

Keyword(s):

Abstract:

Experience in Extending Query Engine for Continuous Analytics

Qiming Chen, Meichun Hsu

HP Laboratories
HPL-2010-44

In-Database Stream Processing

Combining data warehousing and stream processing technologies has great potential in offering
low-latency data-intensive analytics. Unfortunately, such convergence has not been properly addressed so
far. The current generation of stream processing systems is in general built separately from the data
warehouse and query engine, which can cause significant overhead in data access and data movement, and
is not able to take advantage of the functionalities already offered by the existing data warehouse systems.
In this work we tackle some hard problems not properly addressed previously in integrating stream
analytics capability into the existing query engine. We define an extended SQL query model that unifies
queries over both static relations and dynamic streaming data, and develop techniques to generalize query
engines to support the unified model. We propose the cut-and rewind query execution model to allow a
query to be applied to stream data by converting the latter into a sequence of "chunks", and executing the
query over each chunk sequentially without shutting the query instance down between chunks;, we also
propose the cycle-based transaction model to support Continuous Querying with Continuous Persisting
(CQCP) with cycle-based isolation and visibility. We have prototyped our approach by extending the
PostgreSQL. This work has resulted in a new kind of tightly integrated, highly efficient system with the
advanced stream processing capability as well as the full DBMS functionality. We demonstrate the system
with the popular Linear Road benchmark, and report the performance. By leveraging the more mature
codebase of a query engine to the maximal extent, we can significantly reduce the engineering investment
needed for developing the streaming technology. Providing this capability on HP SeaQuest parallel
analytics engine is work in progress.

External Posting Date: May 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: May 21, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

Experience in Extending Query Engine for
Continuous Analytics

 Qiming Chen Meichun Hsu
 HP Labs HP Labs

 Palo Alto, California, USA Palo Alto, California, USA
 Hewlett Packard Co. Hewlett Packard Co.

 qiming.chen@hp.com meichun.hsu@hp.com

Abstract
Combining data warehousing and stream processing technologies has great potential in offering low-latency data-intensive
analytics. Unfortunately, such convergence has not been properly addressed so far. The current generation of stream
processing systems is in general built separately from the data warehouse and query engine, which can cause significant
overhead in data access and data movement, and is not able to take advantage of the functionalities already offered by the
existing data warehouse systems.
In this work we tackle some hard problems not properly addressed previously in integrating stream analytics capability into
the existing query engine. We define an extended SQL query model that unifies queries over both static relations and dynamic
streaming data, and develop techniques to generalize query engines to support the unified model. We propose the cut-and-
rewind query execution model to allow a query to be applied to stream data by converting the latter into a sequence of
“chunks”, and executing the query over each chunk sequentially without shutting the query instance down between chunks;,
we also propose the cycle-based transaction model to support Continuous Querying with Continuous Persisting (CQCP)
with cycle-based isolation and visibility.
We have prototyped our approach by extending the PostgreSQL. This work has resulted in a new kind of tightly integrated,
highly efficient system with the advanced stream processing capability as well as the full DBMS functionality. We
demonstrate the system with the popular Linear Road benchmark, and report the performance. By leveraging the more
mature code base of a query engine to the maximal extent, we can significantly reduce the engineering investment needed for
developing the streaming technology. Providing this capability on HP SeaQuest parallel analytics engine is work in
progress.

1. Problem Statement
Streaming analytics is a data-intensive computation chain from event streams to analysis results. In response to
the rapidly growing data volume and the increasing need for lower latency, Data Stream Management Systems
(DSMSs) provide a paradigm shift from the load-first analyze-later mode of data warehousing [13,16].

However, the current generation of DSMS is in general built separately from the data warehouse query engine,
due to the difference in handling stream data and static data; as a result, the data transfer overhead between the
two has become a performance and scalability bottleneck [4,6,10]. The standalone DSMS’s also lack the full SQL
expressive power and DBMS functionalities of managing persistent data. It does not have the appropriate
transaction support for continuously persisting and sharing results along with continuous querying. As stream
processing evolves from simple to complex, these functionalities are likely to be redeveloped.

In this paper we tackle the following technical challenges in integrating stream processing with data warehouse
query engine:

• A query engine manages relations (tables) which contain well defined sets. However, a stream is unbounded,
and never reaches the "end of data", which would pose problems with the existing query model and transaction
model.

