

Keyword(s):

Abstract:

©

Chimpp: A Click-based Programming and Simulation Environment for
Reconfigurable Networking Hardware
Erik Rubow, Rick McGeer, Jeffrey C. Mogul, Amin Vahdat

HP Laboratories
HPL-2010-25

FPGAs, modular programming, Click

Reconfigurable network hardware makes it easier to experiment with and prototype high-speed networking
systems. However, these devices are still relatively hard to program; for example, the NetFPGA requires
users to develop in Verilog. Further, these devices are commonly designed to work with software on a host
computer, requiring the co-development of these hardware and software components. We address this
situation with Chimpp, a development environment for reconfigurable network hardware, modeled on the
popular Click software modular router system. Chimpp employs a modular approach to designing
hardware-based packet-processing systems, featuring a simple configuration language similar to that of
Click. We demonstrate this development environment by targeting the NetFPGA platform. Chimpp can be
combined with Click itself at the software layer for a highly modular, mixed hardware and software design
framework. We also enable the integrated simulation of the hardware and software components of a
network device together with other network devices using the OMNeT++ network imulator. In contrast to
some prior work, Chimpp focuses on making experimentation easy, rather than on optimizing hardware
performance. Chimpp also avoids unnecessary restrictions on communication patterns and design styles
such as were imposed by prior approaches. We describe our design and implementation of Chimpp, and
provide initial evaluations showing how Chimpp makes it easy to implement, simulate, and modify a
variety of packet-processing systems on the NetFPGA platform.

External Posting Date: March 6, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: March 6, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

Chimpp: A Click-based Programming and Simulation Environment
for Reconfigurable Networking Hardware

Erik Rubow+

erubow@cs.ucsd.edu
Rick McGeer∗

Rick.McGeer@hp.com
Jeffrey C. Mogul∗

Jeff.Mogul@hp.com
Amin Vahdat+

vahdat@cs.ucsd.edu

∗HP Labs, Palo Alto, CA 94304 +UC San Diego

Abstract
Reconfigurable network hardware makes it easier to

experiment with and prototype high-speed networking
systems. However, these devices are still relatively hard
to program; for example, the NetFPGA requires users to
develop in Verilog. Further, these devices are commonly
designed to work with software on a host computer, re-
quiring the co-development of these hardware and soft-
ware components.

We address this situation with Chimpp, a development
environment for reconfigurable network hardware, mod-
eled on the popular Click software modular router sys-
tem. Chimpp employs a modular approach to designing
hardware-based packet-processing systems, featuring a
simple configuration language similar to that of Click.
We demonstrate this development environment by tar-
geting the NetFPGA platform. Chimpp can be combined
with Click itself at the software layer for a highly modu-
lar, mixed hardware and software design framework. We
also enable the integrated simulation of the hardware and
software components of a network device together with
other network devices using the OMNeT++ network sim-
ulator.

In contrast to some prior work, Chimpp focuses on
making experimentation easy, rather than on optimizing
hardware performance. Chimpp also avoids unnecessary
restrictions on communication patterns and design styles
such as were imposed by prior approaches.

We describe our design and implementation of
Chimpp, and provide initial evaluations showing how
Chimpp makes it easy to implement, simulate, and mod-
ify a variety of packet-processing systems on the NetF-
PGA platform.

1 Introduction
Reconfigurable network hardware, based on FPGAs,

makes it much easier to experiment with and rapidly de-
velop new ideas in networking, while achieving packet
and data rates unsustainable with software-based pro-
totypes. Designing with FPGAs is considerably easier
than designing with ASICs, but unfortunately still more
cumbersome than writing software, especially since the

typical tools for designing with FPGAs are unfamiliar to
many network experts.

The NetFPGA project [6] in particular has made ma-
jor steps towards simplifying the development of FPGA-
based network hardware, by providing an accessible
network-specific reconfigurable hardware platform to-
gether with an open-source collection of useful designs,
as well as an active developer community. However,
the NetFPGA requires users to develop using Verilog,
which is unfamiliar to most network developers and re-
searchers, and which can be cumbersome to use. Further-
more, it can be difficult to reuse portions of contributed
projects for integration into other designs.

We address this situation with Chimpp, a development
environment for the NetFPGA modeled on the popular
Click software modular router [2]. Starting with the
Click approach gives us a well-understood, modular ap-
proach to designing packet-processing systems. Through
finer-grained modularity of packet-processing elements,
we simplify and encourage code reuse. By using a high-
level Click-like configuration language, we decrease the
effort associated with integration and extension, and at
the same time make it possible to build a variety of in-
teresting designs without the need to use Verilog. We
call this “Chimpp” (Click for reconfigurable-Hardware
Implementations of Modular Packet Processing).

