

Abstract:

©

On The Expressive Power of Service Models for Automated Service
Composition
Yin Wang, Hamid Motahari-Nezhad, Sharad Singhal

HP Laboratories
HPL-2010-33

Automatic service composition is an important problem in service oriented computing. Existing service
models, whether embodied in specification standards or implicit in composition methods, offer tradeoffs
between the level of detail at which component services are described and resulting opportunities for
automated composition. For example, WSDL describes service interfaces whereas OWL-S describes
preconditions and effects, and the two standards support different approaches to automated composition.
The precise relationship between service models and the constraints they place on automated composition,
however, remains unclear. It is therefore difficult to understand the full implications of commitment to a
particular way of describing services. This paper presents a formal framework that relates service models to
composition capabilities. Our framework covers the three most commonly used service models:
input/output, precondition/effects, and automaton models. It uses logic formulae and formal languages to
characterize precisely the expressiveness and composition capabilities inherent in each service model. Our
framework facilitates choosing an appropriate service model for a specific composition task. Applied to
common workflow patterns, it identifies minimally expressive service models that enable composition of
these patterns. As a case study, we analyze 33 workflows used for IT transformation services within HP
Enterprise Services. Our analysis identifies the appropriate service model for the automated construction of
these workflows.

External Posting Date: March 6, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: March 6, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

On The Expressive Power of Service Models for Automated
Service Composition

Yin Wang
HP Labs, Palo Alto, CA

yin.wang@hp.com

Hamid Motahari-Nezhad
HP Labs, Palo Alto, CA

hamid.motahari@hp.com

Sharad Singhal
HP Labs, Palo Alto, CA
sharad.singhal@hp.com

Abstract

Automatic service composition is an important problem
in service oriented computing. Existing service mod-
els, whether embodied in specification standards or im-
plicit in composition methods, offer tradeoffs between the
level of detail at which component services are described
and resulting opportunities for automated composition.
For example, WSDL describes service interfaces whereas
OWL-S describes preconditions and effects, and the two
standards support different approaches to automated com-
position. The precise relationship between service models
and the constraints they place on automated composition,
however, remains unclear. It is therefore difficult to under-
stand the full implications of commitment to a particular
way of describing services.

This paper presents a formal framework that relates ser-
vice models to composition capabilities. Our framework
covers the three most commonly used service models: in-
put/output, precondition/effects, and automaton models.
It uses logic formulae and formal languages to character-
ize precisely the expressiveness and composition capabil-
ities inherent in each service model. Our framework facil-
itates choosing an appropriate service model for a specific
composition task. Applied to common workflow patterns,
it identifies minimally expressive service models that en-
able composition of these patterns. As a case study, we
analyze 33 workflows used for IT transformation services
within HP Enterprise Services. Our analysis identifies the
appropriate service model for the automated construction
of these workflows.

1 Introduction
Technological advances in Service Oriented Architecture
(SOA) have led to a significant increase in the number
of services available on the Web. This provides an un-
precedented opportunity for exploiting the composability
principle [12] of services in SOA, and composition of ser-
vices on the Web. Service composition techniques and
languages have received significant attention in industry
(demonstrated by languages such as WS-BPEL [2]) and
academia (see surveys [24, 32, 10]).

The service composition problem takes as input a set
of component services with a composition goal, and
generates a composite service, usually represented by a
workflow, that achieves the goal. Automated composi-
tion approaches are based on service models that char-
acterize component services. These models have a pro-
found impact on the capabilities of the composition algo-
rithm. In general, a more expressive service model en-
ables the composition of more complex composite ser-
vices. However, expressive service models usually re-
quire more manual service description effort and result in
computationally expensive composition algorithms. Cur-
rently, there are three common categories of service mod-
els for service composition (see Table 1):

∙ Input Output (I/O) A service is modeled as a pair
of input and output sets. An input or an output is
identified by its data schema.

∙ Precondition Effect (P/E) A service is modeled
as a pair of precondition and effect sets. These sets
include logic literals that represent the state external
to the service.

1

∙ Automaton (stateful) A service’s internal state and
dynamics are modeled using finite automata.

Many variations of each model have been developed
with different composition capabilities. For example, the
WSDL standard describes input and output data types of
a Web service. However the composition method based
on these I/O models may assume that the output is con-
sumed by a service instead of copied for repeated use [34],
and the set of composite services one can build is dif-
ferent in this case. For P/E models, deterministic mod-
els and non-deterministic models with conditional effects
result in different control flow structures in composites.
The OWL-S standard employs P/E service models and
allows composition based on AI planning methods; al-
ternative P/E models have also been proposed [29, 23].
Existing automaton-based service models synchronize au-
tomata representing local services in different ways, e.g.,
using asynchronous messages [9], action delegation [6],
or parallel product synchronization [30]. Each alternative
carries different implications for service composition.

Manual service composition is the norm today, but is
formidably difficult due to the sheer complexity of indi-
vidual services, which provide human-readable documen-
tation but not model-based descriptions. Manual compo-
sition is likely to become untenable as services rapidly
proliferate and rapidly evolve. Increasingly automated
composition is the most attractive alternative going for-
ward, and automation requires standardized service mod-
els. Before service vendors commit to specific service de-
scription approaches, however, they must first understand
how various approaches enable and constrain automated
composition.

This paper explains the implications and limitations of
existing service models in terms of their expressiveness
and the opportunities for service composition that they af-
ford. Comparing different composition methods directly
by their composition semantics is difficult because they
assume different formal frameworks for service models.
The output of the composition approach (composite ser-
vice) cannot be used as a basis for comparison either be-
cause of differences in workflow representations. How-
ever, regardless of the representation, the execution traces
of a composite service are always sequences of compo-
nent service invocations. All possible execution traces

form an execution language, which provides a common
ground to compare service composition approaches.

Our contribution is to introduce a formal framework
based on the execution languages of the composite ser-
vices that each class of service model supports. Our
framework characterizes the three common service mod-
els precisely using logic formulae and language proper-
ties. It has at least two interesting applications. First, for
each service model, our framework defines the capabili-
ties and complexity of the corresponding composition al-
gorithms and also defines the space of control flow struc-
tures in the composite services. Second, given a com-
posite service workflow or target execution language, our
framework identifies the simplest service model that is
sufficient for the composition.

We demonstrate the value of our framework via two
applications. We consider well-known workflow pat-
terns [35] and find the minimally expressive service
model to support the automated composition of each. We
then apply our framework to a collection of real-world
IT transformation workflows used by HP and identify
which service models suffice to automatically compose
each workflow from component services.