• Stream analytics require operators that are history sensitive; these operators are often based on windows over
the stream data, and there is a need to efficiently maintain the state or a synopsis of the data that falls within a
window.

• During stream processing, there is a need to persist periodically to allow the analysis results to be visible to
other concurrent applications, sometimes even to another branch of the same query. This will require extended

transaction semantics that is not supported with existing query engines.

2. Our Solution
We view a query engine essentially as a streaming engine, although this potential has not been thoroughly
explored. With this vision, we advocate an extended SQL model that unifies queries over both streaming and
static relational data, and a new architecture for integrating stream processing and DBMS to support continuous,
“just-in-time” analytics with window-based operators and transaction semantics.

We report our experience in leveraging the PostgreSQL engine for supporting stream processing. The proposed
mechanism has been implemented with necessary engine extensions, resulting in a tightly integrated, highly
efficient platform with the advanced stream processing capability as well as the full DBMS functionality. We
demonstrated the merit of our platform using the popular Linear Road benchmark. Providing this capability on HP
SeaQuest parallel database engine is currently being explored.

2.1 The Unified Query Model

We illustrate our approach to unifying queries over static and stream data with the following example application,
first expressed as a query over static relations, and then as a hybrid query that includes a stream source. The
graphical representation of the 2 queries is shown in Fig. 1.

Fig. 1: An application computes the total amount of toll charged for each highway segment per minute. The inputs are two
stored relations, C and S.

 C contains the event that a car enters a tolled segment, with the schema (cid, sid, ts), where cid is a unique
identifier of the vehicle, sid is the identifier of the highway segment, and ts is the timestamp in second. For
example, a tuple <12717, 13, 340> says that vehicle 12717 enters segment 5 during minute 5.

 S contains the highway segment info with schema (sid, toll) where toll is the toll per car for segment sid.

The following SQL query implements this application (as shown on the left of the above figure):

Q1:
SELECT sid, floor(ts/60) as minute, sum(charge)
FROM S, C
WHERE C.sid = S.sid
GROUPBY sid, minute

However, if the table C above is not a stored relation, but a real-time stream source, while the segment info S
remains a stored relation, and the output is expected to appear with minimal latency every minute, then the above
application becomes a streaming application. With our approach for integrated stream processing, the above
static SQL query is adapted to a streaming query simply by defining SC as a stream (instead of a table) with the
same schema as C and changing the reference to C in Q1 as follows (shown on the right of the above figure):

SUM-GB

JOIN C.sid = S.sid

Query result

Sum (charge),
Groupby sid, minute

S C

Q1

SUM-GB

JOIN

SC

C.sid = S.sid

Query result

Sum (charge),
Groupby sid, minute

S

“cut”
“chunk 0”

“cut”
“chunk 1”

Q2

Q2:
SELECT sid, floor(ts/60) as minute, sum(charge)
FROM S, STREAM (SC, cycle-spec)
WHERE SC.sid = S.sid
GROUPBY sid, minute

In the above query, STREAM(SC, cycle-spec) specifies that the stream source SC is to be “cut” into an unbounded
sequence of chunks SCC0, SCC1, …, where all tuples in SCC i occur before any tuple in SCCi+1 in the stream. The
criterion for determining the “cut point” is specified in the cycle-spec. For example, in this application, the cycle-
spec is set to be “per minute”. Let Q1 above be denoted as a query function over table C, i.e., Q1(C). The
execution semantics of Q2 is defined as executing Q1(SCCi) in sequence for all SCC i’s in the stream source SC.

In general, our proposed unified model is defined as follows:

Given a query Q over a set of relations R1,..,Rn and an infinite stream of relation tuples S with a criterion C for
cutting S into an unbounded sequence of chunks, e.g. by every 1-minute time window,

 <SC0, SC1, …, SCi, …>

where SCi denotes the i-th “chunk” of the stream according to the chunking-criterion C. SCi can be interpreted as a
relation. The semantics of applying the query Q to the unbounded stream S plus bounded static relations R1,..,Rn
lies in

Q (S, R1,..,Rn) < Q (SC0, R1,..,Rn), … Q (SCi, R1,..,Rn), ... >

which continuously generates an unbounded sequence of query results, one on each chunk of the stream data.

