (2006) later generalized the flow-balancing method to general nonparametric maximum-

flow problems. Appendix 2 shows details of the portfolio-selection problem, its equivalence to a 

parametric maximum-flow problem, and the SPMF algorithm. 

RCO compares favorably to other heuristics for ranking products (Figure 5). The gray curves 

show the cumulative revenue coverage achieved by four heuristic product rankings, in 

comparison to the coverage achieved by RCO. The best alternative to RCO is one that ranks each 

product according to its revenue impact, a metric our team devised to represent the total revenue 

of orders in which the product appears. The revenue-impact heuristic comes closest to RCO’s 

coverage curve, because it is best among the heuristics at capturing product interdependencies. 

Still, in our empirical tests, we found that the revenue-impact ranking provides notably less 

revenue coverage than RCO’s ranking. Given that RCO runs in less than two minutes for typical 

data sets, HP had no reason to settle for inferior coverage. 

Although we have emphasized the objective of maximizing historical revenue coverage 

subject to a constraint on portfolio size, RCO is flexible enough to allow a much wider range of 

objectives, such as coverage of order margin, number of orders, or any other metric associated 

with individual orders. It can easily accommodate up-front strategic constraints on product 
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inclusion or exclusion, and can be applied at any level of the product hierarchy, from SKUs 

down to components. 

The SPMF algorithm has applications well beyond product portfolio management, such as in 

the selection of parts and tools for repair kits, terminal selection in transportation networks, and 

database-record segmentation. Each problem can be naturally formulated as a parametric 

maximum-flow problem in a bipartite network. The team’s extension of SPMF to nonparametric 

max flows in general networks has an even broader range of applications, e.g., in airline 

scheduling, open-pit mining, graph partitioning in social networks, baseball elimination, staff 

scheduling, and homeland security.  

In practice, RCO is used to enhance and facilitate human judgment in managing product 

variety. Portfolio design depends critically on knowledge of strategic new-product introductions 

and planned obsolescence, which historical order data does not reveal.  

HP businesses typically use the previous three months of orders as input data to RCO, 

because this duration provides a representative set of orders. Significantly longer horizons might 

place too much weight on products that are obsolete or nearing end of life. When analysis on 

longer horizons is desired, RCO allows weighting of orders in the objective, thus placing more 

emphasis on covering the most recent orders in a given time window.  

SPMF was implemented in C++. A graphical user interface (GUI) in a web browser and 

RCO output visualization in Excel were integrated with SPMF and the corporate financial 

database for RCO deployment in HP businesses. RCO’s approximately $1.1M development cost 

includes researchers’ time to develop and implement the algorithm and contractor time to build 

the GUI.  
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As we deployed RCO, we validated the work on multiple fronts to ensure that all 

stakeholders would feel confident in the results. We verified the algorithm’s correctness in three 

ways. First, we proved its convergence to correct results theoretically and by matching its output 

with those of a well-established commercial optimization solver (CPLEX) applied to an 

equivalent problem formulation. Second, with help from domain experts in product marketing, 

we reviewed carefully the tool’s input and cross-validated the results with these experts’ intuition 

and through comparison to other metrics. Third, we validated the model. Although the model’s 

objective of computing the efficient frontier of coverage and portfolio size had been defined 

jointly by the business stakeholders and OR professionals on the team, the best evidence of its 

validity is that the business results match the model's predictions: improved focus on the top-

ranked products yields significant overall operational benefits. The next section highlights these 

results. 

Case Example: Portfolio Management in PSG  

PSG, a $42B business, includes HP’s commercial and consumer desktop and notebook PC 

businesses, and its workstations, handheld computing, and digital-entertainment product lines.  

PSG experienced many of the challenges discussed above as its variety grew over the past 

decade. To increase market reach and maximize competitiveness in the markets in which it 

competes, it offered many products and options, allowing customers to select from many 

technology platforms and product form factors. Within each platform, customers could select 

from an array of processors, drives, memory configurations and accessories; using HP’s 

configure-to-order process, these components could be combined to generate millions of desktop 

and notebook PC order combinations. Adding to the complexity, each configuration option could 
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include different subassemblies and components, which might be sourced from multiple 

suppliers. 