The rest of the paper is organized as follows. Sec-
tion 2 provides background on service composition, ser-
vice models, and temporal logic. Section 3 introduces our
formal framework for service models and Section 4 uses
it to compare service models along several dimensions.
Section 5 extends the framework to variations of service
models and Section 6 presents applications of the frame-
work. Section 7 reviews related work, and Section 8 con-
cludes with a discussion.

2 Background

Numerous variants of each service model exist in the
literature. Here we present definitions of I/O, P/E, and
automaton service models that formalize these categories.
This section also covers the background of Linear Tem-
poral Logic, which we use to characterize I/O and P/E
service models.

2

Model Features Description Standard
Input/Output interface only, no semantics input and output (schema, type etc.) WSDL
Precondition/Effect semantics only, service is stateless preconditions/effects (situation calculus) OWL-S (draft)
Automaton stateful service model states, actions and transition function

Table 1: Summary of service models for composition

2.1 Service Composition
Given a set of component services and a goal, the service
composition problem is to assemble components into a
composite whose execution achieves the goal. For I/O
and P/E models, we assume that every component is an
atomic service. The atomicity assumption means that one
service’s execution is independent of that of others, and
cannot be interrupted or affected by others. Under this
assumption, an execution of a composite service can be
serialized, e.g., by the start time of each atomic service
that it invokes. Therefore, a composite service induces
a collection of execution strings describing all possible
execution sequences of its atomic services.

Stateful service models define states and transitions
within component services, and the composition method
defines synchronization among these stateful models. We
therefore treat the internal state transitions within au-
tomaton models of component services as atomic ser-
vices. Under this view, a stateful model essentially de-
fines execution dependencies among its atomic services.
The final composition built upon these stateful models
must comply with these dependencies. This view con-
nects stateful models with I/O and P/E models since exe-
cution sequences under different models are all based on
atomic services. We define the language of a composite
service in terms of these execution sequences.

Definition 1. (Execution Language) Given a set A of
atomic services, and a string s over A, i.e., s ∈ A∗, s is a
valid execution sequence if the serial execution of s com-
plies with the permitted uses of A. The set of all valid
execution sequences of A is a language, denoted as L ex

A .

This definition concerns the execution semantics of
composites and does not depend on any service model or
composition method. It is the responsibility of the ser-
vice model to define execution semantics in such a way
that composition methods yield composites whose execu-
tion sequences are consistent with L ex

A . Different service

models define different execution languages, and this is
the focus of our analysis. For example, a loan offer ser-
vice may follow a credit report service, but not the other
way around. If we were to compose a loan application
service, the service model must communicate this order-
ing constraint to the composition method.

Definition 1 assumes no initial condition for the execu-
tion. This simplifies our comparison of different service
models. When initial conditions are present, our analysis
results still apply, but we need to encode these conditions
in different service models in ways consistent with their
definitions.

2.2 Input/Output Service Model
The input/output model for an atomic service defines a set
of input data needed to execute the service, and the set of
output data produced after the execution. The input and
output may include identifiers such as name and data type.

Definition 2. (I/O Model) Given set A of atomic services
and set D of data types, an input/output model for an
atomic service a ∈ A is a pair (Ia,Oa), where Ia,Oa ⊆ D,
and Ia ∩Oa = /0.

If s is a string of length n, i.e., ∣s∣= n, the position an el-
ement of s is indexed by 0,1, ...,n−1. The i-th element of
s is denoted s[i]. Execution semantics under the I/O model
require that the inputs of each atomic service be provided
by the outputs of some previously invoked atomic service:

Definition 3. (Language of I/O Model) A string s ∈ A∗
is a valid execution sequence under the I/O model if
∀i < ∣s∣, Is[i] ⊆

∪
0≤ j<i Os[j]. The set of all valid execution

sequences under the I/O model is a language, denoted as
L IO

A .

This definition is independent of any composition al-
gorithm under the I/O model. It defines an execution lan-
guage over A by the semantics of the I/O model. Any I/O

3

model based composition algorithm must output execu-
tion sequences within the language.

Example 1. Consider three services A = {a,b,c},
representing user input, credit report, and loan
services, respectively. We use I/O models a =
(/0,{name,SSN}), b = ({SSN},{name,score}), and c =
({name,score},{loan}), respectively. Then strings a, ab,
and abc all belong to L IO

A , but b or ac does not.

Under our I/O model, once a service is enabled to ex-
ecute, it is enabled forever, and can be executed repeat-
edly. In other words, the set of atomic services that may
execute is non-decreasing as composite service execution
proceeds. If this monotonicity property does not hold—
e.g., if services consume their inputs as by-products of
execution [34]—we require a different model, such as the
P/E model.

2.3 Precondition/Effect Service Model
The P/E service model defines the preconditions and ef-
fects of a service using logic formulae whose literals de-
scribe system state. An atomic service’s preconditions
must be satisfied before the service can execute; imme-
diately after its execution, system state is consistent with
the service’s effects. We formalize the P/E service model
along the lines of the classical representation of AI plan-
ning system [28]. Our formalization is consistent with
planning frameworks based on situation calculus, which
is widely used in service composition [27].

The classical representation expresses system state as a
conjunction of literals; unmentioned literals are implicitly
false (the “closed world” assumption). First order liter-
als such as At(goods, warehouse) are allowed but quan-
tifiers ∀ or ∃ are not permitted. First order literals must
be ground and function-free, i.e., At(x, y) or At(f(Bob),
home) are not allowed. As a result, any P/E schema for a
set of services can be propositionalized, i.e., turned into a
finite collection of purely propositional formulae with no
variables [28]. In other words, preconditions and effects
are expressed in a way that is equivalent to propositional
logic, but is more succinct and convenient in practice.

The precondition of a P/E service is a conjunction of
(positive) literals. The effects of a service are literals that
may be both positive and negative. Positive literals are
added to the state after execution, while negative literals

are removed from the state. We first discuss deterministic
service models here, and extend to models with condi-
tional effects in Section 5.

Definition 4. (P/E Model) Given a set of literals L,
the P/E model of an atomic service a ∈ A is a triple
(Pa,E+

a ,E−
a), where Pa ⊆ L is the precondition, E+

a ⊆ L
is the positive effect, and E−

a ⊆ L is the negative effect,
Pa ∩E+

a = /0 and E+
a ∩E−

a = /0.

If all literals in Pa are true in the current state T , i.e.,
Pa ⊆ T , service a may execute. After execution, literals
in E+

a are added to T and literals in E−
a are removed from

T , i.e., the resulting state T ′ = T ∪E+
a −E−

a . We sepa-
rate positive and negative effects into two sets for nota-
tional convenience and to facilitate comparisons between
I/O and P/E models. Formally, we define the execution
semantics of the P/E model as follows.