The cycle specification can be based on time or a number of tuples, which can amount to as small as a single
tuple, and as large as billions of tuples per cycle. The stream query may be terminated based on specification (e.g.
run for 300 cycles), user intervention, or a special end-of-stream signal received from the stream source.

In this paper we have limited a query to refer to a single stream and thus a single cycle specification. In general,
our model allows multiple stream queries to refer to the same source, and these queries can interact through
database tables. Extensions to allow multiple streams or hybrid queries to interact without going through database
tables are being investigated.

A significant advantage of the unified model lies in that it allows us to exploit the full SQL expressive power on
each data chunk. The output is also a stream consisting of a sequence of chunks, with each chunk representing the
query result of one execution cycle. While there may be different ways to implement our proposed unified model,
our approach is to generalize the SQL engine to include support for stream sources. The approach enables queries
over both static and streaming data, retains the full SQL power, while executing stream queries efficiently. The
elements of our approach are introduced in the following subsections.

2.2 Stream Source Function

A SQL query is parsed and optimized into a query plan that is a tree of operators. The scan operator at the leaf of
the tree gets and materializes a block of data to be delivered to the upper layer tuple by tuple. The scan operator is
invoked multiple times in a query execution on the per-tuple basis, which forms a dataflow pipeline, and in this
sense, similar to stream processing.

We start with providing unbounded relation data to feed queries continuously. The first step is to replace the
database table, which contains a set of tuples on disk, by the special kind of table function1, called Stream Source
Function (SSF) that listens or reads data/events sequence and returns a sequence of tuples to feed queries without
first storing the tuples on disk. A SSF is called multiple, up to infinite, times during the execution of a stream
query, each call returns one tuple. When the pre-specified end-of-cycle condition is detected, the SSF signals the
query engine to terminate the current query execution cycle.

2.3 Cycle Based Streaming Query Execution with Cut-and-Rewind

To support the cycle based execution of stream queries, we propose the cut-and-rewind query execution model,
namely, cut a query execution based on the cycle specification (e.g. by time), and then rewind the state of the
query without shutting it down, for processing the next chunk of stream data in the next cycle.

Under this cut-and-rewind mechanism, a stream query execution is divided into a sequence of cycles, each for
processing a chunk of data only; it, on one hand, allows applying a SQL query to unbounded stream data chunk
by chunk within a single, long-standing query instance; on the other hand, allows the application context (e.g. data
buffered within a User Defined Function (UDF)) to be retained continuously across the execution cycles, which is
required for supporting sliding-window oriented, history sensitive operations. Bringing these two capabilities
together is the key in our approach.

Cut. Cutting stream data into chunks is originated in the SSF at the bottom of the query tree. Upon detection of
end-of-cycle condition, the SSF signals end-of-data to the query engine through setting a flag on the function call
handle, that, after being interpreted by the query engine, results in the termination of the current query execution
cycle.

If the cut condition is detected by testing the newly received stream element, the end-of-data event of the current
cycle would be captured upon receipt of the first tuple of the next cycle; in this case, that tuple will not be
returned by the SSF in the current cycle, but buffered within the SSF and returned as the first tuple of the next
cycle. Since the query instance is kept alive, that tuple can be kept across the cycle boundary.

Rewind. Upon termination of an execution cycle, the query engine does not shut down the query instance but
rewinds it for processing the next chunk of stream data. Rewinding a query is a top-down process along the query
plan instance tree, with specific treatment on each node type. In general, the intermediate results of the standard
SQL operators (associated with the current chunk of data) are discarded but the application context kept in UDFs
(e.g. for handling sliding windows) are retained. The query will not be re-parsed, re-planned or re-initiated.

Note that rewinding the query plan instance aims to process the next chunk of data, rather than re-deliver the
current query result; therefore it is different from “rewinding a query cursor” for re-delivering the current result
set from the beginning. For example, the conventional cursor rewind tends to keep the hash-tables for a hash-join
operation but our rewind will have such hash-tables discarded since they were built for the previous, rather than
the next, data chunk.

As mentioned above, the proposed cut-and-rewind approach has the ability to keep the continuity of the query
instance over the entire stream while dividing it to a sequence of execution cycles. This is significant in
supporting history sensitive stream analytic operations, as discussed in the next subsection.