Managing each component required testing, forecasting, supplier management, inventory, 

end-of-life and warranty support, production planning, and a host of other processes and outlays. 

If one component was unavailable, production and order shipments might be delayed and 

customers dissatisfied. Some products were sold often and in high volumes; others were involved 

in only a handful of orders and were of little strategic importance to the business. However, 

differentiating between these products in a systematic and data-driven way was difficult; thus, 

some components might be overstocked and some understocked. These availability issues led to 

unpredictable and uncompetitive OCTs and frustrated customers. Lastly, the inconsistencies 

between offerings in the Americas, Europe, and Asia, despite product similarities, gave rise to 

even greater variety and costs for PSG. 

HP’s approach, which it began in its notebook division and extended later to desktops, started 

as an engagement with its Strategic Planning and Modeling (SPaM) team to review the divisions’ 

cost structures and develop an appropriate complexity ROI calculator; an engagement with HP 

Labs to integrate the RCO algorithm into its business planning systems followed. 

Initial complexity cost analysis for notebook PCs indicated relatively low up-front variety-

driven fixed costs and relatively high volume-driven variable costs. Therefore, PSG’s emphasis 

was on managing the portfolio to steer demand from low-volume features to medium- and high-

volume features, rather than on up-front screening of new entrants. PSG deployed complexity 

ROI calculators for notebooks and desktop PCs to allow it to quantitatively evaluate feature 

decisions, and receive guidance on minimum incremental margin necessary for features to be 
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viable. It then used RCO to prioritize features in its offerings. Today, these tools continue to 

provide critical input into three major PSG programs: 

 Worldwide Recommended Offering (RO) program for notebooks and desktops. This 

program uses RCO to identify the most critical features in each region; it designates them as the 

“core offering,” which includes about 20 percent of the feature portfolio and covers 80 percent of 

all orders. It classifies all other features as the “extended offering.” PSG provides different 

service levels for the two classes of features. It stocks core features in higher inventory levels; 

thus, they have short lead times. It stocks extended features at lower levels or not at all; thus, 

they have longer lead times. By reallocating its inventory investment, PSG has reduced its 

average OCT by four days on core notebook features and two days on core desktop features 

since 2006. These operational efficiency gains are self-reinforcing. Demand shifts to the core 

because customers who choose core features are rewarded with rapid delivery. As demand 

concentrates on fewer features, demand variability declines, leading to additional cycle-time 

improvements. In the program’s first six months, the number of features required to cover 80 

percent of orders dropped by one-fifth, the average revenue contribution of core features 

doubled, and that of extended features stayed flat. RO-based demand steering has improved 

forecast accuracy and availability, lowered inventory expenses, and improved consistency and 

predictability for both customers and suppliers. To date, PSG has implemented the notebook RO 

program in the United States and Asia/Pacific region, and the desktop RO program in the United 

States and Europe/Middle East region. PSG estimates that each day of OCT improvement saves 

it at least $38M annually in inventory-driven costs, operational expenses, and financing, and a 

$12M one-time gross margin increase through cash-flow benefits. PSG management estimates 

that it realized savings of $130M in EMEA and the United States in the first year of RO 
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implementation, and $100M annually thereafter. Rollouts to other PSG product lines are likely to 

generate comparable benefits. 

 Global Product Offering program. This initiative is a set of products made available 

worldwide to HP’s largest global customers. Each customer has a preferred set of standard 

products, and wants those products offered worldwide with consistent price, components, and 

life cycle. Since early 2008, RCO has been used to design this offering, replacing the previously 

used manual “best guess” process. The global product offering adoption rate has increased from 

18 to 85 percent. Moreover, revenue from PSG's global customers grew 23 percent in 2008, 

partly because of a better-designed global product offering.  PSG conservatively estimates a 

$130M annual revenue increase because of using RCO for this initiative; global-customer 

escalations, because of inconsistent worldwide product offerings, have also decreased 

significantly. 

 Feature Screening program. Using the complexity cost assessment and the complexity ROI 

calculator tools developed for notebooks and desktops, PSG can perform data-driven evaluation 

of product proposals and eliminate low-ROI products or features before launching them into the 

portfolio, thus avoiding a range of unrecoverable costs. To date, these programs have generated 

over $100M in margin improvements and continue to generate over $40M per year for PSG. 