Definition 5. (Language of P/E Model) A string s ∈ A∗ is
a valid execution sequence under the P/E model if state
Ti before executing s[i] satisfies Pa ⊆ Ti. State Ti is de-
fined recursively as follows T0 = /0, Ti = Ti−1 ∪E+

s[i−1] −
E−

s[i−1],0< i< ∣s∣. The set of all valid execution sequences

under the P/E model is a language denoted L PE
A .

Example 2. An online storage system has three ser-
vices A = {a,b,c}, representing copy, backup, and host-
ing services, respectively. We define P/E models a =
(/0,{copy}, /0), b = ({copy},{backup}, {copy}), and c =
({copy,backup}, {available}, /0). That is, a copies the
data, b marks a copy as a backup, and when both a copy
and a backup are ready, c hosts the data online. Strings
a, ab, and abac all belong to L PE

A , but abc does not, be-
cause b negates precondition copy needed by c.

P/E models discussed in prior literature sometimes in-
clude input and output. For example, the OWL-S standard
allows “IOPE” specifications that include input, output,
preconditions, and effects. However, preconditions and
effects are sufficient to express the same constraints on
the execution of composite services that inputs and out-
puts imply: a precondition can express that an atomic ser-
vice requires as input data generated as an effect of some
other atomic service’s execution.

Modeling services with “lifecycle” properties, e.g., the
Google Checkout service [1], is sometimes more suc-

4

cinct, natural, and convenient if we can explicitly rep-
resent stages in such lifecycles. Automaton models are
frequently used for such services [21].

2.4 Automaton Service Models
As stated in Section 2.1, automaton models explicitly rep-
resent the internal states and transitions of component ser-
vices. Transitions are treated as atomic services; they are
local actions that change the state of a component service
and are often triggered by external events.

Definition 6. (Automaton Service Model) Given a set A
of atomic services, the automaton service model defines a
set G of finite automata. An automaton g ∈ G is a triple
(Qg,Ag,δg), where Qg is the (finite) set of states, Ag ⊆ A
is the set of actions, and δg : Qg ×Ag → Qg is the partial
transition function.

For generality, we omit the initial and final states in
the above definition by assuming that every state in GS is
both initial and final. Service composition methods using
automaton models define the composition semantics that
glue automata together, usually based on common tran-
sitions. Pistore et al. [30] advocate the parallel product
of local automata, which synchronizes all local automata
that share a common transition; Berardi et al. [6] propose
a central orchestrator that can delegate an action to one
local automaton; Bultan et al. [9] suggest that messages
communicated among peers should trigger local transi-
tions asynchronously. Under these approaches, composi-
tion goals are usually specified by regular languages, and
composition algorithms are consistent with the composi-
tion semantics. We give the definition of parallel product
here as representative approach.

Definition 7. (Parallel Product) Given automata g,h∈G,
their parallel product automaton is g∣∣h = (Qg ×Qh,Ag ∪
Ah,δg∣∣h) where δg∣∣h is defined as

(qg,qh)×a→

⎧
⎨
⎩

(δg(qg,a),qh) δg(qg,a) defined
(qg,δh(qh,a)) δh(qh,a) defined
(δg(qg,a),δh(qh,a)) both defined
undefined otherwise

The above definition extends to more than two au-
tomata in a natural way. The execution language of the

automaton service model with parallel product is the lan-
guage defined by the parallel product automaton, which
remains regular. When component automata do not share
transitions in common, the execution language of the par-
allel product is the arbitrary interleaving of all regular
languages defined by component automata, which is also
regular. Another extreme case is when G consists of only
one automaton. Then the execution language is equivalent
to the regular language defined by the local automaton.
These observations also apply to most other composition
semantics proposed in the literature. Therefore, instead
of describing each composition semantics precisely, we
consider a regular language as the execution language for
automaton service models.

For brevity and simplicity, in this paper we have re-
stricted attention to finite automata, but our linguis-
tic framework extends straightforwardly to composition
methods based on other stateful models of services, e.g.,
Petri nets [5], workflows [4], and process algebras. Some
of these formalisms are more general than finite automata,
in the sense that their corresponding formal languages are
a superset of regular languages. However our results do
not require that the formal language corresponding to a
service model be regular.

2.5 Linear Temporal Logic

A linear temporal logic (LTL) formula over some alpha-
bet Σ consists of elements of Σ (propositional literals),
boolean connectives ¬ (negation), ∨ (disjunction), and
∧ (conjunction) and the temporal operators X (next), G
(globally), and U (until). All connectives and operators
are unary except for ∨, ∧ and U.

The semantics of LTL is defined over a string s of char-
acters in Σ. We still use s[i] to denote the i-th character
in s. If s is a string of length n and 0 ≤ i < j < n, then
s[i, j] denotes the string s[i]s[i+ 1]...s[j]. Further, s[i,∗]
denotes the suffix s[i,n−1]. We denote s ∣= ϕ if the tem-
poral formula ϕ holds in the string s, which is defined
inductively as follows.

— for every symbol a ∈ Σ, s ∣= a if s[0] = a
— s ∣= Xϕ if ∣s∣> 1 and s[1,∗] ∣= ϕ
— s ∣= Gϕ if ∃i with 0 ≤ i < ∣s∣ s.t. s[i,∗] ∣= ϕ
— s ∣= ϕUψ if ∃i with 0 ≤ i < ∣s∣ s.t. s[i,∗] ∣= ψ and

for any j with 0 ≤ j < i,s[j,∗] ∣= ϕ

5

Intuitively ϕUψ means ϕ is satisfied at every step until
the step where ψ is satisfied. From that point on, there
is no further restriction on either ϕ or ψ . In addition, we
introduce the weak until binary operator W that simplifies
our formulae. Its semantics is similar to that of the until
operator but the stop condition is not required to occur,
i.e.:

ϕWψ = (ϕUψ)∨Gϕ.

For example, string abc satisfies formulae Xb, G(a∨
b∨c), and aUb. With the semantics of LTL, we can define
a language corresponding to an LTL formula as follows.

Definition 8. (LTL Language) Given an alphabet Σ and
an LTL ϕ , language Lϕ is the set of strings that satisfy ϕ ,
i.e., Lϕ = {s∣s ∣= ϕ}. A language L is definable in LTL
iff there exists an LTL formula ϕ s.t. L = Lϕ .

There is a clear distinction between the temporal logic
defined above and the propositional logic used in P/E
models to describe states, or the description logic used
in semantic web for ontology. Temporal logic captures
temporal relationships in a sequence, while the others de-
scribe static system states. We use temporal logic to char-
acterize execution languages of different service models.