2.4 Stream Analytics and Window Operators based on UDFs

One important characteristics of stream processing is the use of stream-oriented history-sensitive analytic
operators such as moving average or change point detection. While standard SQL engine contains a number of
built-in analytic operators, stream history-sensitive operators are not supported. User Defined Functions (UDFs)
are the generally accepted mechanism to extend query operators in a DBMS. A UDF can be provided with a data
buffer in its function closure, and for caching stream processing state (synopsis). Furthermore, it is also used to
support one or more emitters for delivering the analytics results to interested clients in the middle of a cycle,
which is critical in satisfying stream applications with low latency requirement.

1 A table function in a relational database system is a user-defined function (UDF) that returns a table.

Stream processing involves operations on (time) windows, including sliding windows, and therefore is history
sensitive. This represents a different requirement from the regular query processing that only cares about the
current state. We use UDFs to add window operators and other history sensitive operators, buffering required raw
data or intermediate results within the UDF closures.

A scalar UDF is called multiple times on the per-tuple basis, following the typical FIRST_CALL,
NORMAL_CALL, FINAL_CALL skeleton. The data buffer structures are initiated in the FIRST_CALL and used
in each NORMAL_CALL. A window function defined as a scalar UDF2 incrementally buffers the stream data,
and manipulates the buffered data chunk for the required window operation. Since the query instance remains
alive, as supported by our cut-and-rewind model, the UDF buffer is retained between cycles of execution and the
data states are traceable continuously (we see otherwise if the stream query is made of multiple one-time
instances, the buffered data cannot be traced continuously across cycle boundaries). As a further optimization, the
static data retrieved from the database can be loaded in a window operation initially and then retained in the entire
long-standing query, which removes much of the data access cost as seen in the multi-query-instances based
stream processing.

UDFs can be used to develop a library of reusable stream operators and further allow the unified query model to
be extended. As will be illustrated in our Linear Road (LR) implementation, the 5-minute moving average speed
is provided through a moving average UDF, atop the per-minute average speed, the latter computed using the
standard SQL average-groupby function in one query cycle.

2.5 Continuous Querying With Continuous Persisting (CQCP)

One problem of the current generation of DSMSs is that they do not support transactions. Intuitively, as stream
data are unbounded and the query for processing these data may never ends, the conventional notion of
transaction boundary is hard to apply. In fact, transaction notions have not been appropriately defined for stream
processing, and the existing DSMSs typically make application specific, informal guarantees of correctness.

However, to allow a hybrid system where stream queries can refer to static data stored in a database, or to allow
the stream analysis results (whether intermediate or final) to persist and be visible to other concurrent queries in
the system in a timely manner, a transaction model which allows the stream processing to periodically “commit”
its results and makes them visible is needed.

Note that if a stream application does not use static data in the database, or does not persist results and make them
visible to other concurrent applications, then transaction semantics are not needed. In our design, the transaction
semantics is used, and thus transaction management overhead is incurred, only when a stream application requires
persistent data management.

Query Cycle based Transaction Model. Conventionally a query is placed in a transaction boundary. In general,
the query result and the possible update effect are made visible only after the commitment of the transaction
(although weaker transaction semantics do exist). In order to allow the result of a long-running stream query
results to be incrementally accessible, we introduce the cycle-based transaction model incorporated with the cut-
and-rewind query model, which we call continuous querying with continuous persisting, (CQCP). Under CQCP,
a stream query is committed one cycle at a time in a sequence of “micro-transactions”. The transaction boundaries
are consistent with the query cycles, thus synchronized with the chunk-wise stream processing. The per-cycle
stream processing results are made visible as soon as the cycle ends. The isolation level is Cycle based Read
Committed (CRC). To allow the cycle results to be continuously visible to external world, regardless of the table
is under the subsequent cycle-based transactions, we enforce record level locking.

We extended both SELECT INTO and INSERT INTO facilities of the PostgreSQL to support CQCP. We also
added an option to force the data to stay in memory, and an automatic space reclaiming utility should the data be
written to the disk.

Continuous Persisting. In a regular database system, the queries with SPJ (Select, Project, Join) operations and
those with the update (Insert, Delete, Update) operations are different in the flow of resulting data. In a SPJ query,

2 A scalar UDF is a user-defined function that takes a single tuple as input and returns a single tuple as result.

the destination of results is a query receiver connected to the client. In a data update query, such as insert, the
results are emitted to, or synched to, the database.