It is often the case that packet processing devices
are made up of of some combination of hardware and
software components. We explore the combined use
of Chimpp hardware elements and Click software ele-
ments. The Click portion can operate as both a control
plane and as a slow path for handling uncommon traffic.
Click elements can be associated with Chimpp elements
to manage the operation and internal state of hardware
elements. This approach results in highly modular and
easily extensible designs at both the hardware and the
software level. It also allows us to shift the boundary be-
tween hardware and software; for example, an element
initially implemented in software can be re-implemented
in hardware with a similar interface, if more speed is
needed. Conversely, a hardware module can be shifted

1

2

to software if it becomes too complex, or if its perfor-
mance proves to be non-critical.

We do not attempt to automatically convert Click el-
ements into Chimpp elements, and we do not automat-
ically generate element implementations, but rather we
assume that Chimpp elements are either developed by
hand or possibly generated by some other tool. Instead,
we focus on providing a toolbox of useful elements with
defined module interfaces that can be automatically in-
stantiated and interconnected from a high-level descrip-
tion. We avoid any single standard interface but instead
allow new interfaces and elements to be easily defined
within any number of add-on packages.

We also provide support for mixed simulation of hard-
ware and software within a simulated network. This can
be particularly useful where a design consists of a single
logical entity that spans the hardware/software boundary.
When the co-development of hardware and software re-
quires several changes to hardware, this kind of simula-
tion can significantly decrease the development cycle by
avoiding the time-consuming synthesis process. It also
provides greater visibility into a system while undergo-
ing dynamic and realistic hardware/software interactions
and traffic patterns. For example, TCP connections and
dynamic routing protocols can be simulated in this envi-
ronment.

In this paper, we describe our design and implementa-
tion of Chimpp, as well as some initial evaluations that
show how Chimpp makes it easy to implement, simulate,
and modify NetFPGA-based packet-processing systems.

Our specific contributions include:

• Generation of a top-level Verilog file from a high-
level script.

• Simple XML-based definitions of elements and
their interfaces.

• A framework for designing systems with Click soft-
ware elements and Chimpp hardware elements.

• Integration of combined hardware and software
simulation within a network simulator.

2 Related Work
Several previous systems have provided high-level

programming of reconfigurable network hardware,
mostly using the Click model. We start with a brief sum-
mary of the essential features of Click, and then describe
the other prior work.

2.1 Click
The Click Modular Router [2] is a widely-used soft-

ware architecture for the flexible creation of software-
based routers (and similar packet-processing systems).
Click’s modules are calledelements, which can be con-
nected into a graph. Elements have input and output
ports, and connections between elements can either be
push, in which earlier elements call later ones to move a

packet through the graph, orpull, in which the calls are
made by the consuming element. Connections between
elements are typed, so that (for example) one cannot im-
properly connect a pull port to a push port. Also, certain
kinds of ports can be connected only once. Queues are
explicit elements that connect a pull subgraph to a push
subgraph.

Over the years, a large library of Click elements have
been built, allowing designers to re-use the work of oth-
ers.

2.2 NP-Click
The NP-Click project [8] developed a version of Click

tailored specifically for the Intel IXP1200 architecture,
a popular network processor with six RISC cores and
a StrongARM central core, and a multi-tiered memory
architecture. NP-Click enabled efficient use of these re-
sources in realizing a Click design. To that end, NP-Click
used the classic Click element architecture. Elements
were implemented in IXP-C, a somewhat restricted sub-
set of the C language supported by the IXP architecture.
In order to efficiently use the six “microengine” cores of
the IXP, multiple elements could be instantiated on the
IXP board.

NP-Click also addressed efficient use of the memory
hierarchy. The IPX1200 has large, slow memories shared
between microengines, and small, fast microengine-
specific memories. NP-Click keywords allowed the pro-
grammer to annotate data to specify where a particular
object could be stored. NP-Click supported programmer-
controllable arbitration of shared resources between par-
allel elements. The NP-Click authors estimated a four-
fold productivity increase using NP-Click, and demon-
strated performance between 60% and 99% of native
IXP-C coded designs.

2.3 Cliff
Cliff (Click for FPGAs) [3] was the first attempt to im-

plement Click configurations directly on an FPGA base.
As with NP-Click, Cliff made the Click element the cen-
ter of the design. The heart of the Cliff approach was a
standard communication protocol among elements. Each
element implemented a memory interface, and an inter-
element communication protocol consisting of two sig-
nalling wires per port. The wires implemented a three-
way handshake between connected ports. Each Cliff
element implemented a simple, user-extensible finite-
state machine (FSM) with three states: waiting for input,
ready to send, or processing a packet.