Languages definable in LTL are in fact a strict subset
of the regular language, as the following theorem states.
This result is relevant to our comparison of service mod-
els.

Theorem 1. [11] A language is definable by an LTL for-
mula iff it is definable by a star-free regular expression.

A star-free regular expression is built up from symbols
in the alphabet Σ, and operators ⋅,∪,∩,¬ denoting “con-
catenation”, “union”, “intersection”, and “complementa-
tion (with respect to Σ∗)”, respectively. Kleene (or star)
closure ∗ is not allowed. Star-free regular expressions are
a strict subset of regular expressions. However, the differ-
ence between the star-free regular language and the regu-
lar language is rather subtle. A star-free regular language
is not necessarily finite since Σ∗ is included as it is the
complement of the empty language.

Let the alphabet be the set of atomic services, Σ = A. A
language over this alphabet represents a set of execution
sequences. Since execution languages L IO

A and L PE
A are

defined over the same alphabet, we represent these lan-
guages using LTL formulae as presented in the following.

3 Logic Representation of Service
Models

The execution language of the automaton based service
model is equivalent to regular language in the extreme
case. Therefore, we assume regular language for automa-
ton based models, and focus on the logic representation of
I/O and P/E service models in this section.

3.1 Logic Formulae for I/O Models

According to the I/O service model in Definition 2 and
its execution semantics in Definition 3, an atomic service
a ∈ A cannot take place until all of its input are available.
Input p of a, i.e., p ∈ Ia, is available if another service b
outputs p, i.e., p ∈ Ob. We translate this semantics into
the following LTL formula using the weak until operator.

⋀

p∈Ia

(
¬a W

⋁

p∈Ob

b
)

(1)

In a word, Formula (1) states that service a cannot take
place “until” service b happens first, which generates in-
put p for a. An execution string over A satisfies (1) iff a
set of services that generates all input of a have occurred
before a (or a never occurs). For each input p of a, there
could be a set of services that all output p. Therefore we
have the disjunctive clause after the W operator. To sum-
marize,

⋁
p∈Oa a “achieves” input p for a, and the Con-

junctive Normal Form (CNF)
⋀

p∈Ia
⋁

p∈Ob
b “enables” a.

For any valid execution sequence under the I/O model,
Formula (1) must be true for every atomic service in A.
We have the following formula for the I/O service model.

ϕ =
⋀

a∈A

(1) (2)

For example, service a in Example 1 has no formula
since Ia is empty, b gives formula ¬bWa, and c gives
(¬cW(a∨ b))∧ (¬cWb), which is simplified as ¬cWb.
Together, service model in Example 1 is defined by
¬bWa∧¬cWb, which means a must occur before b and
b must occur before c.

Similarly to Definition 3, these logic formulae are de-
fined over execution sequences based on the semantics,

6

and independent of composition algorithms. We estab-
lish the relationship between these formulae and execu-
tion languages under I/O models by the following two
theorems.

Theorem 2. Given set A of atomic services, I/O model
(Ia,Oa) for each service a in A, and formula ϕ in (2), we
have L IO

A = Lϕ .

Proof. If a string s belongs to the language L IO
A in Def-

inition 3, then for every character s[i] in the string, the
input of s[i] must have been produced by atomic services
preceding s[i], i.e., s[i] cannot take place until atomic ser-
vices that output s[i]’s input has occurred first. Therefore,
string s must satisfy ϕ in (2), i.e., s ∈ Lϕ .

If a string s satisfies ϕ , Formula (1) says that an atomic
service either does not exist in s, or a set of atomic ser-
vices have occurred before it in the string that produces
its input. Therefore, s is a valid execution sequence, i.e.,
s ∈ L IO

A .

The above theorem states that if we have an I/O model
for a set of services, there is an LTL formula equivalent
to the execution language allowed by the I/O model. On
the other hand, given an execution language L ex

A over A
we want to comply with, there are certain conditions L ex

A
must satisfy in order to use the I/O service model.

Theorem 3. Given language L ex
A over A, if there exists

subsets A1
a,A

2
a ... AXa

a for each atomic service a ∈ A, where
Ai

a ⊂ A,a /∈ Ai
a, and Xa is the index, such that L ex

A = Lψ ,
where

ψ =
⋀

a∈A

⋀

0<i≤Xa

(
¬a W

⋁

b∈Ai
a

b
)

(3)

then there exists an I/O model for A, such that L IO
A =

L ex
A .

Proof. We construct an I/O model for A as follows.
For each atomic service a ∈ A, its input set Ia con-
tains Xa elements Ia = {p1

a, p2
a, ...p

Xa
a }, corresponding to

A1
a,A

2
a, ...A

Xa
a , respectively. For each element in subset

Ai
a ⊂ A, we add pi

a to its output set, i.e., ∀b ∈ Ai
a, we have

pi
a ∈ Ob. With this construction, ψ becomes

ψ =
⋀

a∈A

⋀

pi
a∈Ia

(
¬a W

⋁

pi
a∈Ob

b
)

which is equivalent to ϕ in (2). Therefore, we have
L ex

A = Lψ = Lϕ = L IO
A . The last equality is the result

of Theorem 2.

Formula (3) defines the condition L ex
A must satisfy in

order to use the I/O model for composition. If the formula
is satisfied, one can define an I/O model that describes
atomic services in A, whose execution language is exactly
L ex

A . Otherwise, no I/O model generates exactly L ex
A . In

this case, we can use a more restrictive I/O model whose
execution language is a subset of L ex

A , which implies that
there are certain valid execution sequences permitted by
A but not composable by the model. On the other hand, a
less restrictive I/O model whose execution language is a
superset of L ex

A may output invalid execution sequences.
Formula (2) and Formula (3) share the similar form. How-
ever, the former is associated with an I/O model, which
defines the execution language of the model, while the
latter is a stand-alone formula, which characterizes cer-
tain properties of a language over A.

3.2 Logic Formulae for P/E Models
Similarly to I/O models, we represent execution se-
quences allowed by P/E models using LTL formulae.
Note that the literals used in these LTL formulae repre-
sent atomic services in A, and should not be confused with
the literals in preconditions and effects of P/E models that
describe system states.

Based on Definitions 2 and 4, literals in the P/E model
are analogous to input and output data types in the I/O
model. Under this analogy, preconditions in the P/E
model are effectively input in the I/O model, and posi-
tive effects are output of a service. Therefore, we have
the following formula similar to (1).

⋀

l∈Pa

(
¬a W

⋁

l∈E+
b

b
)

(4)

The key difference between these two service models
is the negative effect in the P/E model. An negative ef-
fect essentially negates a literal that is already available.
While under the I/O model, an output cannot be revoked.
To capture negative effects, we have

⋀

l∈Pa

(⋁

l∈E−
c

c → (¬a W
⋁

l∈E+
b

b
))

(5)

7

where “→” is the logic implication operator, a → b =
¬a∨b.