In stream processing, such separation would be impractical. The analytic results must be streaming to the client
continuously as well as being stored in the database if needed for other applications to access. Therefore, we
extended the query engine to have query evaluation and results persisting integrated and expressed in a single
query. This two-receiver approach makes it possible to have the results both persisted and streamed out
externally.

Certain intermediate stream processing results can be deposited into the database from UDFs. To do so the UDF
must be relaxed from the read-only mode, and employ the database internal query facility to form, parse, plan and
execute queries efficiently. In our prototype, the PostgreSQL SPI (Server Program Interface) is used.

3. Evidence the Solution Works

3.1 Modeling the Linear Road Benchmark

We use the widely-accepted Linear-Road (LR) benchmark [15] to demonstrate our extended query engine. The
LR benchmark models the traffic on express ways for a 3-hour duration; each express way has two directions and
100 segments. Cars may enter and exit any segment. The position of each car is read every 30 seconds and each
reading constitutes an event, or stream element, for the system. A car position report has attributes vid (vehicle
ID), time (seconds), speed (mph), xway (express way), dir (direction), seg (segment), etc. The benchmark requires
computing the traffic statistics for each highway segment, i.e. the number of active cars, their average speed per
minute, and the past 5-minute moving average of vehicle speed. Based on these per-minute per-segment statistics,
the application computes the tolls to be charged to a vehicle entering a segment any time during the next minute,
and notifies the toll in real time (notification is to be sent to a vehicle within 5 seconds upon entering the
segment). The application also includes accident detection; an accident occurring in one segment will impact the
toll computation of that segment as well as a few downstream segments. An accident is flagged when multiple
cars are found to have stopped in the same location.

The graphical representation of our implementation of the LR stream processing requirement is shown in Fig. 2
together with its corresponding stream query.

INSERT INTO toll_table SELECT minute, xway, dir, seg, lr_toll(r.traffic_ok, r.cars_volume)

FROM (

 SELECT minute, xway, dir, seg, cars_volume,

 lr_moving_avg(xway, dir, seg, minute, avg_speed) as mv_avg, traffic_ok

 FROM (

 SELECT floor(time/60)::integer AS minute, xway, dir, seg,

 AVG(speed) AS avg_speed, COUNT(distinct Vid)-1) AS cars_volume,

 MIN(trffic_ok) AS traffic_ok

 FROM (

 SELECT xway, dir, seg, time, speed, vid,

 lr_acc_affected(vid,speed,xway,dir,seg,pos) AS traffic_ok

 FROM STREAM_CYCLE_lr_data(60, 180)

 WHERE lr_notify_toll(vid, xway, dir, seg, time)>=0

) s

 GROUP BY minute, xway, dir, seg

) p

) r

WHERE r.mv_avg > 0 AND r.mv_avg < 40;

Fig. 2. Cycle based stream query for LR benchmark, for both the generation of per-minute, per cycle tolls common to all
cars, and the per car based retrieval of resulting tolls

This query provides the following major functions.

 Stream Source Function. The streaming tuples are generated by the SSF STREAM_CYCLE_lr_data(time,
cycles), from the LR data source file with timestamps, where parameter “time” is the time-window size in
seconds; “cycles” is the number of cycles the query is supposed to run. For example,
STREAM_CYCLE_lr_data(60, 180) delivers the position reports one-by-one until it detects the end of a cycle
(60 seconds), and performs a “cut”, then onto the next cycle, for a total of 180 cycles (for 3 hours).

 Segment statistics and toll generation - As illustrated by the left hand side of Fig. 2, the tolls are derived
from the segment statistics, i.e. the number of active cars, average speed, and the 5-minute moving average
speed, as well as from detected accidents, and dimensioned by express way, direction and segment. We
leveraged the minimum, average and count-distinct aggregate-groupby operators built into the SQL engine,
and provided the moving average (lr_moving_avg) operator and the accident detection (lr_accident) operator
in UDFs.

 Toll persisting - Required by the LR benchmark, the segment tolls of minute m should be generated within 5
seconds after m. The toll of a segment calculated in the past minute is applied to the cars currently entering into
that segment. The generated tolls are inserted into a segment toll table (SegToll) with the transaction committed
per cycle (i.e., per minute). Therefore the tolls generated in the past minutes are visible to the current minute.

