

Keyword(s):

Abstract:

©

A visual tool for rapid integration of enterprise software applications

Inbal Marhaim, Eli Mordechai, Claudio Bartolini, Ruth Bergman, Oren Ariel, Christopher Peltz

HP Laboratories
HPL-2010-29

application, integration, automation, HCI

Integrating software applications is a challenging, but often very necessary, activity for businesses to
perform. Even when applications are designed to fit together, creating an integrated solution often requires
a significant effort in terms of configuration, fine tuning or resolving deployment conflicts. This is often the
case when the original applications have been designed in isolation. This paper presents a visual method
allowing an application designer to quickly integrate two products, taking the output of a sequence of steps
on the first product and using that as input of a sequence of steps on the second product. The tool achieves
this by: (1) copying UI components from the underlying applications user interface; (2) capturing user
interaction using recording technology, rather than by relying on the underlying data sources; and (3)
exposing the important business transactions that the existing application enables as macros which can then
be used to integrate products together.

External Posting Date: February 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: February 21, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

A visual tool for rapid integration of enterprise software applications

Inbal Marhaim, Eli Mordechai, Claudio Bartolini, Ruth Bergman, Oren Ariel, Christopher Peltz

February 15, 2010

Abstract

Integrating software applications is a challenging, but often very necessary, activity for busi-
nesses to perform. Even when applications are designed to fit together, creating an integrated
solution often requires a significant effort in terms of configuration, fine tuning or resolving de-
ployment conflicts. This is often the case when the original applications have been designed in
isolation. This paper presents a visual method allowing an application designer to quickly inte-
grate two products, taking the output of a sequence of steps on the first product and using that
as input of a sequence of steps on the second product. The tool achieves this by: (1) copying UI
components from the underlying applications user interface; (2) capturing user interaction using
recording technology, rather than by relying on the underlying data sources; and (3) exposing
the important business transactions that the existing application enables as macros which can
then be used to integrate products together.

1 Introduction

Integrating software applications is hard. Even when such applications are designed to fit together,
creating an integrated solution often requires a significant effort in terms of configuration, fine
tuning or resolving deployment conflicts. If the original applications had been designed in isolation
and not originally intended to provide an integrated solution, then it might easily turn into a
nightmare. In fact, this scenario is very common. If you want to scare off an IT executive, tell
them that “it’s just a simple application integration effort”. In reality, there is no simple and
cheap application integration effort. Difficult as it is, software integration application is often
necessary. Due to the dynamic nature of most enterprises, many disparate software applications
live in the enterprise space. The creation of new business operations, for example, as the result of
mergers and acquisitions, brings about the need to use multiple applications. The enterprise staff
has to juggle between them to complete new business processes. Indeed, such processes sometimes
require operators to have multiple screens open at the same time and manually move data from
an application to the other. So, the IT executive has to choose between an error prone and time
consuming process, or an application integration effort. The visual integration tool presents a way
out for the IT executive, a method for rapid, programming-free software integration.

Software applications integrations comes in various flavors, the most prevalent of which are Enter-
prise Application Integration (EAI) and, more recently, web 2.0 mashups. The business relevance

1

of this problem is exemplified by that the total available market for EAI alone, defined as the use
of software and computer systems architectural principles to integrate a set of enterprise computer
applications, is expected to reach 2.6 billion by 2009 (Wintergreen research). From a technology
point of view, what make the problem hard are issues with data representation, data semantics,
connector semantics, error control, location and non-functional requirements.

In this paper, we introduce a novel approach to software application integration, and a visual tool
that embodies it, called visual product integrator. The main guiding principle for our approach
is that software application integration should be made faster and cheaper. Our approach aims to
make the integration process better, since our tool will enable quick proof-of-concept integrations
that can go from inception to use in a very short turn-around time. We do not expect that
solutions developed using it will be as robust and as complete as full standard application integration
solutions. Having said this, our approach and tool, when used in parallel with standard techniques,
provide the advantages of shortening developing cycles and enabling the quick and cheap creation
of successive throw-away versions of the final integrated solution. Last but not least, our approach
demands very little in terms of knowledge about the internal data representation and semantics of
the original applications.