The above formula states that if service c takes place
and c negates l that is a precondition of a, a cannot take
place from now on until some service b “regenerates” l as
its positive effect. Formula (4) is the condition needed to
execute a. It must be satisfied at the beginning of the exe-
cution sequence. While Formula (5) describes the conse-
quence of negative effects, i.e., when a negative effect oc-
curs, the clause in Formula (4) must be satisfied again (at
that step), since the precondition needed by a does not ex-
ist any more. This formula must be satisfied at every step
of the execution sequence. Therefore, we have the follow-
ing LTL formula that represents the P/E service model.

ϕ =
⋀

ai∈A

(4)∧G(5) (6)

For example, service c in Example 2 gives the for-
mula ¬cWa∧¬cWb. In addition, the negative effect data
caused by b gives formula G(b → (¬cWa)).

These formulae are consistent with the partial-order
planning method [28]. An action (service) b with positive
effect l, i.e., l ∈E+

b “achieves” l for a, called a causal link,

denoted as b l−→ a, corresponding to Formula (4). If l is a
negative effect of c, i.e., l ∈E−

c , c conflicts with this causal
link, and must not occur between b and a, corresponding
to Formula (5). The following theorem establishes the re-
lationship between the above formulae and the execution
language of the P/E model.

Theorem 4. Given set A of atomic services, P/E model
(Pa,E+

a ,E−
a) for each service a in A, and formula ϕ in

(6), we have L PE
A = Lϕ .

The proof to this theorem is analogous to that of Theo-
rem 2 and therefore omitted here. Similarly to Theorem 3,
if a given execution language L ex

A can be represented by
an LTL formula in the form of (6), we can derive a P/E
service model whose execution language is exactly L ex

A .
The discussion follows the same strategy of Theorem 3,
but a lot lengthier due to the consequences of negative ef-
fects. We omit it from the paper.

4 Comparisons of Service Models
We do not argue that any one service model is strictly
preferable to the others. Rather, the three models offer dif-
ferent tradeoffs among important considerations includ-
ing the convenience of describing component services,
the computational complexity of composition algorithms,
and the range of possible composite workflows that can
be supported.

4.1 Complexity of Description
As Table 1 summarizes, describing services using I/O
models is relatively easy because the widely accepted
WSDL standard already includes the input and output
data types of each atomic service. The P/E model re-
quires preconditions and effects to be defined for each
atomic service, which OWL-S supports. Describing ser-
vices using automata requires detailed understanding of
this model, and an agreement on composition semantics.

While the amount of description may increase from the
I/O model to the automaton model, annotating services
using automaton models is sometimes more convenient.
For example, if we require that a loan offer service must
follow a credit report service, it may be more intuitive to
specify this constraint using two consecutive transitions
in an automaton. By contrast, we would need to carefully
match input and output schema of each service in an I/O
model [26] or specify literals that describe states before
and after each service’s execution in a P/E model, perhaps
with the aid of an ontology [29].

4.2 Execution Languages
Based on our analysis, the I/O service model is equiv-
alent to the P/E service model without negative effects.
Therefore, the P/E model is more expressive than the I/O
model. Since execution languages allowed by P/E models
can be characterized using LTL formulae, based on Theo-
rem 1, the P/E model is less expressive than the automaton
model. The following corollary and Figure 1 summarize
these relationships.

Corollary 5. The set of execution languages that I/O ser-
vice models generate is a strict subset of those generated
by P/E service models; while the latter is a strict subset of

8

Figure 1: Relationships among execution languages by
different service models.

regular languages, i.e., languages allowed by automaton
service models.

4.3 Composition Capability
We have discussed the execution language of each service
model. Given an execution language, depending on its
equivalent logic representation, we can choose an appro-
priate service model for the composition. Finding equiv-
alent logic representation of a language is difficult, if one
is not familiar with formal methods. Here we give intu-
itive explanations of the composition capability of each
model, and a few simple model selection criterions based
on control flow structures.

Under the I/O service model, as discussed in Sec-
tion 3.1, a service is “enabled” by a CNF logic formula,
i.e., a set of conditions must all be satisfied before exe-
cuting the service, and each condition can be satisfied by
executing one atomic service from many choices. There
is no negation of these literals in the CNF. From the com-
position point of view, each disjunctive clause in the CNF
can be implemented by XOR fork/join structure, while
the conjunction can be implemented by AND fork/join.
These two structures are sufficient to build composite ser-
vices under the I/O model.

The P/E model defines a similar CNF formula that en-
ables a service, but the same service can be “disabled”
again by services with conflicting negative effects. A
control flow structure directly related to this fact is the
milestone pattern [35]. This pattern states that a service
can only be executed during a certain phase. For exam-
ple, a customer may cancel his/her order as long as it is
not shipped. This pattern cannot be composed under I/O
service models, but is allowed under P/E service models.
Similarly, repeated execution of an atomic service cannot
be composed under I/O service models, but is supported

by P/E (see Example 2), because the output data set re-
mains unchanged after repeated executions.

The difference between the regular language and the
star-free regular language is rather subtle, and in practice
it usually does not affect the selection of service model.
However, P/E service models correspond to only a subset
of the star-free regular language because of the special
form expressed by Formula (6). Not every LTL formula
can be translated into this form, and therefore even some
star-free regular language cannot utilize the P/E service
model. Here we give an example that is star-free regular
but not allowed by P/E service models.

Example 3. There are three atomic services A= {a,b,c}.
Let the execution language be L ex

A = {a,b,ab,ba,ac,bc},
but abc /∈ L ex

A . There is no P/E service model that cap-
tures exactly this language.

This example is based on the above discussion that a
service under the P/E model (or I/O model) is enabled
by an CNF formula without negation. The XOR logic
operator cannot be represented in this form. Therefore,
we cannot have the pattern where either a or b must occur
before c, but not both. However, the automaton model
supports it since L ex

A is a regular language.

4.4 Complexity of Composition Algorithms
With a specific composition goal g, all possible execu-
tion sequences that achieve the goal, denoted as Lg, are
a subset of the execution language allowed by the service
model. The size of Lg is often exponential in the length of
g. In practice, a service composition algorithm typically
outputs one composite service instead of enumerating all
strings in Lg, whose execution sequences are a subset of
Lg. For example, a planning algorithm typically outputs
the most efficient plan to achieve the goal, instead of enu-
merating all solution plans. Therefore, we compare the
computational complexity of composition algorithms that
find one solution for the composition goal.