 Toll notification –As shown on the right side of Fig. 2, the per-car toll notification is provided by the UDF
lr_notify_toll() appearing in the following phrase

 WHERE lr_notify_toll(vid, xway, dir, seg, time) >= 0

This UDF keeps enough information about active cars so as to detect the event of a car entering a new segment;
and for each car entering a new segment; it emits a toll notification while persisting the toll to a table
(carAccount table) for future account balance queries. This UDF reads the segment tolls of the previous minute
within the FirstCall part of the UDF (represented by the dash line), enabling it to use the information produced
by the previous cycle of the stream query. Since this UDF is a per-tuple UDF (i.e., the NormalCall part of the
UDF is invoked per input tuple), the toll notification is emitted immediately after the position report is received
from the source stream, and does not wait for the current cycle (minute) to terminate. This UDF also persists
the toll into the car account table. While the toll is notified immediately upon receiving the car position report,
persisting the toll is committed once per cycle, in accordance to our CPCQ model.

Multiple features of our cycle-based stream processing approach are illustrated in this query:

(cars_volume) (avg speed) (traffic_ok)

- Read
segment toll
of last minute
- If a car
enters a new
segment, emit
a toll notifi.

toll
notification

COUNT
DISTINCT-GB AVG-GB

UDF

lr_toll
Stream segtoll
(per minute)

Min N
Min N-1

stream p (per minute)

stream r (per minute)

UDF

mvg-avg
operator

lr_Notify_toll

lr_moving avg

SegToll Table

Car
account

table

Stream toll_notif
(per car)

MIN-GB

lr_accident

car pos reports

Source stream

 Cut-and-Rewind. This query repeatedly applies to each data chunks falling in 1-minute time-window as an
execution cycle, and rewinds 180 times in the single query instance; the sub-query with alias p uses the
standard SQL aggregate-groupby function to yield the number of active cars and their average speed for every
minute dimensioned by segment, direction and express way. The SQL aggregate functions are computed for
each cycle with no context carried over from one cycle to the next.

 Sliding Window Function (per-tuple history sensitive). The sliding window function lr_moving_avg()
buffers the up to 5 per-minute average speed for accumulating the dimensioned 5-minute moving average;
since the query is only rewound but not shut down, this buffer is retained continuously across query cycles –
this is a critical advantage of cut/rewind over shutdown/restart.

 Continuous Querying with Continuous Persisting. The top-level construct of the LR query is actually the
INSERT-SELECT phrase; with our engine extension, it persists the result stream returned from the SELECT
query (r) to the toll table on the per-cycle basis. The transactional LR query commits per cycle to make the
cycle based result accessible to subsequent cycles or other concurrent queries after the cycle ends. This cycle-
based isolation level is supported with the appropriate locking mechanism.

 Self-Referencing. The per-car toll notification is generated by the UDF lr_notify_toll(). It efficiently
accesses the segment toll in the last minute directly from the toll table. This kind of self-referencing provides
a handshake mechanism for the producer part and the consumer part of the same query to rely on the query
engine to synchronize, to perform history sensitive stream analytics, and to gain extremely high performance
due to their seamless integration. We believe that such self-referencing represents a common paradigm in
stream processing.

3.2 Experimental Setup

The experimental results are measured on HP xw8600 with 2 x Intel Xeon E54102 2.33 Ghz CPUs and 4 GB
RAM, running Window XP (x86_32), running PostgreSQL 8.4.

The input data are downloaded from the benchmark’s home page. The “L=1” setting was chosen for our
experiment which means that the benchmark consists of 1 express way (with 100 segments in each direction).
The event arrival rate ranges from a few per second to peak at about 1,700 events per second towards the end of
the 3-hour duration. Fig. 4(Left) shows the distribution of data volume per minute, i.e. the per-minute throughput.

The LR data can be supplied in the following two modes:

 Stress test mode: the data are read by the SSF from a file continuously without following the real-time
intervals (continuous input)

 Real-time input: the data are received from a data driver outside of the query engine with real-time intervals.
Each car position report carries a system timestamp assigned by the data driver when the event is generated,
which could be compared with the system timestamps generated during when toll notification is emitted, for
measuring the response time.

We report our experimental results in these 2 different modes.