The initiatives have generated hundreds of millions of dollars in impact in PSG, and 

dramatically changed how its management and operations teams work. Marketing and supply 

chain teams can now have informed, fact-based discussions around trade-offs in the portfolio 

and, for the first time, jointly discuss the concept of the “sweet spot.”   

Many organizational and informational hurdles hindered implementation of the initiatives. 

The primary challenge, in PSG and across HP, was to shift the mindset from revenue-focused 



21 

management to margin-focused management. The decisions that drove explosions in product 

variety were made to chase revenue opportunities, without a clear understanding of their cost and 

margin impacts. Margin-focused management required cross-functional teams to bridge the 

organizational divide between supply chain, marketing, and R&D to bring together a complete 

picture of the costs and benefits of variety. To exacerbate matters, many incentives both in the 

sales organization and for executive management were based on revenue results rather than 

profitability results. The efforts supported by HP’s OR teams provided data-driven and unbiased 

insights and tools to bridge the organizational divide. We also helped put in place explicit 

complexity metrics, which eventually became part of the scorecards used to evaluate 

management performance. 

A second challenge was around disseminating and gaining agreement on the many process 

changes that came out of the programs in PSG, such as new rules for customer communication, 

inventory management, and supplier management.  

Lastly, the data-driven processes that we put in place also required new information links and 

improved management of product and part information within PSG. Building and supporting the 

tools driving the solution implementation required support from HP’s IT organization. 

Impact 

Across all its businesses, HP has achieved, and continues to enjoy, substantial benefits from the 

implementation of the portfolio management techniques described in this paper. These include 

direct financial benefits, operational improvements, and a range of important “soft” benefits. For 

example, using a complexity ROI calculator custom-built with executives and program managers 

from their business, the company’s trademark Laserjet business reduced SKU counts by 40 
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percent between 2006 and 2009, dramatically streamlining the offering and generating annual net 

profits of approximately $20M.  

HP’s enterprise server business, Business Critical Systems (BCS), runs RCO quarterly to 

evaluate its existing product portfolio and make product rationalization decisions. RCO enabled 

the elimination of more than 3,300 products from BCS’ portfolio of over 10,000 products from 

late 2004 through 2008. BCS supply chain managers estimate that this reduction has resulted in 

at least $11M in administrative cost savings, excluding any inventory cost or other operational 

expense. They have also used RCO to help them prioritize the order in which products should be 

brought into compliance with new European environmental standards. Moreover, BCS employs 

RCO for improved, data-driven design of options for new-product platforms based on the order 

history of previous-generation platforms. 

The use of the ROI screening framework and RCO in HP’s portfolio management programs 

has yielded company-wide profit improvements, conservatively estimated, of over $500M 

between 2005 and 2008, and continues to generate benefits of about $180M per year, with the 

potential for greater benefits through expanded deployment of these methods. 

The application of these tools has also yielded important qualitative benefits for HP:  

 Improved customer satisfaction. PSG customers appreciate the overall cycle-time reduction 

and the more predictable product availability that has resulted from RO program. These changes 

have improved customer loyalty, market share, and competitive positioning for PSG. Moreover, 

the global product offering allows PSG’s large global customers to satisfy their product 

requirements in multiple countries, leading to increased demand, higher customer satisfaction, 

and markedly fewer global-customer escalations to HP’s top management.  

 Product-line complexity reduction. Elimination of thousands of low-value products from 
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HP’s lineups, both through prelaunch screening and postlaunch rationalization, reduced 

complexity and drove cost reductions across many areas, such as product development, 

qualification, testing, forecasting, planning, order management, manufacturing, data 

management, marketing, and supplier management.   

 Reduced confusion among customers and sales representatives. Significant SKU 

reductions throughout the company have lessened the confusion that excess product variety 

caused among customers and HP sales professionals.  

 Partner and supplier benefits. HP’s suppliers and channel partners benefit from improved 

forecasting accuracy, as well as reduced up-front tooling and qualification costs achieved 

through these portfolio management techniques. 