Under the I/O service model, the set of output data
grows monotonically as more atomic services are exe-
cuted. Therefore, we have a transitive closure style com-
position algorithm. It executes an enabled service during
each iteration, and adds its output set to the available data
set. The algorithm terminates when the output data set
subsumes the goal or no more service can be executed,

9

i.e., the goal is not achievable. The time complexity of
the algorithm is O(m2n2) where m is the number of dis-
tinct input and output data types, and n is the number of
atomic services.

Deciding the existence of a plan for a planning model
is known to be PSPACE-complete [28]. Therefore we do
not have any polynomial composition algorithm for the
P/E service model.

The computational complexity of automaton model
based composition algorithms varies depending on the
composition semantics. However, these algorithms al-
most all involve the construction of the global state, which
is the Cartesian product of state sets of all component au-
tomata, e.g., as defined by the parallel product in Defini-
tion 7. Therefore their complexity is at least exponential
in the number of component automata used for the com-
position.

5 Extensions
Our linguistic framework that covers the three common
service models is not restricted by the specific forms we
define them. Here we consider two popular variants of
these models.

5.1 Conditional P/E Models
The P/E service model in Definition 4 assumes fixed sets
of preconditions and effects. Most planning models pro-
posed in the literature, as well as the OWL-S, support
conditional, or nondeterministic, models. A conditional
model includes a set of different outcomes associated with
a service. Each outcome has its own sets of positive and
negative effects. For example, a credit card payment ser-
vice may result in a successful charge or a failure.

A conditional model may or may not specify differ-
ent preconditions that trigger different conditional effects.
We consider the general conditional P/E model where
one can define different preconditions for different ef-
fects. Under this consideration, an atomic service with
conditional effects can be represented by a set of uncondi-
tional atomic services, i.e., according to Definition 4. Af-
ter this transformation, the execution semantics is exactly
the same as Definition 5 implies. However, when consid-
ering the execution language of this model, we must map

these derived unconditional services back to the symbol
that represents the original conditional service. For exam-
ple, if an atomic service a has two conditional outcomes,
we define unconditional services a′ and a′′ that represent
the two outcomes, respectively. Services a′ and a′′ fol-
low the execution semantics under the unconditional P/E
model. But for each valid execution sequence that in-
cludes a′ or a′′, we replace every occurrence of a′ or a′′
by a. This mapping we apply to the execution sequence is
called the projection of a language:

Definition 9. (Language Projection) Let g be a function
g : Σ → Σ′, we extend g to a string s ∈ Σ∗ naturally as
g(s) = g(s[0])g(s[1]).... The projection of a language L
over Σ is L g = {g(s)∣s ∈ L }, L g ⊂ Σ′∗.

Therefore, the execution language of a conditional P/E
service model is equivalent to the execution language of
the transformed unconditional P/E model under some pro-
jection function. We have shown that the execution lan-
guage of an P/E model is equivalent to a certain star-free
regular expression. A star-free regular expression remains
star-free regular after the projection, since the projection
does not introduce Kleene ∗ operator or other non-regular
operator into the expression. As a result, we have the fol-
lowing corollary.

Corollary 6. The execution language of a P/E service
model with conditional effects is definable by a star-free
regular expression. Therefore, languages that can be cap-
tured by P/E models with conditional effects remain a
strict subset of regular languages.

The conditional P/E service model is more expressive
than the unconditional P/E service model due to the ex-
istence of conditional effects. Conditional effects are
closely related to the deferred choice pattern [35], which
is a deferred XOR where the choice is made by the envi-
ronment at runtime. A service with conditional outcomes
lead to different successor services depending on which
outcome takes place. Therefore, in a composite service,
a conditional atomic service is typically followed by mul-
tiple branches, and the runtime outcome enables exactly
one of them to be executed next. This pattern is not al-
lowed by the unconditional P/E model or the I/O model.
In those models, an execution sequence always results in
the same state, with the same set of services enabled.

10

In addition, loops (arbitrary cycle pattern [35]) are per-
mitted by conditional effects but not with I/O or uncondi-
tional P/E models. For example, an online shopping ser-
vice may put the “add to cart” action in a loop until the
customer completes his/her shopping list. Under I/O or
unconditional P/E models, there is no need to use loops
since the state after each cycle is exactly the same. The
execution language in Example 3 can be captured by our
conditional P/E model as well. We omit the detailed dis-
cussion here due to the space limit.

5.2 Data-Centric Service Models
Recently data-centric, or artifact-centric, business pro-
cesses have received increasing attention [8, 14]. The
data-centric design centers around data objects and their
life cycles. A data-centric business process manipulates
these objects to reach a goal, which is often expressed as
a set of objects reaching certain states.

The data-centric design can be applied to our service
composition framework. Under this view, an atomic ser-
vice operates on one or a set of data objects. This ser-
vice model defines how an atomic service modifies states
of data objects. Analogous to the comparison between
process-oriented programming and object-oriented pro-
gramming, data-centric service model offers better mod-
ularity, reusability and possibly easier description. But
in terms of the expressive power, associating data objects
with a service model does not increase its expressiveness.

For example, we can define a data-centric I/O service
model where each input/output data type is attached to
a data object (with no further annotation). This helps to
avoid input/output name conflict and the model becomes
more readable. But the expressiveness remains the same.

The P/E service model has been extended to incorpo-
rate the data-centric design in a similar manner [14]. In
this case, state literals are associated with data objects,
e.g., a status literal becomes structured as ob ject.status.
The structured literal establishes relationships between
data objects and services that operate on them. Similarly
to the data-centric I/O model, the data-centric P/E model
merely renames literals, and the expressiveness remains
the same.

Perhaps the most benefits of the object-oriented design
come with the data-centric automaton service model. This
idea occurred in [7] under a different composition frame-

work. It is not introduced as a data-centric approach. We
present the data-centric automaton model as follows. Re-
call from Section 2.4 that an automaton service model
consists of set A of atomic services and set G of automata.
Under the data-centric view, each automaton in G natu-
rally defines the life cycle of some data object, i.e., we
associate with each automaton a data object. The state
of an automaton reflects the state of the object associated
with it. A transition (atomic service) of the automaton
accepts the object in a certain state and moves it to a dif-
ferent state. This explanation comes closest to the hu-
man perception of how services interact with data objects.
However, since we are not changing the definition of the
automaton service model, the expressive power is again
the same.

6 Applications of The Framework
As an application of our framework, we can identify the
appropriate service model that enables the automated con-
struction of a given workflow based on its control flow
patterns. This section discusses this application using
well-known workflow patterns and a case study of HP IT
transformation services.