3.3 Performance under Stress Test Mode

Time for Computing Segment Tolls. Calculating the segment statistics and tolls has been recognized as the
computation bottleneck of the benchmark in the literature. The LR benchmark requires the segment toll to be
calculated based on the segment statistics and traffic status (whether affected by accidents) every minute. We took
the left-hand-side of our LR model in Fig 2 and ran that branch of the query up until the toll is computed, under
the stress test mode. The total computation time with L=1 setting is shown in Fig. 3 (Left). It shows that our
system is able to generate the per-minute per-segments tolls for the total 3 hours of LR data (approx. 12 Million
tuples) in a little over 2 minutes.

LR Segment Toll Computation

0.75 2.56 5.61

19.65

40.12

66.62

96.18

126.37

0

20

40

60

80

100

120

140

60539 225212 495815 1830211 3792111 6251720 9016201 11928635

of events in 10, 20, 30, 60, 90, 120, 150, 180 minutes

T
im

e
(S

ec
)

Perf Comparison of Stream Query and Persist

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

30min 60min 90min 120min 150min 180min
Data Volume by Time

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Query Direct Insert Persist with Logging

Fig. 3 (Left) Total time of toll computation. (Right) Performance comparison of querying-only and query+persisting (with
continuous input)

Performance of Persisting with Heap-Insert. Unlike other reported DSMSs where the stream processing results
are persisted by connecting to a separate database and issuing queries, with the proposed cycle-based CQCP
approach, the continuous, minute-cycle based query results are stored through efficient heap-insert.

From Fig. 3 (Right) we can see that persisting the cycle based stream processing results either by inserting with
logging (using INSERT INTO with extended support by the query engine) or by direct inserting (using SELECT
INTO with extended support by the query engine – not shown in this query), does not add significant performance
overhead compared to querying only. This is because we completely push stream processing down to the query
engine and handle it in a long running query instance with direct heap operations, with negligible overhead for
data movement and for setting up update queries.

Post Cut Elapsed Time. In cycle-based stream processing, the remaining time of query evaluation after the input
data chunk is cut, called Post Cut Elapsed Time (PCET), is particularly important since it directly affects the delta
time for the results to be accessible after the last tuple of the data chunk in the cycle has been received.

Fig 4 (Left) shows the input data volume over 1-minute time windows (i.e., the stream workload). Fig. 4 (Right)
shows the query time, as well as the PCET, for processing each 1-minute data chunk. It can be seen that the PCET
(the blue line) is well controlled below 0.2 seconds, meaning that the maximal response time for the segment toll
results, as measured from the time a cycle (a minute) ends, is around 0.2 seconds.

Data Load in Minute Time Windows

0

20000

40000

60000

80000

100000

120000

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172
Minute Time Windows

N
u
m
b
e
r
o
f
T
u
p
le
s

 Total Elapsed Time and Post Input Elapsed Time

for Data Chunk in 1‐Minute Time Windows

0

500

1000

1500

2000

2500

3000

3500

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172

Minute Time Windows

Q
u
e
ry
 T
im

e
 (
M
ill
is
e
co
n
d
s)

total elapsed time

post input elapsed time
Fig. 4 (Left) Data load distribution over minute time windows (Right) Query time as well as PCET on the data chunk falling
in each minute time window

3.4 Performance under the Real-time Input Mode

With real-time input, the events (car position reports) are delivered by a data driver in real-time with additional
system-assigned timestamps. The query runs cycle by cycle on each one-minute data chunk. Fig 5 shows the
maximal toll notification response time in each of the 180 1-minute windows.

The maximal response time of toll notification really depends on the PCET measure introduced above, i.e. it is
essentially the delay after a cycle is “cut” in completing the segment toll part of the query of that cycle. This is

because in the beginning of each cycle, the toll notification cannot be emitted until the segment toll generation of
the last cycle completes. In the first 2 hours the toll notification response time is rather small, and with the
increased data load in the last hour, it reaches the maximal value of about 0.3 second, which is well below the 5-
second latency requirement of the benchmark. Note that the maximal notification latency is not the average
response time of notification. On the average, the notification response time is much smaller since except the first
few in a minute, most of them are near 0.

Fig. 5 Maximal toll notification response time in consecutive one-minute time windows

The experimental results indicate that our approach is highly competitive to any reported one. This is because we
completely pushed stream processing down to the query engine with negligible data movement overhead and with
efficient direct heap-insert. We eliminated the middleware layer, as provided by all other systems, for scheduling
time-window based querying.