In a nutshell, the visual product integrator allows an application designer to quickly realize use cases
for integrations of two products that can generally be defined as taking the output of a sequence
of steps on the first product and using that as input of a sequence of steps on the second product.
Visual product integrator achieves this by

• copying UI components from the user interface of the underlying applications

• capturing user interaction using recording technology, rather than by relying on underlying
data sources or on programming

• exposing the important business transactions that the existing application enables as macros

We refer to a recorded sequence of interactions as a macro. Once macros of one or more existing
applications have been created they may be re-used in any new application. The main contributions
of our approach and visual product integrator tool are:

• blend together the roles of the designer and the user of the integrated solution

• require no programming of scripting for creating the graphical user interface of the integrated
solution

• record the actions of the application user/designer similarly to what is done when recording
a macro in Microsoft Excel - only this happens when juggling between different software
applications rather than spreadsheets

• force the designer/user to think about business transactions rather than specific business
objects: visual product integrator captures the sequence of steps of a business process and
its interactions with all the related business objects

2

Figure 1: Architecture Diagram for the Visual Product Integrator.

2 Architecture

The visual product integrator has two main functionalities. First, it allows to user to design a
new application with a new user interface. Second, it provides a runtime environment for the new
application. The architecture of the visual product integrator, shown in Figure 1, supports both
functionalities.

At design time, the visual integrator behaves like a WYSIWYG Graphical User Interface builder.
It has the usual GUI builder capabilities for placing UI components into the application interface,
and assigning actions to these UI components. The visual integrator goes beyond standard GUI
builders, because it can copy UI components from an existing application. To copy UI components
the user is prompted to select an application, which will be started within the visual integrator.
The Application Screen Retriever/Analyzer module of the visual product integrator initiates and
displays the application. It also connects to the object hierarchy and captures events. The user can
then select the UI components he wishes to copy into the new application: the visual integrator has
the ability to duplicate the selected components in the new application. Copied components are
tagged, so that at run time they can be synchronized with the original application. The user can
continue to copy objects from any number of applications. An additional enhancement in the visual
product integrator is that the actions assigned to UI components may include macros. At design
time, macros are recorded using the record/replay engine. It is also possible to import macros that
were recorded or manually written elsewhere.

At run time, the visual product integrator must do all of the following

1. Run the new application

2. Refresh copied UI components from the original application

3. Run macros on original application

3

Referring to the architecture diagram in Figure 1, the Runtime Engine is responsible for running
the new application. The critical new piece of this technology is the Application Event Dispatcher,
which handles the events of the new application that refer to any of the original application. It
dispatches events from copied UI components of the new application to the original application.
Similarly, it refreshes the state of copied UI components based on the state of the respective
component of the original application. The Application Event Dispatcher also handles macros
using the record/replay engine.

Notice that we describe the visual product integrator independently of the technology used for the
underlying applications. Our architecture is rich enough to enable combining Windows applications
with HTML applications, Java applications, and so on. All is required is that the Application Screen
Retriever/ Analyzer be able to manipulate and analyze the object hierarchy of the application. It
must be able to convert UI components from the original technology to the technology used for
the new application. For example, if the technology for the new application is HTML and the
underlying application is .NET, the Screen Retriever/Analyzer must recognize that a selected UI
component is, e.g., a .NET button, so that it can tell the Application Designer module to create
an HTML button. Likewise, the Application Event Dispatcher must be able to replicate events on
all the technologies of the underlying applications and query the objects for their current state.
These capabilities require a deep model of the object hierarchy for each supported technology,
similar to what is used for automated software testing, e.g., in HP Quick Test Pro [3], for example.
By leveraging this technology, the visual integrator can support standard Windows, Visual Basic,
ActiveX controls, Java, Oracle, Web Services, PowerBuilder, Delphi, Stingray, Web (HTML) and
.NET.

The integrator is a GUI builder application, among other things. As such it builds new applications
in some particular technology. This technology can be Java Swing, .NET, HTML or any other GUI
technology. It is important to note that every application built by the visual product integrator
will use this same GUI technology.

To achieve a good runtime experience, we want to present a single application to the user. Al-
though there are several underlying applications and all these applications are running while the
new application runs, we want to hide the presence of these applications from the user. In the
architecture, therefore, the original applications run using a remote protocol, either on a remote
machine or on a Virtual Machine (VM), rather than on the local machine. At design time, the
Screen Retriever/Analyzer module displays the underlying application to the user and captures the
UI objects that the user selects. At run time, the Application Event Dispatcher passes events to
and from the VM, and refreshes the components of the new application.

3 Implementation

The prototype implementation of the visual product integrator utilizes the architecture described in
the previous section. We made several simplifying assumptions that enable us to rapidly prototype
and demonstrate feasibility of the visual product integrator. The technology used to develop the
new application is HTML. In our first embodiment of the visual product integrator, we are also
restricting the underlying applications to a single technology, again HTML. With this restriction,

4

the Application Screen Retriever/Analyzer and the Applications Event Dispatcher need only have
a model of a single technology. Much of the functionality of the Applications Event Dispatcher is
the macro record and replay. This capability is available in the software testing application Quick
Test Pro (QTP) [3]. For the prototype we use QTP’s record/replay engine to dispatch events on
the underlying applications. QTP itself runs on the VM in order to give the user the expected
interaction with the application.