 Increased organizational effectiveness. The use of the OR-based tools to manage product 

variety has heightened awareness of the cost of complexity throughout HP businesses, brought 

about better organizational discipline in SKU introduction, improved collaboration between 

product marketing and supply chain teams, and resulted in a significant reduction in costly 

manual errors that arose from overloading the forecasting and planning teams. 

 Improved visibility of OR within HP. The success of RCO and the complexity ROI 

calculators has improved organizational understanding, up to the senior executive level, of how 

OR can provide operational efficiencies to increase revenue and profit. The high visibility of 

RCO and the complexity ROI framework benefits has led to several new deployments of these 

tools.  

 Portability. HP’s approaches to managing product variety are applicable to many businesses 

inside and outside of HP. In configurable-product businesses, where fulfillment of an order 

depends on availability of several products, RCO can help achieve operational efficiencies by 
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identifying the sweet spot in the offering. The complexity ROI framework has been and 

continues to be applied successfully outside of HP. The consulting authors have worked with 

companies in a variety of industries to implement similar approaches in their businesses. 

OR at HP 

 
HP has been a leader in applying OR to its important business problems for decades. In addition 

to its many OR professionals throughout the company, HP has two major centers of excellence in 

OR: SPaM and HP Labs. SPaM is an analytics team that works through an internal consulting 

model to support operational innovation and operations strategy at HP, while delivering 

immediate impact through business projects. It combines the talents of OR PhDs with top-tier 

management-consulting experience (Olavson and Cargille 2008). SPaM sometimes partners with 

OR academics or analytical consultants at specialized firms, such as Strategic Management 

Solutions, an important contributor to the development of the variety-management ROI 

screening framework that SPaM uses. HP Labs is HP’s central R&D organization chartered to 

conduct high-impact scientific research to address the most important opportunities that HP and 

its customers will face in the next decade. Within HP Labs, researchers with PhDs in OR, 

mathematics, statistics, economics, and computer science deliver sophisticated analytical tools to 

HP’s businesses and advance the state of the art in business-process research (Jain 2008). SPaM 

and HP Labs, in collaboration with the authors of this paper, developed the approaches to 

product portfolio management described herein.  

Conclusions 

HP’s approach to managing its product portfolio is a real-world example of applying OR to 

dramatically improve business performance. While grounded in science, our solutions are highly 

tailored to the true nature of the business problems facing HP. They represent a powerful, 



25 

comprehensive, and flexible approach to managing product variety. It has proven successful at 

HP and is extendable to businesses in other industries. 

Appendix 1: A Method for Calculating Variability-Driven Costs 

We define variability-driven costs as costs resulting from physical mismatches of demand and 

available supply, including both costs of shortage (expediting, lost sales, and material price 

premiums) and inventory holding and excess (excess and obsolescence, component devaluation, 

product discounting, or price protection). We also present an extension of the method to allow 

variability-driven costs to be approximated as a simple function of part or product volume, 

making it easy to operationalize the method in decision support tools, such as the ROI 

calculators. 

The advantage of calculating variability-driven costs directly is that this method can be 

applied to analyze the impact of process improvements on known cost pools or high-risk events 

(e.g., new-product introduction or product end of life). Most importantly, the method provides an 

alternative for quantifying the financial benefits of any process change that pools demand risk to 

reduce demand variability, such as reducing part variety or consolidating inventory stocking 

locations. The typical rough-cut approach estimates how much an inventory buffer can be 

reduced, and applies an average inventory-driven cost rate against this reduction to calculate a 

cost savings. Although useful in some contexts, this rough-cut method also has serious 

shortcomings. First, it addresses only the costs of excess and not the costs of shortage. Second, 

the calculated risk-pooling benefits approach zero as the planned inventory buffer approaches 

zero; however, some of the highest sources of variability-driven cost concern events in which the 

buffer is relatively small, e.g., end-of-life planning, buffer planning in advance of announced 
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component price drops, or large demand spikes because of big account orders. By contrast, our 

method does not have these shortcomings. 

The foundation for calculating variability-driven costs is a closed-form calculation of 

expected stockouts and expected on hand units. We use the following definitions: 

X: random demand over replenishment lead time (lead-time demand). 