4. Competitive Approaches
Since a stream query is defined on unbounded data and in general limited to non-transactional event processing,
the current generation of DSMSs is mostly built from scratch independently of the database engine. Big players
along this direction include System S (IBM) [12], STREAM (Stanford) [3], TelegraphCQ (Berkeley) [5], as well
as Arora, Borealis, etc [1,2,7,11]. Managing data-intensive stream processing outside of the query engine causes
the data copying and moving overhead, and fails to leverage the full SQL and DBMS functionality. Two recently
reported systems, the TruSQL engine [13] developed by Truviso Inc, USA, and the DataCell engine [16]
developed by CWI, Netherlands, do leverage database technology but are characterized by providing a workflow
like service for launching a SQL query for each chunk of the stream data during stream processing. To the best of
our knowledge, none of the existing approaches has leveraged the query engine without introducing an additional
loosely-coupled “middleware” layer. Oracle currently offers a “continued query” feature but it is based on
automatic view updates and is not the same feature as stream processing.

5. Current Status and Next Steps
Due to the growing data volume and the low-latency requirement, the platform separation of analytics and data
management has become the performance bottleneck, and their integration offers great potential in real-time, data-
intensive analytics.

In this paper we reported our experience in leveraging the DBMS for continuous stream analytics. We tackled the
key technical issues for integrating stream analytics capability into the existing query engine, and built an
integrated, efficient and robust system with stream processing capability while retaining the full DBMS
functionality, giving the query engine a new role. We proposed the cut-and-rewind query execution model for
chunk-wise continuous stream processing with the full SQL power, while enabling history-sensitive stream
operations. We provided advanced stream processing capability by extending the existing query engine directly
without introducing separate executor or additional “middleware”. With this approach we have bridged SQL and
stream processing in a single engine.

The proposed approach has been implemented on the PostgreSQL engine. Our future work includes further

Test results

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180 200

Time (minutes)

C
yc

le
 g

ap
 t

im
e

(m
s)

Cycle gap

refinement of our unified query and transaction model, further characterization and classification of UDFs (to
enable optimization) and building out stream analytics operators, additional extensions required for the optimizer
and query pipeline, and an investigation into using HP SeaQuest for providing a massively parallel processor
(MPP)-based, data-intensive streaming analytics platform.

References
1. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N.,

Zdonik, S. Aurora: A New Model and Architecture for Data Stream Management. VLDB J (12)2, 2003.
2. D. J. Abadi et al. The Design of the Borealis Stream Processing Engine. In CIDR, 2005.
3. Arasu, A., Babu, S., Widom, J. The CQL Continuous Query Language: Semantic Foundations and Query

Execution. VLDB Journal, (15)2, June 2006.
4. R.E. Bryant. “Data-Intensive Supercomputing: The case for DISC”, CMU-CS-07-128, 2007.
5. Chandrasekaran, S., et. al. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. CIDR

2003.
6. Chaiken, B. Jenkins, P-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou, “SCOPE: Easy and Efficient

Parallel Processing of Massive Data Sets”, VLDB 2008.
7. J. Chen et al. NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In SIGMOD, 2000.
8. Qiming Chen, Meichun Hsu, “Cooperating SQL Dataflow Processes for In-DB Analytics”, CoopIS 2009.
9. Qiming Chen, Meichun Hsu, Rui Liu, "Extend UDF Technology for Integrated Analytics", DaWaK 2009.
10. B. F. Cooper, et.al, “PNUTS: Yahoo!’s Hosted Data Serving Platform”, VLDB 2008.
11. C. D. Cranor et al. Gigascope: A Stream Database for Network Applications. SIGMOD, 2003.
12. Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, Myung Cheol Doo, “SPADE: The System S

Declarative Stream Processing Engine”, ACM SIGMOD 2008.
13. Michael J. Franklin, et al, “Continuous Analytics: Rethinking Query Processing in a Network Effect World”,

CIDR 2009.
14. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel programs from

sequential building blocks”, In EuroSys 2007, March 2007.
15. N. Jain et al. Design, Implementation, and Evaluation of the Linear Road Benchmark on the Stream

Processing Core. In SIGMOD, 2006.
16. E. Liarou et.al.“Exploiting the Power of Relational Databases for Efficient Stream Processing”, EDBT 2009.
17. H. Zeller. “NonStop SQL/MX Publish Subscribe: Continuous Data Streams in Transaction Processing”,

SIGMOD Conference 2003.