Figures 2(a) and 2(b) show screen shots of the Visual Application Integrator prototype. To design
a new application, the user does the following:

Select Application Figure 2(a) shows the design time view in the integrator. The user chooses
one or more applications, which the integrator initiates and displays.

Copy UI Components The user can select UI objects for duplication in the new application.
Selected objects appear in the design view of the integrator, as shown in Figure 2(b).

Add New UI Components The user may add additional UI components from the toolbar.

Set Actions For each object the user assigns an action. Figure 2(b) demonstrates the set of
possible actions.

1. If the element was copied from one of the underlying applications, the user selects
the“keep original behavior” mode, then the object will execute the original action in
the original application.

2. New objects may be assigned actions by writing a java script function. These functions
will be executed locally.

3. Another type of action for a new object is a “workflow action”. The workflow is set up
by connecting the action with a QTP script. The QTP script will run on the original
application in the VM. In the current prototype we do not enable recording the QTP
script from the integrator. Instead, we assume that the QTP script is pre-recorded. This
limitation is related to the implementation of the record/replay engine in QTP. Future
implementations using a record/replay engine built specifically for the integrator will
not have this limitation.

Figure 3 shows the run time view in the integrator. The integrator is now running a HTML
application in a browser object. But this application must run inside the integrator because of
the connection with the underlying applications. First, the integrator refreshes copied objects, as
necessary. Second, actions on copied UI objects and QTP scripts are executed on the original
applications. The results of these actions are shown in the new application. The integrator uses
QTP to start and drive the application. QTP gets its instruction via its remote automation API,
thus hiding the presence of these applications from the user. Screen data is captured and reflected
in the host machine via new remote API.

5

(a) A view of capturing elements from the underlying application.

(b) The user can arrange UI elements, and assign actions to each element.

Figure 2: Visual Product Integrator screen shots depicting design capability.

6

Figure 3: Visual Product Integrator screen shot. A view of the application at run time.

4 Validation

In order to validate our tool, we used it to build a Search-Calculator application. This application
uses functionality from two Web applications, a calculator application [1] and the Google search
application [2].

To build the new application the user first opens each application in a viewer. Figure 4 shows
each application in the viewer. Next the user selects UI elements for copying. Figure 4(a) shows
the calculator application, in which all the elements making up the calculator interface have been
selected for copying to the new application’s UI. Figure 4(b) shows the selection of the elements on
the Google page that are needed for search, i.e., the edit box and the search button.

The next step of building the new application includes arranging UI elements, and assigning actions
to each element. The designer supports these activites, as shown in Figure 5. For the Search-
Calculator application, the actions of the calculator components are set to remote, meaning that
actions on these buttons will be passed through to the original calculator application. Likewise,
the calculator result text box is remote, so the value calculated in the original application will be
automatically updated in the new application. Similarly, remote actions are set on the elements
copied from the Google application. Finally, the workflow action of searching for the calculator
result is set using a QTP script. That completes the application.

At run time, the Search-Calculator application will search the Web for the value resulting from

7

(a) Object capture from the calculator application.

(b) Object capture from the Google search application.

Figure 4: Building the Search-Calculator application. A view of the underlying applications inside the viewer.

8

Figure 5: Building the Search-Calculator application. The user arranges UI elements and sets actions in the designer.

any computation. Figure 6 demonstrates this behavior. The user pressed the PI button on the
new application’s interface. The action was passed to the calculator application, which displays the
value 3.14159. The new application refreshes the value on the calculator display due to the change
in the underlying application. Based on the workflow set up earlier, the value 3.14159 is copied to
the search edit box and the search is started. When the search results are available in the Google
search application, the new application interface is refreshed to show the results.

5 An Enterprise Application Integration Use Case

The benefit of this tool for enterprise application integration is illustrated by the following a common
scenario. In this scenario, an operator has to juggle between two applications to carry out their
daily task. The operator opens the Customer Relationship Management (CRM) applications and
finds a list of activities. Among them, he sees a new “Contract job by partner” activity. He clicks
on the detail tab of the activity. The operator then can navigate through the details of the activity,
shown in Figure 7(a). This screen shows the activity creator camptocamp, a partner company.

