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ABSTRACT
Xen’s memory sharing mechanism, called the grant mecha-
nism, is used to share I/O buffers in guest domains’ mem-
ory with a driver domain. Previous studies have identified
the grant mechanism as a significant source of network I/O
overhead in Xen. This paper describes a redesigned grant
mechanism to significantly reduce the associated overheads.
Unlike the original grant mechanism, the new mechanism al-
lows guest domains to unilaterally issue and revoke grants.
As a result, the new mechanism makes it simple for the guest
OS to reduce the number of grant issue and revoke opera-
tions that are needed for I/O by taking advantage of tempo-
ral and/or spatial locality in its use of I/O buffers. Another
benefit of the new mechanism is that it provides a unified
interface for memory sharing, whether between guest and
driver domains, or between guest domains and I/O devices
using IOMMU hardware. We have developed an implemen-
tation of the new grant mechanism that fully supports driver
domains, but not yet IOMMUs. The paper presents perfor-
mance results using this implementation which show that
the new mechanism reduces per-packet overhead by up to
31% and increases network throughput by up to 52%.

1. INTRODUCTION
The Grant Mechanism in the Xen virtualization platform
provides controlled memory sharing between virtual ma-
chines (domains) [4, 8]. The grant mechanism allows a
source domain to control which of its memory pages can
be accessed by a specified destination domain. In addition,
it allows the destination domain to validate that the shared
memory pages belong to the source domain.

A primary use of the grant mechanism is to share I/O buffers
in guest domains’ memory with a driver domain. The driver
domain is a dedicated virtual machine which hosts physi-
cal device drivers and performs I/O on behalf of the guest
domains. For example, for network I/O the driver domain
needs write access to I/O buffers in the guest domains’ mem-
ory to copy the contents of arriving packets that are destined
for the guest domain. For packets that are transmitted by
the guest domain, the driver domain needs read access to
guest domain I/O buffers to read packet headers and deter-
mine where to route the packets.

Previous work [15, 17] has shown that the grant mecha-
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nism incurs significant overhead when performing network
I/O, and has also shown that most of this overhead is in-
curred in the driver domain. This is mostly due to the over-
heads of grant hypercalls and of the high cost of page map-
ping/unmapping operations executed in these hypercalls.

This paper presents a new grant reuse scheme whereby the
guest domain can greatly reduce the number of grant issue
and revoke operations that are needed for I/O by taking ad-
vantage of temporal and/or spatial locality in its utilization
of I/O buffers. The guest domain can issue a grant for a
page containing I/O buffers, then use the page several times
for I/O, and finally revoke access to that page. In contrast,
in the existing implementation every I/O involves grant is-
sue and revoke operations. Consequently, the grant reuse
scheme reduces the number of grant hypercalls and page
mapping/unmapping operations needed for I/O.

To support the grant reuse scheme, this paper introduces
a new grant mechanism which replaces the existing grant
mechanism in Xen. Whereas the existing grant mechanism
requires the guest domains to coordinate with the driver do-
main to revoke a grant, the key idea of the new grant mech-
anism is to enable the guest domains to unilaterally issue
and revoke grants, except in error conditions. By breaking
this dependency, the new grant mechanism avoids the need
for a handshake protocol between the guest and driver do-
mains in order to revoke the grant to a page, as would be
needed with the existing grant mechanism. More generally,
using the new grant mechanism to control memory sharing
between two arbitrary guests has the advantage that each
guest can stop sharing its pages with its peer at any time. In
particular, each guest domain can forcibly revoke its grants
in case its peer misbehaves.

This paper additionally shows that the new grant mecha-
nism provides a unified interface that can extend the con-
trol of memory sharing to I/O devices using new IOMMU
hardware. This allows guest domains to use the new grant
mechanism to protect a guest domain’s memory from incor-
rect device DMA operations, for both pass-through device
access (i.e., direct I/O) [11, 13, 19] and when using an in-
termediary driver domain [8].

While parts of the new grant mechanism are similar to the
partial mechanism described in our previous work [15], this
paper contributes key enhancements that complete the mech-
anism – in particular, to support network transmit in addi-
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Figure 1: Xen’s driver domain-based network I/O
virtualization architecture

tion to receive, and to support mapping buffers into the
driver domain address space.