6.1 Workflow Patterns
Control flow patterns are an important criterion to evalu-
ate the expressiveness of work languages [35]. Similarly
we use these patterns to evaluate the composition capabil-
ity of different service models. Section 4.3 already dis-
cussed some of the basic patterns. Here we thoroughly
evaluate all relevant patterns mentioned in [35], and give
the minimally expressive service model that supports the
composition of each pattern. The result is summarized in
Table 2.

The sequential pattern is supported by every service
model. The parallel pattern AND fork/join and choice
pattern XOR fork/join are supported by I/O model (as
well as other service models) as discussed in Section 4.3.
Here we assume that the composition algorithm always
uses an AND fork/join whenever multiple services can be
executed in parallel, and uses an XOR fork/join whenever
multiple alternative services are available. A less opti-
mized composition algorithm may output a serial work-

11

Group Pattern Service Model
Basic Sequence I/O

Control AND fork/join I/O
Flow XOR I/O

Advanced OR fork/join I/O
Branching Multi-merge I/O

Sync Discriminator I/O
Structural Cycles Conditional P/E
Patterns Implicit Termination I/O
State- Deferred Choice Conditional P/E
Based Interleaved Parallel Automaton

Patterns Milestone P/E

Table 2: Workflow patterns and the minimally expressive
service models that support them

flow as the solution, which does not imply that the ser-
vice model supports only sequential patterns. With the
automaton model, we assume that the execution of one
component automaton is serial while the execution of dif-
ferent component automata can be parallelized using the
AND pattern. The XOR pattern can be used when there
are choices among different automata, e.g., the delegation
approach [6].

The OR fork pattern represents multiple choices, i.e., a
subset of available branches is executed. This pattern can
be completed by OR join, multi-merge, or discriminator
pattern, which represent different ways to merge of mul-
tiple branches. These advanced branching patterns can be
represented by combinations of basic AND and XOR pat-
terns. Therefore, the I/O service model is sufficient.

The cycle pattern is enabled by conditional P/E model
but not the I/O or the unconditional P/E model as dis-
cussed in Section 5.1. The implicit termination pattern
is essentially a terminal node. One can implement this
with any service model.

State based patterns are closely related to our classifi-
cation of service models. The deferred choice pattern is
supported by the conditional P/E model as Section 5.1 dis-
cusses. The interleaved parallel pattern is when we need
to execute a set of atomic services sequentially, but with
arbitrary order. The I/O or P/E service model does not
support this because they cannot differentiate between the
AND pattern and this pattern. If multiple atomic services
are enabled, it is natural to use the AND fork/join to max-

imize the parallelism rather the using the interleaved par-
allel pattern. The automaton model allows this pattern
because the local automaton could explicitly include all
possible execution ordering. The milestone pattern is a
typical example that the P/E model supports but not the
I/O model, as discussed in 4.3. Other workflow patterns
include the group of multiple instance patterns and the
group of cancelation patterns. These patterns are irrele-
vant to our discussion and therefore not included in the
table.

Table 2 provides a quick guideline on which service
model to use based on the control flow patterns we need
to compose. For example, if we want to compose a BPEL
workflow [2], we can analyze the control flow structures
of BPEL. Basic control flow structures include sequence,
flow, switch, and while loop, corresponding to the se-
quence, AND, XOR, and cycle patterns, respectively. The
conditional P/E model supports the composition of all
these structures. However, the semantics of link in BPEL
is rather unusual and complicated. An activity cannot start
until all source activities of its incoming links are com-
pleted and the joinCondition evaluates to true. Since
the joinCondition permits arbitrary boolean formu-
lae, depending on its format, we may need an automaton
service model for the composition.

6.2 HP IT Transformation Services Case
Study

We used our framework to analyze a set of 33 workflow
templates used for IT transformation services within HP
Enterprise Services. The templates represent activities
undertaken by project teams as part of outsourcing and
consulting engagements, and include between 12 to 30
atomic activities each. For example a server virtualization
project contains activities such as “define KPIs”, “design
management and host infrastructure”, “procure infrastruc-
ture”, and “test VMs”. Because it is important to make
service engagements repeatable and efficient across cus-
tomers, specialized teams handle different activities, and
need to schedule their time and resources across multi-
ple projects and customers. For each new engagement,
the templates are customized and the required workflow
is composed manually from the templates. Because cus-
tomization usually introduces changes in the templates,

12

the individual workflows become error-prone, and diffi-
cult to construct and maintain.

Motivated by the goal of automating the composition of
workflows for new engagements from these templates, we
wanted to identify the service models that could be used
to represent the activities described in the templates. An
examination of these templates identified a total of 577
activities. As many of them are shared between the tem-
plates, we found 270 activities that could be represented
as atomic services. We further found that the majority
of workflows only required sequential and AND patterns.
More specifically, we found 7 workflows involving de-
ferred choice patterns. For example, a storage backup ser-
vice contains the condition “need additional hardware?”,
if yes, “procure”, else “proceed”. From Table 2 we ob-
serve that these workflows require a conditional P/E ser-
vice model, while the remaining workflows can be com-
posed using I/O service models only.

We built a prototype based on I/O service models us-
ing the algorithm mentioned in Section 4.4. Our algo-
rithm generated all workflows that do not involve the de-
ferred choice patterns. By specifying the proper inputs
and outputs in the I/O model as the composition goal,
the prototype was able to generate all desired workflows.
We believe that by properly annotating the templates, we
can provide tools that can construct the custom work-
flows necessary in a more consistent and error-free man-
ner. As an example, we found that in many cases the
template workflows provide alternate paths for “customer
approval?” while others simply assume that the result is
deterministic and always results in true. Similarly, while
the “close project” activity follows “handover to support”,
sometimes there is an additional step “customer signoff”
in between. We believe that the missing steps are due to
omissions in the templates rather than the semantics of
the workflows. Automatically composed workflows can
handle such conditional effects in a comprehensive and
consistent way. The value of our framework comes from
being able to handle the different service models in a uni-
fied manner, as opposed to requiring different ways of an-
alyzing workflows requiring different service models.

7 Related Work
Existing work in the area of service composition can be
studied into two broad categories: those presenting frame-
works for manual composition (surveyed in [10, 24]) and
languages such as WS-BPEL [2], and those that provide
automated techniques (described in surveys [32, 24]).
The theoretical framework presented in this paper is re-
lated to the later category. Most existing service com-
position methods in this category are based on one of
the three service models discussed in this paper. Other
than those discussed in this paper, composition methods
based on I/O service models include [33, 18, 16, 20],
P/E models include [3, 22, 31], and automaton models
include [15, 25, 17]. This shows that the presented frame-
work is generic and covers a wide range of existing com-
position work.