At this point - as is often the case with enterprise applications - the operator will need to pull
up an Enterprise Resource Planning (ERP) application, to retrieve collateral information about
the partner, in the partner events panel. He will have to enter in the basic search form (possibly
copy-and-paste) the name of the partner as it appears in the CRM application. On obtaining the
search results, the operator has to add a new event for this partner and fill the details manually
with information based on the activity he found in the CRM application (Figure 7(b)).

9

Figure 6: Visual Product Integrator screen shot. A view of the search-calculator application at run time.

Consider using the visual product integrator to expose the operator to a single interface, and to
automate this error-prone, manual task. To build the new application, the application designer
selects and copies a UI element from the first original application, i.e., the CRM application shown
in Figure 7(a). He then adds a new action button, labeled “update ERP”. At this point, the tool
makes use of recording technology to capture the business flow that the operators has to execute,
and attaches a description of that to the button. The tool records the sequence of copy and paste
operations between the selected fields from the first original application (CRM) to the second
original application (ERP). As the designer performs a function on the values from the selected
fields in the first original application to fill in the value of the selected field in the second original
application, visual product integrator records that function and sets this macro as the action on
the button in the new application. Thus, this button represents the business flow of creating a new
event for a partner and copying the details from the activity.

6 Related Work

The Visual Product Integrator tackles the problem space covered by enterprise application inte-
gration (EAI), but aiming at making it significantly cheaper and faster, getting inspiration from
UI integration concepts such as mashups and Web 2.0, which today are aimed at web application
integration.

10

(a) A Customer Relationship Management (CRM) application. View of a new “Contract job by
partner” activity.

(b) An Enterprise Resource Planning (ERP) application. Entering new partner activity by
copying from the CRM application.

Figure 7: An enterprise application integration example.

11

6.1 Enterprise Application Integration

EAI applications usually implement one of two patterns [14]:

Mediation: the EAI system acts as the go-between or broker between the underlying applications.
Whenever an interesting event occurs in an application an integration module in the EAI
system is notified. The module then propagates the changes to other relevant applications.

Federation: the EAI system acts as the front end for the underlying applications. The EAI system
handles all user interaction. It exposes only the relevant information and interfaces of the
underlying applications to the user, and performs all the user’s actions in the underlying
applications.

Most EAI solutions, whether they implement the mediation or federation approach, focus on mid-
dleware technology [15], including: Message-oriented middleware (MOM) and remote procedure
calls (RPCs); Distributed objects, such as at CORBA and COM; Java middleware standards; and
Message brokers The visual product integrator, by contrast, uses the federation pattern.

A long list of EAI solutions may be found in [18]. We mention some leading solutions in this area.
Microsoft BizTalk Server [16] is used to connect systems both inside and across organizations. This
includes exchanging data and orchestrating business processes which require multiple systems.

Microsoft Host Integration Server allows enterprise organizations to integrate their mission-critical
host applications and data with new solutions developed using the Microsoft Windows platform.
All these middleware solutions require the application integrator to go deep into the original ap-
plication’s source code and write wrappers that bring the original application into the fold of the
new technology.

In contrast to most EAI solutions, our approach eliminates the need to access the application’s
source code, substituting that with a representation of the user-interaction that does not depend
on the original applications information model.

6.2 Integration at the presentation layer (web applications)

The web engineering community has so far typically focused on model-driven design approaches.
Among the most notable and advanced model-driven web engineering tools we find, for instance,
WebRatio [11] and VisualWade [10]. However these approaches tend to be heavy on modeling
methods, thereby being more similar to traditional EAI in spirit than the approach we take here.

A very good account of the of the problem of integration at the presentation layer for web applica-
tions is found in [13]. On thoroughly reviewing academic literature, the authors drew the conclusion
and concluded that there are no real UI composition approaches readily usable in end-users compo-
sition environments. There are some proprietary Desktop UI component technologies such as .NET
CAB [9] or Eclipse RCP [8], and their being proprietary in nature limits their possible reuse for
software product integration in general. On the other hand, browser plug-ins such as Java applets,

12

Microsoft Silverlight, or Macromedia Flash are easily embedded into HTML pages, but provide
limited and cumbersome interoperability through ad-hoc plumbing.