Finally, this paper presents an experimental performance
evaluation of a full implementation of the new grant mecha-
nism on modern hardware (but without IOMMU support as
yet). The evaluation demonstrates that the new mechanism
reduces per-packet overhead by up to 31% and increases the
network throughput by up to 52%. While this paper only
explores the use of the new grant mechanism for network
I/O, we believe that it can completely replace the existing
mechanism in Xen. The new mechanism is no less general
than the existing mechanism in Xen, and the ability to uni-
laterally revoke grants provides greater robustness against
non-cooperative peers.

The rest of the paper is organized as follows. Section 2 re-
views necessary background information on Xen’s I/O ar-
chitecture, the existing grant mechanism, and IOMMUs.
Section 3 presents the design of our new grant mechanism.
Section 4 presents an experimental evaluation of the per-
formance of the new grant mechanism. Section 5 presents
related work, and Section 6 presents conclusions.

2. BACKGROUND
2.1 Xen Grant Mechanism and I/O Architec-

ture
Figure 1 shows Xen’s driver domain-based network I/O ar-
chitecture. The driver domain needs to have read access to
I/O buffers in the guest domain’s memory in order to read
packet headers for transmitted packets, and it needs write
access to copy received packets to the guest domain. To
provide this access, the grant mechanism is used to share
I/O buffers in the guest domain’s memory with the driver
domain. The grant mechanism allows the driver domain
to access guest I/O buffers in a safe manner and the guest
domain to limit the memory pages shared with the driver
domain to only those containing buffers being used for I/O
operations.

The grant mechanism interface is illustrated in Figure 2. A
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Figure 2: Existing Grant Mechanism interface in
Xen

domain shares one of its memory pages with another do-
main in two stages. In the first stage, the source domain
allocates a grant reference for the memory page it desires to
share. The grant reference points to an unique entry in a
grant table which is shared between the guest domain and
the hypervisor. The grant entry contains the shared mem-
ory page address, the destination domain id, and the access
permissions. The guest domain fills the grant table entry
using simple memory writes, and then passes the grant ref-
erence to the destination domain. In the second stage, the
destination domain uses the grant reference to access the
shared memory. This stage requires hypervisor interven-
tion. The destination domain invokes a hypercall, to enter
the hypervisor, passing the grant reference as an argument.
The hypervisor first checks whether the grant reference is
valid. Then it reads the source domain’s grant table entry
and checks whether the domain that invoked the hypercall
is the intended destination domain and also whether the
shared memory page is owned by the source domain. If
these tests pass then the hypervisor pins the memory page
and finally maps the page within the destination domain ad-
dress space. Page pinning ensures that the page ownership
does not change while the destination domain has access to
the page. Now the destination domain can safely access the
shared memory page.

To stop sharing a page, the destination domain issues an-
other hypercall. The hypervisor first unmaps the page from
the destination domain address space and then unpins the
shared memory page. Subsequently, the source domain can
revoke the grant reference for the memory page by invali-
dating the corresponding grant table entry (again, through
simple memory write operations).

In the standard network I/O model in Xen, the guest do-
main creates grants for its receive/transmit buffers to pro-
vide shared access to the driver domain. The driver domain
then issues the grant hypercalls to map the guest pages in
its address space. Once the I/O has completed, the driver
domain again issues hypercalls to unmap the guest pages1.
Then the driver domain notifies the guest domain that the

1Typically, receiving a network packet involves only a single
hypercall. The hypervisor then maps the guest page, copies
the packet, and finally unmaps the page.



I/O operations have completed. This also serves as a noti-
fication that the guest domain can revoke the grant for the
corresponding page. Thus, a grant is issued and revoked for
each and every I/O operation, leading to significant perfor-
mance overhead for memory sharing.

2.2 IOMMU Overview
I/O Memory Management Units (IOMMUs) provide ad-
dress translation for I/O devices [2, 3]. All memory accesses
from devices, through DMA, undergo address translation
using an I/O Page Table (or IOMMU Table). A DMA op-
eration fails if a valid translation does not exist in the I/O
page table. Thus, IOMMUs can protect against incorrect or
malicious memory accesses from I/O devices.