Some approaches mix the I/O and P/E service mod-
els [19]. In this case, the input and output are used to
compose sequential and parallel structures while precon-
dition and effect are used to generate condition branches,
i.e., deferred choice patterns. Another composition ap-
proach is based on the dependency graph model [13].
These dependency graphs can be viewed as simplified au-
tomaton models, and therefore the approach belongs to
the automaton model category. The increasingly popu-
lar RESTful framework promotes resources as its central
principle, which is close to the data-centric service model.
The P/E service model has been applied to the RESTful
framework recently [36].

8 Conclusions
This paper presents a formal language framework for ana-
lyzing service composition. It covers the three most com-
mon service models and characterizes their expressive-
ness, composition capability, and the computational com-
plexity of composition. We have also presented a practi-
cal application of our framework in the context of service
composition for HP IT Transformation services.

We have shown that our framework clarifies the im-
plications of service models for service composition and
identifies the least expressive service model that supports
given workflow language capabilities. This in turn may
facilitate automated service composition by aiding the se-

13

lection of the most appropriate service model for desired
composition capabilities.

References
[1] Google checkout service. http://

code.google.com/apis/checkout/
developer/index.html.

[2] WS-BPEL 2.0, OASIS standard. http:
//docs.oasis-open.org/wsbpel/2.
0/wsbpel-v2.0.html.

[3] V. Agarwal, K. Dasgupta, N. M. Karnik, A. Kumar,
A. Kundu, S. Mittal, and B. Srivastava. A service
creation environment based on end to end compo-
sition of Web services. In WWW, pages 128–137,
2005.

[4] P. Albert, L. Henocque, and M. Kleiner. A con-
strained object model for configuration based work-
flow composition. In BPM Workshops, pages 102–
115, 2005.

[5] P. Álvarez, J. A. Bañares, and J. Ezpeleta. Ap-
proaching Web service coordination and composi-
tion by means of Petri nets: The case of the nets-
within-nets paradigm. In ICSOC, pages 185–197,
2005.

[6] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenz-
erini, and M. Mecella. Automatic composition of e-
services that export their behavior. In ICSOC, pages
43–58, 2003.

[7] P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore,
H. Raik, and M. Wagner. Control flow requirements
for automated service composition. In ICWS, pages
17–24, 2009.

[8] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and
J. Su. Towards formal analysis of artifact-centric
business process models. In BPM, pages 288–304,
2007.

[9] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: a new approach to design and analysis
of e-service composition. In WWW, pages 403–410,
2003.

[10] S. Dustdar and W. Schreiner. A survey on Web ser-
vices composition. Int. J. Web Grid Serv., 1(1):1–30,
2005.

[11] E. A. Emerson. Temporal and modal logic. In
Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematics, pages 995–1072.
1990.

[12] T. Erl. SOA Principles of Service Design. Prentice
Hall PTR, 2007.

[13] R. Eshuis, P. W. P. J. Grefen, and S. Till. Structured
service composition. In BPM, pages 97–112, 2006.

[14] C. Fritz, R. Hull, and J. Su. Automatic construc-
tion of simple artifact-based business processes. In
ICDT, pages 225–238, 2009.

[15] G. D. Giacomo, M. de Leoni, M. Mecella, and F. Pa-
trizi. Automatic workflows composition of mobile
services. In ICWS, pages 823–830, 2007.

[16] Z. Gu, J. Li, and B. Xu. Automatic service compo-
sition based on enhanced service dependency graph.
In ICWS, pages 246–253, 2008.

[17] R. R. Hassen, L. Nourine, and F. Toumani. Protocol-
based Web service composition. In ICSOC, pages
38–53, 2008.

[18] R. Hewett, P. Kijsanayothin, and B. Nguyen. Scal-
able optimized composition of Web services with
complexity analysis. In ICWS, pages 389–396,
2009.

[19] S. Kona, A. Bansal, M. B. Blake, and G. Gupta.
Generalized semantics-based service composition.
In ICWS, pages 219–227, 2008.

[20] Z. Liu, A. Ranganathan, and A. Riabov. Modeling
Web services using semantic graph transformations
to aid automatic composition. In ICWS, pages 78–
85, 2007.

[21] A. Marconi, M. Pistore, P. Poccianti, and
P. Traverso. Automated Web service composition at
work: the amazon/mps case study. In ICWS, pages
767–774, 2007.

14

[22] H. Meyer and M. Weske. Automated service compo-
sition using heuristic search. In BPM, pages 81–96,
2006.

[23] P. Mika, D. Oberle, A. Gangemi, and M. Sabou.
Foundations for service ontologies: aligning OWL-
S to Dolce. In WWW, pages 563–572, 2004.

[24] N. Milanovic and M. Malek. Current solutions for
Web service composition. IEEE Internet Comput-
ing, 8(6):51–59, 2004.

[25] S. Mitra, R. Kumar, and S. Basu. Automated chore-
ographer synthesis for Web services composition us-
ing I/O automata. In ICWS, pages 364–371, 2007.

[26] H. R. Motahari Nezhad, B. Benatallah, A. Martens,
F. Curbera, and F. Casati. Semi-automated adapta-
tion of service interactions. In WWW, pages 993–
1002, 2007.

[27] S. Narayanan and S. A. McIlraith. Simulation, veri-
fication and automated composition of web services.
In WWW, pages 77–88, 2002.

[28] D. Nau, M. Ghallab, and P. Traverso. Automated
Planning: Theory & Practice. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004.

[29] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and
K. Verma. Meteor-S Web service annotation frame-
work. In WWW, pages 553–562, 2004.

[30] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi.
Automated synthesis of composite BPEL4WS Web
services. In ICWS, pages 293–301, 2005.

[31] A. Ragone, T. D. Noia, E. D. Sciascio, F. M. Donini,
and S. Colucci. Fully automated Web services or-
chestration in a resource retrieval scenario. In ICWS,
pages 427–434, 2005.

[32] J. Rao and X. Su. A survey of automated Web ser-
vice composition methods. In Proc. 1st Int’l Work-
shop on Semantic Web Services and Web Process
Composition, 2004.

[33] A. Riabov, E. Bouillet, M. Feblowitz, Z. Liu, and
A. Ranganathan. Wishful search: interactive com-
position of data mashups. In WWW, pages 775–784,
2008.

[34] Z. Shen and J. Su. On completeness of Web service
compositions. In ICWS, pages 800–807, 2007.

[35] W. M. P. van der Aalst, A. H. M. ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow pat-
terns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

[36] H. Zhao and P. Doshi. Towards automated RESTful
Web service composition. In ICWS, pages 189–196,
2009.

15