= E(X): expected lead-time demand. 

 = stdev(X): standard deviation of lead-time demand. 

S = E(X) + b: order-up-to point of inventory in a periodic-review system.  

b: target safety stock buffer quantity in units, where b = S – E(X). 

k: the fractile on the unit normal associated with the buffer quantity:  bSk  )( . 

Fu(k), fu(k): distribution and density function for the unit normal distribution.  

Fundamentally, we are interested in evaluating two quantities: E[stockout(S)], the expected 

stockout if the order-up-to point is S, and E[on-hand inventory(S)], the expected on-hand 

inventory units if the order-up-to point is S. Special properties of the normal and Gamma 

distributions allow closed-form solutions to these expressions. We illustrate for the normal case 

below. First, observe that stockout(S) – on-hand inventory (S) = X – S, from which we have: 

E[on-hand inventory (S)] = S –E(X) + E[stockout(S)] = b + E[stockout(S)].   (1) 

In the case of normally distributed demand, we can calculate the expected stockout by scaling the 

solution derived in Silver et al. (1998, Equation B.7) for the unit normal by the factor : 

E[stockout(S)] = )]).(1[)(( kFkkf uu       (2) 

Stockouts are typically measured in percentage terms as a fill rate, calculated as:  

fill rate(S) = 1 – E[stockout(S)]/. 

Combining Equations (1) and (2) yields an expression for expected on-hand inventory: 
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E[on-hand inventory(S)] = ))()(( kkFkf uu  .       (3) 

 From Equations (2) and (3), we can calculate how the expected excess and shortage rate 

(units as a percent of mean demand) vary with changes in lead-time demand variability. If we 

assume that historical total variability-driven cost pools (e.g., total excess and obsolescence 

costs) scale in proportion to the shortage and excess rates, then we have a model for how each 

cost pool can be impacted based on the lead time and buffer stock relevant to that cost pool. For 

example, for end-of-life discounting costs, the target buffer is zero, and the lead time for critical 

components could be longer than usual as suppliers demand end-of-life buys at longer lead 

times.  

An extension of the method allows the variability-driven cost per unit to be modeled as a 

function of average part volume. This allows us to quantify how the variability-driven cost varies 

with volume. For example, consider the guideline “an LCD panel selling less than 10K units per 

month has a $10/unit higher variability-driven cost than a panel selling more than 50K per 

month.” This is easy to understand and easy to factor into the decision process of whether to 

offer an additional panel in the product line. Figure 6 summarizes the analysis process.  

To derive the cost per unit as a function of volume relationship, it is also necessary to model 

a statistical relationship between part volume and variability—low-volume parts have a higher 

coefficient of variation (CoV or ratio of standard deviation to average demand). We conducted a 

statistical analysis and concluded that a statistical estimator for a part’s demand variability 

derived from such an aggregate volume-variability relationship (using data from many different 

parts) carries as much predictive value for the part’s true variability going forward as did an 

estimator derived from a limited history of actual data on that specific part. Next, we collect data 

on the distribution of part volumes across the portfolio, so that the following equality holds: 
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where we sum across all the n parts, each with average volume vi and variability-driven cost per 

unit c(vi), to arrive at the total portfolio variability-driven cost Cportfolio. Although we know the 

part volumes and the total cost, we do not know c(v). However, we can calculate a relative cost 

curve, r(v), using the on-hand inventory and shortage-cost modeling, and we can link the two 

through a constant d for which we will solve: 
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We now have a simple link between part volume and cost; we can use it in the complexity 

cost calculator to compare the costs of multiple small-volume SKUs versus pooling the volume 

in a single SKU.  

 

 
 

Figure 6: The flowchart shows an overview of an approach for estimating variability-driven cost per unit. 
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Appendix 2: RCO Problem Formulation and SPMF Algorithm 

In this appendix, we describe the technical details of the RCO problem formulation and its 

equivalence to a parametric maximum-flow problem in a bipartite network, and provide an 

overview of a new algorithm for parametric maximum flow.  