In virtualized systems, an IOMMU is particularly needed
when guest domains have direct access to devices (pass-
through devices), in order to restrict the device to access
only the memory of the guest domain to which it is assigned.
Each device has its own IOMMU Table, which can be con-
figured with valid translations for exactly all the pages that
belong to the guest domain accessing that device. In this
mode of operation, which we refer to as coarse grain protec-
tion, the IOMMU table is mostly static and does not change
unless the set of pages assigned to the guest domain changes.
To provide a higher level of protection against buggy de-
vice drivers or to enable user-level drivers, the set of valid
IOMMU translations can be limited to only a small set of
pages which contain I/O buffers that need to be accessed
by the device. In this mode, which we refer to as fine grain
protection, the guest domain needs to invoke the hypervisor
to add pages to the IOMMU table before programming a
device DMA operation, and to remove the page translations
after the operation completes [5, 6].

3. REDESIGNING THE GRANT MECHA-
NISM

A grant reuse scheme can significantly reduce grant over-
heads by reusing the same grant for multiple I/O opera-
tions. A guest domain can issue a grant for a page con-
taining I/O buffers, then use the page several times for I/O,
and finally revoke access to the page. Thus, under the reuse
scheme the overhead of the grant hypercalls and the map-
ping/unmapping operations is not incurred on every I/O
operation.

For the grant reuse scheme, a source domain should be able
to revoke a grant when the corresponding memory buffer
is re-purposed. As an example, suppose a guest OS shares
a granted page with a driver domain for network I/O, and
then later the guest OS re-purposes the page, for instance to
assign the page to a user-level process. Before re-purposing
the page, the guest OS should be able to revoke the grant in
order to prevent subsequent access to the page by the driver
domain. In general, a source domain needs the flexibility to
revoke a grant from within various OS subsystems running
in the source domain. Using the existing grant mechanism
in Xen, this would require the source domain to carry out
a protocol handshake with the destination domain via an
inter-domain I/O channel in order to revoke the grant. This
handshake protocol prevents the source domain from com-
pleting the grant revocation until the destination domain
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Figure 3: New Grant Mechanism interface in Xen

unmaps the page and notifies the source domain that the
unmapping is complete.

This paper introduces a new grant mechanism which breaks
that dependency by allowing the source domain to unilater-
ally issue and revoke grants, except in error conditions. For
I/O, this means that the guest domain can issue and revoke
grants using a simple hypercall interface without requiring
driver domain participation. This avoids the handshake pro-
tocol completely. Moreover, the new grant mechanism has
the benefit of reducing the trust required between any two
domains that are sharing memory. Either guest can unilat-
erally remove access privileges to its pages from the other
guest without requiring the cooperation of the other guest
to unmap the pages. This is particularly useful in case the
other guest misbehaves.

It turns out that the guest interface to the new grant mech-
anism is very similar to an interface needed to add and
remove pages from an IOMMU table when using the fine
grain protection mode. Thus, the grant interface can be
used to issue/revoke grants or add/remove entries to/from
an IOMMU table. This unification simplifies I/O support in
the guest OS, to share memory either with driver domains
or with devices directly. For example, for guest domains
running Linux this can be supported by a common imple-
mentation of the DMA API interface [5, 6].

3.1 New Grant Mechanism
The new grant mechanism is illustrated in Figure 3. In the
new mechanism, the guest domain directly interacts with
the hypervisor, via hypercalls, to issue and revoke grants.
The hypervisor exposes to the driver domain the mapping
of grant references to memory pages using a shared region
of memory containing a software I/O translation table. This
table is required only when guest domain pages are shared
with a driver domain for device I/O. The table is unnec-
essary when sharing memory without involving an I/O de-
vice, or when a hardware IOMMU is used to provide address
translations for I/O devices (Section 3.4).

3.1.1 Initialization
At initialization the guest domain issues a hypercall to create
a new I/O translation table passing as arguments: the ID of
the driver domain, and the size of the I/O translation table.



This hypercall returns a handle to the new I/O translation
table which the guest domain communicates to the driver
domain. The driver domain has one such translation table
for each guest domain it supports.

After receiving the translation table handle from the guest
domain, the driver domain issues a hypercall with the fol-
lowing arguments: the table handle provided by the guest
domain, a virtual address at which to map the translation
table, and a range of virtual addresses in kernel space to
be used for mapping foreign pages granted by the guest do-
main. The hypervisor maps the translation table at the
specified location in the driver domain address space, and it
also records the specified virtual address range.