Mashup approaches, based on Web 2.0 and SOA technologies have been gaining broad acceptance
and adoption [13]. Existing mashup platforms typically provide easy-to-use graphical user inter-
faces and extensible sets of components for development composite applications. Yahoo! Pipes
[12] integrate data services through RSS or Atom feeds, and provide a simple data-flow composi-
tion language. UI integration is not supported. Microsoft Popfly [7] uses a similar approach and
does provide a graphical user interface for the composition of data, application, and UI compo-
nents, however does not support operation composition through different components. IBM Lotus
Mashups [4] provides a wiki-based (collaborative) mechanism to glue together JavaScript or PHP-
based widgets. Intel MashMaker [5] takes a different approach to mashup of web application in
that it makes “mashup creation part of the normal browsing process”. As a user navigates the
web, MashMaker gives them suggestions for useful mashups to be applied to the page that they are
looking at. As a result, mashups are composed “on-the-go”, but the main use case for MashMaker
is still “Pipes”-like. It is not oriented to producing a new stand-alone application like our visual
integrator. JackBe Presto [6] has an approach similar to Pipes for data mashups and provides
mashlets, or UI widgets used for visualizing the output. Throughout all these example, we observe
that mashup development is a process requiring advanced programming skills.

6.3 Other hybrid approaches

One closely related solution for product integration is the OpenSpan platform [17]. This platform
may be used to build new composite applications by integrating any legacy applications and/or
business workflows in a rapid manner. By dynamically hooking into applications at run-time,

OpenSpan can create integration points with an application without requiring modification or
access to the application’s source code, APIs or connectors. At design time, the user can set up the
workflow of a business process, by hooking into UI objects and specifying the data flow between
the UI objects. We observe two main differences between the OpenSpan platform and our Visual
Product Integrator:

1. Our integrator captures the workflow or business process as macros, using record/replay
technology. This technology spares the designer the manual task of setting up the flows.

2. Our integrator allows the creation of a new graphical user interface. The user of the new
application only sees this interface. While the underlying applications are running, they are
not visible. Thus, the user experience is more satisfying.

7 Conclusions

We presented a visual tool for rapid integration of software products to create a new application.
The main advantages of this tool over prior solutions are

13

• It goes beyond simple juxtaposition and syndication of data feeds well into the realm of visual
application design.

• It eliminates the need to access the application’s source code, substituting that with a repre-
sentation of the user-interaction that does not depend on the original application’s information
model.

• It captures the workflow or business process as macros, using record/replay technology. This
technology spares the designer the manual task of setting up the flows.

• It allows the creation of a new graphical user interface. The user of the new application only
sees this interface. While the underlying applications are running, they are not visible. Thus,
the user experience is more satisfying.

The current prototype implementation has several limitations. The most severe limitation is that
it uses Quick Test Pro (QTP) as the record/replay engine. The advantage of QTP is that it is
a mature product. The disadvantage is that it is cumbersome. We make it transparent to the
user by running it on a VM. In future development, we would replace QTP with a lighter weight
record/replay engine. A second limitation of the prototype is that, at present, it is restricted to
HTML applications. Future work will add support for additional GUI technologies, such as .NET
and Java. Longer term work is aimed to eliminate the need to model specific GUI technologies
by modeling the object hierarchy directly from the application’s visual interface, i.e., the screen
images.

8 References

[1] CalculateForFree. http://www.calculateforfree.com/.

[2] Google search. http://www.google.com/.

[3] HP Quick Test Pro. https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=
bto&cp=1-11-127-24^1352_4000_100__.

[4] IBM Lotus Mashups. http://www-01.ibm.com/software/info/mashup-center/.

[5] Intel Mash Maker. http://mashmaker.intel.com/web/.

[6] JackBe Presto. http://www.jackbe.com/.

[7] Microsoft popfly. http://en.wikipedia.org/wiki/Microsoft_Popfly.

[8] Rich Client Platform. Technical report, The Eclipse Foundation.

[9] Smart Client - Composite UI Application Block. Technical report, Microsoft Corporation.

[10] VisualWade. http://www.visualwade.com/.

[11] WebRatio. http://www.webratio.com.

[12] Yahoo! Pipes. http://pipes.yahoo.com/pipes/.

[13] Florian Daniel, Jin Yu, Boualem Benatallah, Fabio Casati, Maristella Matera, and Regis Saint-Paul.
Understanding ui integration: A survey of problems, technologies, and opportunities. IEEE Internet
Computing, 11:59–66, 2007.

14

[14] Gregor Hohpe and Woolf Bobby. Enterprise Integration Patterns: Designing, Building, and Deploy-
ingMessaging Solutions. Addison-Wesley, 2003.

[15] David S. Linthicum. Enterprise Application Integration. Addison-Wesley, 2000.

[16] Microsoft Biztalk Server. http://www.microsoft.com/biztalk/en/us/default.aspx.

[17] OpenSpan. http://www.openspan.com/index.php/software_platform.html.

[18] Wikipedia. http://en.wikipedia.org/wiki/Enterprise_application_integration.

15