The problem of finding a product portfolio of size at most n that maximizes the revenue of 

orders covered can be formulated as the integer program IP(n): 

Maximize o oo yr  subject to: 

(1) yo ≤ xp for each product-order combination (o,p),      

(2) nx
p p  ,   

(3) xp  {0,1}, yo  {0,1},  

where ro is the revenue of order o, and binary decision variables xp and yo represent whether 

product p is included in the portfolio, and whether order o is covered by the portfolio, 

respectively. 

Because typical data sets have hundreds of thousands of product-order combinations, IP(n) 

can take many hours to solve, or might even exceed memory limitations. However, it does have a 

nice structural property—the constraints (1) are totally unimodular. We exploit this property by 

creating the following Lagrangian Relaxation LR(): 

Maximize  
p po oo xyr   subject to: 

 yo ≤ xp for each product-order combination (o,p), 

 xp  [0,1], yo  [0,1].  

Because LR() is totally unimodular, it has an integer optimal solution. Moreover, if a set of 

covered orders and selected products, (O,P), is optimal for LR(), then it is optimal for IP(|P|). 
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Thus, solving LR() for a series of values of  generates a series of solutions to IP(n) for several 

values of n. Solutions generated by this method are nested—the optimal set of covered orders for 

a given 0 is a subset of the optimal covered orders for smaller  ≤ 0. Moreover, these solutions 

lie along the efficient frontier of revenue coverage versus portfolio size. This series does not 

provide an integer solution for every possible value of n; solutions below the concave envelope 

of the efficient frontier are skipped. However, in practice, the number of distinct solutions is 

typically about 85 percent of the total product count. A wise selection of values of  produces 

quite a dense curve of solutions. To obtain a complete product ranking, we use product revenue 

impact as a heuristic to break ties among products, because this metric proved to be the best 

approximation to RCO among the heuristics we tried. 

Our original implementation of RCO used a commercial LP solver (CPLEX) to solve the 

series of problems, LR(). However, for typical data sets with millions of order line items, each 

such problem took several minutes to solve. To solve it for many values of  to create a dense 

efficient frontier took many hours. We needed a more efficient approach.  

 
The key to a more efficient approach is the 

equivalence between the problem, LR(), and 

the problem of finding a minimum cut in a 

particular bipartite network (Balinksi 1970). To 

see how LR() can be viewed as a minimum-

cut problem, consider the network in Figure 7, 

with a source node s at the far left and a sink node t at the far right. Adjacent to the source node 

is a set of nodes, each corresponding to one product. Adjacent to the sink node is a set of nodes, 

Figure 7. The diagram illustrates a bipartite minimum-
cut/maximum-flow problem that correspond to the  

Lagrangian relaxation LR(). 
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each corresponding to one order. The capacity of the links adjacent to s is . The capacity of the 

link from the node for order i is the revenue of order i. The capacity of links between product 

nodes and order nodes is infinite.  

For this network, the set T in a minimum cut corresponds to the products selected and orders 

covered by an optimal solution to LR(). To see why, first observe that because the links from 

product nodes to order nodes have infinite capacity, they will not be included in a finite capacity 

cut. Therefore, for any order node in the T set of a finite capacity cut, each product in the order 

must also have its node in T. Therefore, a finite capacity cut corresponds to a feasible solution to 

LR(). Moreover, the value of an s-t cut is    
p po oo xyr 1 . Minimizing this quantity is 

equivalent to maximizing  
p po oo xyr  ; therefore, a minimum cut is an optimal solution to 

LR().  

It is a well-known result of Ford and Fulkerson (1956) that the value of a maximal flow 

equals the value of a minimum cut. Moreover, the minimum cut can be obtained by finding a 

maximal flow. 

Because we seek a solution to LR() for multiple values of ,, it is a parametric maximum-

flow problem because the arc capacities depend on a parameter. Several known algorithms for 

parametric maximum flow exist, including those in Gallo et al. (1989) for general networks and 

Ahuja et al. (1994) for bipartite networks. In most prior algorithms for parametric maximum 

flow, a series of maximum-flow problems is solved, and each problem’s solution is used to speed 

up the solution to the next one. By comparison, the algorithm presented here simultaneously 

finds the maximum flow in the network for all break points of the parameter value. The value of 

the maximum flow from s to t is a piecewise linear function of . A break point of the parameter 

value is where the derivative of the piecewise linear function changes. 
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Parametric Bipartite Maximum-Flow Algorithm  

The new parametric bipartite maximum-flow algorithm takes advantage of the special structure 

of the capacity constraints that Figure 7 shows.  