3.1.2 Page Sharing
When the guest domain wants to share a page, it invokes a
hypercall with three arguments: a grant reference, the ad-
dress of a guest page to be shared, and the translation table
handle. The hypervisor first validates that the page belongs
to that guest domain. Then it pins and maps the page into
the driver domain address space using the virtual address
range provided by the driver domain at initialization, and
adds the machine address of the page to the software I/O
translation table. The specific virtual address to use for this
mapping in the virtual address range is given by the grant
reference, which is used as a page number offset from the
start of the virtual address range. Similarly, the guest do-
main revokes a grant by issuing a hypercall, in which the hy-
pervisor unmaps and unpins the guest page from the driver
domain address space.

The overhead of using grants in the driver domain is very low
since the guest page is already mapped in the driver domain
address space, and the machine address of the page can be
directly read from the software I/O translation table. This
table is indexed by a grant reference. Each entry contain two
fields: (1) the machine address of the granted page, which is
used by the driver domain to program a device DMA opera-
tion; and (2) the status field. Every time the driver domain
uses a grant for I/O, it increments the status field to indicate
to the hypervisor that the page is being used for an active
I/O operation. When the I/O completes, the status field is
decremented. If the status field is non-zero when the guest
domain revokes the grant then the hypervisor returns an er-
ror to the guest domain, indicating that the page is still in
use by an I/O device. However, this should not occur except
in an error condition; either the guest domain is incorrectly
trying to revoke a grant for a page that is being used for an
active I/O operation, or the driver domain has incorrectly
set the status field or is incorrectly using the page for I/O.
In contrast, in the error-free case the guest domain can uni-
laterally revoke the grant whenever there is no pending I/O
for that buffer.

3.2 Reuse of Grants
The cost of using the grant mechanism can be reduced by
enabling reuse of the same grant across multiple I/O opera-
tions, taking advantage of locality in the use of I/O buffers,
whether spatial locality (multiple I/O buffers sharing a page)
or temporal locality. This allows a grant acquired for a guest
memory page to be reused for future network I/O opera-
tions. A grant associated with a guest memory page can be

revoked when the page is re-purposed to be used for non-
I/O operations, provided all the related I/O operations have
completed.

While different mechanisms can be used in different guest
domains to keep track of grant use, the guest OS in our pro-
totype uses a hash table for each associated software I/O
translation table. Each entry in the hash table corresponds
to a grant reference. If a grant is issued, the hash table
entry contains the guest page frame number for that grant,
and a reference counter which records the number of times
the grant is being used. The guest domain checks whether
a grant already exists for a page by looking up the hash
table. If a grant does not exist, the guest domain adds the
page to the hash table entry, initializes the reference counter
and invokes a hypercall to issue the grant to the driver do-
main. If a grant already exists, which means the grant can be
reused, the guest domain increments the reference counter
and simply gives the corresponding grant reference to the
driver domain. Thus, the grant overhead is negligible if the
grant already exists.

Grant reuse is effective at reducing grant overhead only if the
reused page remains mapped in the driver domain address
space (mapping/unmapping is expensive). When the guest
domain wishes to revoke a grant, the page must be unpinned
and unmapped from the driver domain address space. In the
proposed new mechanism, this can be done unilaterally by
the guest domain without driver domain cooperation. In
contrast, in the original grant mechanism, grants can be re-
voked only with the cooperation of the driver domain which
has to issue the hypercall to unmap the guest pages from its
address space.

While the new mechanism enables simple and unilateral
grant revocation under the grant reuse scheme, the per-
formance benefits are predominantly provided by the grant
reuse scheme itself.

3.3 Promoting Temporal Locality
The new grant mechanism relies on locality in the use of
I/O buffers to reduce performance overheads. To promote
locality in the reuse of I/O buffers for network receive traffic,
we create a pool of dedicated buffers in the guest domain
for network I/O receive operations. The I/O buffers are
allocated from the pool when needed for receive operations
and are returned to the pool afterward. Recycling buffers
from the pool promotes locality leading to a high degree of
grant reuse.

All the memory in the pool is used only for network receive
I/O. Therefore, the entire pool can remain granted persis-
tently. However, as the number of pages in the pool in-
creases, the guest domain can experience memory pressure.
A mechanism is needed to shrink the pool when needed.
Fortunately, Linux provides a slab cache mechanism that
automatically adjusts its size under memory pressure. We
exploit this mechanism and use a dedicated slab cache to
implement the I/O buffer pool. The guest OS must revoke
the grants associated with a guest memory page when it is
released from the slab cache and therefore can be used for
purposes other than I/O. This is especially important for
pages which have been granted with read-write access (e.g.,



receive buffers).

3.4 Combining Grant and IOMMU Mecha-
nisms

Both IOMMU hardware and Xen grant mechanism provide
similar functionality for hardware and software components,
respectively. An IOMMU provides translation of I/O ad-
dresses to machine memory addresses and controls which
pages of a guest domain can be accessed by a hardware I/O
device. The grant mechanism provides translation of grant
references to machine memory addresses and controls which
pages can be accessed by a driver domain software.

3.4.1 Unifying Memory Protection for Driver Do-
mains and Direct I/O

The same hypercall interface in the new grant mechanism
can be used by the guest domain to grant and revoke ac-
cess to a memory page when performing I/O, regardless if
the I/O operation is to be performed by a driver domain or
directly by a physical device. This simplifies I/O support
in the guest OS. In addition, this allows the same “grant”
reuse mechanism to be used both for driver domains and di-
rectly accessed I/O devices, providing performance benefits
for both cases.

If a guest domain has direct access to a pass-through device,
the grant issue hypercall causes the hypervisor to add the
specified page to the device IOMMU table; otherwise, if the
guest domain is using a driver domain, the hypercall simply
issues the grant as described earlier. Similarly, the grant
revoke hypercall causes the page to be removed from the
IOMMU table or from the software I/O translation table.

3.4.2 Using IOMMU Hardware with Driver Domains
While the grant mechanism protects guest domains’ memory
from improper access by software in driver domains, it can-
not protect against improper access by the I/O devices that
are programmed by the driver domain OS. To provide such
protection, the hypervisor can setup an IOMMU table to
check and translate addresses for DMA accesses performed
by the I/O device. In this case, all granted guest pages must
be added to the IOMMU table to enable the I/O device to
access the pages. The new grant mechanism can be extended
such that when a guest domain grants I/O access to one of
its memory pages, the grant issue hypercall adds the guest
page to the device IOMMU table in addition to mapping the
page into the driver domain address space. When the guest
domain revokes a grant, the hypervisor removes the corre-
sponding page from the device IOMMU table in addition to
unmapping the page from the driver domain.

The software I/O translation table in the new grant mech-
anism is not needed when the IOMMU hardware is used
with driver domains. The driver domain OS can rely on the
IOMMU table to do the address translations and therefore
does not need the machine addresses to program the device
DMA operations. Further, the status field need not be main-
tained by the driver domain because when the guest domain
revokes a grant, the associated page is removed from the
IOMMU table immediately. The IOMMU will then block
any pending or subsequent accesses by the device to that
page.

Unlike the software I/O translation table, there is only one
IOMMU table per I/O device. So in this case, the hyper-
visor will assign distinct regions of the address space of the
IOMMU table to each guest domain that is supported by
the driver domain. Each region will have the same num-
ber of entries as the software I/O translation table and will
provide translations for the grant references of the corre-
sponding guest domain. To allow the driver domain to per-
form I/O operations using its local buffers, one additional
region of the IOMMU address space is reserved to map all
the local driver domain memory. This provides the driver
domain with coarse grain IOMMU protection for its local
pages, while providing fine grain protection for guest do-
mains.

The driver domain OS computes an I/O address for a granted
guest domain page as the sum of: (a) the base address of the
IOMMU region associated with the corresponding guest do-
main, and (b) an offset equal to the grant reference. The
driver domain OS uses this computed I/O address to pro-
gram the device DMA operations, and the IOMMU trans-
lates the I/O address used in the DMA operation to the
memory address of the guest page.

If a driver domain supports multiple devices, separate
IOMMU tables can be used to provide finer protection. For
example, using separate tables allows pages accessible by a
network device to be segregated from pages accessible by a
block device. In this case only the IOMMU table associ-
ated with the corresponding guest virtual device needs to
be updated when a grant is issued or revoked.

4. EVALUATION
This section presents experimental results that quantify the
benefits of the new grant mechanism. The new grant mech-
anism was implemented in the Xen hypervisor2 and in a
paravirtualized (PV) Linux domain3. The implementation
provides full support for network I/O with driver domains,
but does not yet support IOMMUs.