The logic behind the algorithm is as follows. First assume that =. Then, the only 

constraints on flows result from the capacity limitations on arcs incident to t. Finding flow 

assignments that saturate all capacitated links, resulting in a maximum total flow, is easy.   

The next step is to find such a maximum-flow assignment that distributes flows as evenly as 

possible across all arcs leaving s. The property “evenly as possible” means that rebalancing 

flows between any pair of arcs in such a way that the absolute difference between these two 

flows decreases is impossible. Note that even in this most even maximum-flow assignment, not 

all flows will be the same. 

Now, with the most even assignment discussed above, impose capacity constraints of < on 

the arcs leaving s. If the flow assignment for a given one of these arcs exceeds , reduce the flow 

on this arc to  and propagate the flow reduction appropriately through the rest of the graph. 

Because the original flow assignment was most evenly balanced, the total flow lost to the 

capacity constraint is minimal and the total flow remaining is maximal for the given parameter .  

More formally, the algorithm works as follows: 

Step 1: For a graph, as in Figure 7 with =, select an initial flow assignment that saturates 

the arcs incident to t. This is most easily done backwards, starting from t and choosing an 

arbitrary path for a flow of size ri from t through oi to s. 

Step 2: Rebalance the flow assignment iteratively to obtain a “most evenly balanced” flow 

assignment. Let f(ab) denote the flow along the link from node a to node b. The rule for 

redistributing the flows is as follows. Pick i and j for which there exists an order node ok and arcs 
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piok and pjok such that f(spi) < f(spj) and f(pjok) > 0. Then, reduce f(spj) and 

f(pjok) by min{(f(spj)-f(spi))/2,  f(pjok)} and increase  f(spi) and f(piok) by the same 

amount. Repeat Step 2 until no such rebalancing can be found.  

The procedure in Step 2 converges, as Zhang et al. (2004, 2005a) prove. The limit is a flow 

assignment that is “most evenly balanced.” In addition, because total flow is never reduced, the 

resulting flow assignment is a maximum flow for the graph with =. 

Step 3: To find a maximum-flow assignment for a given value of , replace flows exceeding 

 on arcs leaving the source s by  and reduce subsequent flows appropriately to reconcile flow 

conservation. The resulting flow assignment is a maximum flow for . 

Zhang et al. (2005a) provide more details and a rigorous mathematical treatment of the 

problem. Zhang et al. (2004) show that the algorithm generalizes to the case in which arc 

capacities are a more general function of a single parameter.  

Because our application requires only knowledge of the minimum cut, one only needs to 

identify those arcs that exceed the capacity limit of  after Step 2. Those arcs will be part of the 

minimum cut; the ones leaving s with flows less than  will not. To find the remaining arcs that 

are part of the minimum cut, one has only to identify which order nodes connect to s through one 

of the arcs with flows less than , and cut through those nodes’ arcs to t. 

We can show that the t-partition of the minimum cut with respect to  contains products 

whose flows from the source equal , and the orders containing only those products. These 

products constitute the optimal portfolio for parameter . Note that Steps 1 and 2 are independent 

of . The result of Step 2 allows us to immediately determine the optimal portfolio for any value 

of .  
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Because the flows are balanced between two arcs, spi and spj, in the algorithm described 

above, we call it an arc-balancing method. Arc-balancing SPMF reduced the time for finding the 

entire efficient frontier from hours to a few minutes.  

We developed a second version of the SPMF algorithm based on the idea of redistributing 

the flows going into a node o in a single step; for all pairs pio and pjo, flows f(spj) and 

f(pjok) are “most evenly balanced.” This method of redistributing flows around a vertex o is 

the vertex-balancing method (Zhang et al. 2005b). Vertex-balancing SPMF further reduces the 

time for finding the entire efficient frontier to seconds for typical problems.   
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