4.1 Experimental Setup and Methodology
The netperf TCP stream microbenchmark [1] is used in all
the experiments to generate network traffic. The experi-
ments include scenarios with network traffic in the transmit
and receive direction between guest domains and a NIC, and
network traffic between guest domains running on the same
physical host. The new VMDq support is also used to re-
ceive packets [7, 15]. The CPU at the transmit side of the
connection is not a resource bottleneck in any of the exper-
iments. OProfile [12] is used to determine the number of
CPU cycles spent when processing network packets.

The experiments are run on two server machines connected
directly to each other using a 10 Gigabit CX4 Ethernet ca-
ble. The server running Xen has a 2.66 GHz Intel Core i7
quad-core CPU (with hyper-threading enabled), 6 GB of
memory, and a 10 GbE Intel 82598EB Ethernet NIC (with
VMDq support [9]). The external server has a 3.0 GHZ
AMD Athlon dual-core CPU, 8 GB of memory, and a 10 GbE

2xen-unstable.hg, changeset 17823:cc4e471bbc08
3linux-2.6.18.8-xen.hg, changeset 572:5db911a71eac
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Figure 5: Impact of the New Grant Mechanism in
receive path with VMDq Support

Intel 82598EB Ethernet NIC. The Intel Xen server is con-
figured with up to two PV Linux guest domains, and one
dedicated PV Linux driver domain in addition to the privi-
leged domain 0. The driver domain and the guest domain(s)
are each configured with 1 GB of memory and a single vir-
tual CPU (to eliminate potential multi-CPU guest domain
scheduling issues [14]). The external AMD server ran an
Ubuntu distribution of native Linux kernel v2.6.30.3 which
was configured to run only on a single CPU core.

4.2 Experimental Results
Figures 4 through 7 compare the packet processing cost
(CPU cycles per KB of data transferred) and throughput
(Mbps) in all experiments with and without the new grant
mechanism (NGM). We observe a reduction in packet pro-
cessing cost in all cases, with a maximum reduction of 31%
in the transmit experiment (Figure 6). This results in higher
throughput being achieved in two cases. In the receive ex-
periment (without VMDq support) (Figure 4) there is a 18%
increase in throughput, from 8.0 Gbps to 9.4 Gbps and in
the inter-domain experiment (Figure 7) there is a 52% in-
crease, from 17.8 to 26.9 Gbps. In both these cases, the
driver domain CPU is initially a resource bottleneck. This
limits the rate at which the guest domain can receive pack-
ets since the guest domain is not able to utilize its CPU core
to the maximum extent possible. The new grant mechanism
eliminates this resource bottleneck by reducing the packet
processing cost in the driver domain. In turn, this enables
the guest domain to make better use of its CPU core to

Packet Processing Cost

C
y
c
le

s/
K

B
o
f
d
a
ta

tr
a
n
sf

e
rr

e
d

Throughput

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Base NGMBase NGM
0

2000

4000

6000

8000

10000

0

1000

2000

3000

4000

5000

Figure 6: Impact of the New Grant Mechanism in
transmit path

Packet Processing Cost

C
y
c
le

s/
K

B
o
f
d
a
ta

tr
a
n
sf

e
rr

e
d

Throughput

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Base NGMBase NGM
0

5000

10000

15000

20000

25000

30000

0

1000

2000

3000

4000

5000

Figure 7: Impact of the New Grant Mechanism on
Inter-Domain Networking

receive at a much higher rate until the guest domain CPU
saturates and becomes the resource bottleneck. Interest-
ingly, the case of inter-domain traffic shows a much greater
increase in throughput. In this case, once again the driver
domain CPU is initially the resource bottleneck. Unlike the
receive case, however, here the driver domain suffers from
grant overheads on both the transmit and receive sides. As
grant reuse reduces overhead for both transmit and receive,
the processing cost and throughput improve more signifi-
cantly in this case than in the other cases. In the final two
cases, there is no increase in throughput either because the
CPU at the receiver is a bottleneck (Figure 6) or because
the line rate (9.414 Gbps) is achieved even without the new
grant mechanism (Figure 5).

Figure 8 compares the packet processing cost breakdown
from the receive experiment. Here, the total packet process-
ing cost is divided in two parts: the driver domain CPU
(dd) and the guest domain CPU (guest). Each of these
parts is further divided into the domain kernel (kernel) and
the hypervisor (xen) components. Almost all the reduction
in the total packet processing cost (shown earlier in Fig-
ure 4) comes from the dd-xen component. This is because,
in the new grant mechanism, the driver domain does not
issue hypercalls to have the hypervisor map and unmap the
guest pages. Instead, the guest domain directly calls the
hypervisor to perform these tasks. This implies that the
cost of mapping and unmapping the guest pages should now
be accounted for in the guest-xen component. But there is
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Figure 8: Breakdown of Packet Processing Costs
from external receive experiment

no increase in the guest-xen component since a very high
percentage (99%) of the grants are reused in the guest do-
main. There is also a slight increase in the dd-kernel compo-
nent. This is attributed to the cost of synchronizing access
to the software I/O translation table with the hypervisor
using memory barriers. However, this increase is more than
offset by the larger decrease in the dd-xen component. Sim-
ilar breakdowns are not shown for other cases since they are
very similar to the one shown here.

5. RELATED WORK
A grant reuse scheme to reduce memory sharing overheads
during network I/O was originally discussed in [17]. That
work did not implement the scheme or specify a design, but
just estimated the potential benefits by running experiments
with the grant mechanism disabled. Subsequently, we pro-
posed a first version of a new grant mechanism with grant
reuse [15]. That first version supported network traffic on
the receive path, but only for NICs with VMDq support,
and it lacked support for transmit – specifically, it lacked
the ability to map a guest page into driver domain memory.
In essence, the previously proposed mechanism could only
be used by a guest domain to grant a driver domain access
to program DMA operations to guest memory pages. In
contrast, the design presented in this paper provides these
previously missing functions and also describes unification
of the new grant mechanism with IOMMUs.

Early studies of IOMMU performance demonstrated a high
cost of setting up and removing page mappings for every I/O
operation [6]. Subsequent work showed that mappings can
be reused to reduce the overheads associated with IOMMUs,
but without necessarily resorting to the coarse grain protec-
tion model [18]. The new grant mechanism proposed in this
paper provides a unified approach to reuse both grants and
IOMMU mappings.

Mechanisms have been proposed to support fast and cheap
inter-domain communication using static shared memory
channels between the communicating domains.
XenSocket [20] provides a standard POSIX socket level API
to establish the shared communication channel. However,
applications have to be rewritten to take advantage of this
new socket level API. XWay [10] is another mechanism which,
unlike XenSockets, provides full binary compatibility for ap-

plications using TCP sockets. Both of these mechanisms
avoid the memory sharing overheads by setting up static
shared memory channels during initialization and then trans-
ferring data over them. The new grant mechanism proposed
in this paper enables efficient dynamic sharing of memory.

Mechanisms for controlling memory sharing have been de-
veloped for environments distinct from server virtualization.
For example, the network protocol RDMA (Remote Direct
Memory Access) allows hosts to “advertise” their memory
buffers to enable remote hosts to read and/or write the mem-
ory [16]. Advertisement involves providing remote hosts
with access keys called “steering tags” which bear a resem-
blance to grant references. Like the new grant mechanism
described in this paper, the RDMA protocol allows hosts
that advertise memory to remove access rights from remote
hosts by invalidating the corresponding steering tags.

6. CONCLUSION
This paper describes a redesigned grant mechanism which
improves the efficiency of network I/O virtualization while
preserving the safety of the original mechanism. The new
mechanism allows domains to unilaterally revoke grants to
their local memory. In turn, this facilitates grant reuse for
I/O to take advantage of temporal and/or spatial locality
in guest OS usage of I/O buffers. This paper also shows
that the new mechanism provides a unified interface for con-
trolled memory sharing with driver domains and with I/O
devices using new IOMMU hardware. The new mechanism
is observed to reduce the per-packet overhead by up to 31%
and also increase the throughput by up to 52%.

While the evaluation in this paper focuses on the benefits of
the new grant mechanism for network I/O operations, the
mechanism also can be used in more general scenarios. In
particular, any memory sharing scenario that exhibits sig-
nificant temporal and/or spatial locality should benefit from
the new mechanism. For example, it should be possible to
optimize block I/O operations using the new mechanism.
Moreover, the new grant mechanism provides the full gen-
erality of the existing grant mechanism in Xen, while also
providing higher robustness in the presence of misbehaving
peers.
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