The Cliff system offered no simulation tools, and the
Cliff driver simply instantiated and connected predefined
Cliff elements. The predefined Cliff elements were re-
sponsible for implementing the protocols given above.
Effectively, Cliff was a netlisting tool for predefined Ver-
ilog modules.

There were several notable features of Cliff de-

3

signs [7]. Data was passed between elements on a 344-
bit-wide bus that obviated the need for memory storage
of packet headers, though packet payloads were stored in
memory. However, the full bus width had to be filled be-
fore packet processing could begin, resulting in a latency
penalty of several tens of cycles. Also, only one Cliff ele-
ment was active at any time in processing a given packet;
this failure to exploit the parallelism available in hard-
ware implementations significantly limited performance.

2.4 CUSP
Click Utilizing Speculation and Parallelism

(CUSP) [7] extended the Cliff work, but with sev-
eral changes. CUSP used a much narrower (16-bit)
data bus, and provided explicit support for parallel and
speculative execution of blocks of elements. It also pro-
vides some automatic generation of the communication
between these blocks.

Parallelism in CUSP is entirely at the block level: the
blocks in a design execute separately or in sequence, but
within a block the elements operate in parallel as de-
scribed above.

CUSP demonstrated a 2x performance improvement
over Cliff in FPGA space, and came within 20% to a
hand design, and processed packets at near line rate on
two sample designs.

2.5 G
G [1] represents another recent attempt to realize high-

level designs in a NetFPGA environment. A G descrip-
tion consists of a set ofrules for packet rewriting and
state manipulation. Each rule can be guarded (executed
conditionally). As in CUSP, G descriptions are auto-
matically clustered into optimized parallel microarchi-
tectures; G uses automatic dependence analysis among
rules to optimize scheduling.

2.6 NetThreads
NetThreads [4] takes a different approach to the prob-

lem. Rather than compiling to raw hardware (as Ver-
ilog), the NetThreads team took a two-step approach:
building a number of “soft” processors from lookup ta-
bles (LUTs) on the FPGA, and then compiling a multi-
threaded program to run on the soft processors. The ad-
vantage of this approach over the use of hardware-based
approaches is that C code can be compiled directly onto
the NetFPGA platform, and run on essentially a stan-
dard processor. In order to make programming easy, Net-
Threads permits a static number of threads (a fixed num-
ber of threads/processor and a fixed number of proces-
sors/FPGA) and uses a static round-robin thread sched-
ule.

In preliminary results [4], performance was not dra-
matically better than could be expected from Click run-
ning on a modern x86. The paper reported packet rates
for three designs: a DHCP implementation, a packet

classifier, and a NAT, respectively as 500, 1800, and 4600
packets/sec. (At 1500 bytes/packet, this works out to 6
Mb/sec – 59 Mb/sec.) We note that these were prelimi-
nary experiments, reported in a workshop paper, and that
better performance may follow subsequent optimization.

2.7 Summary of related work
We summarize the work in this area in Table 1, at-

tempting to highlight the various features of the work
in this area. The table shows that previous work essen-
tially split into two groups: NP-Click and NetThreads,
focussed on ensuring that multithreaded Click code ran
correctly on embedded processors; and G, CUSP and
Cliff, focussed on realizing high-level Click designs ef-
ficiently in a hardware-only implementation. CUSP and
Cliff both relied on pre-designed hardware blocks, and
imposed a rigid protocol and design style on the library
elements to ensure correctness and composability. The
contribution of CUSP over Cliff was the insertion of
automatically-generated communication blocks to per-
mit parallelism and speculative execution. G has only
been briefly and recently described, and its input format
is sufficiently high-level that it is difficult to determine
exactly the implementation details. However, it seems
likely that it is effectively a layer sitting on top of a CUSP
base.

Like Cliff and CUSP (and, probably, like G as well)
Chimpp relies on a library of pre-designed hardware
blocks, and focusses on integrating them into a de-
sign. Unlike Cliff and CUSP, Chimpp explicitly supports
mixed hardware/software designs, since typical NetF-
PGA designs have some components that reside on the
host. Further, Chimpp does not impose a rigid protocol
on the hardware side of the design. Chimpp elements
may communicate in any fashion they desire; all that is
forbidden is cycles in the communication graph. In this
sense, Chimpp’s hardware synthesis may be regarded as
a lower-level primitive than either Cliff’s or CUSP’s.

Indeed, we believe that it would be straightforward to
re-implement either Cliff or CUSP to generate Chimpp
designs. The advantages and disadvantages of Chimpp’s
approach are the usual ones of a lower-level vs. a higher-
level framework. By not imposing a specific policy, a la
Cliff and CUSP, we permit designers more freedom and
potentially more efficient implementations. However,
designers must think about the communication protocol
they want between blocks, something Cliff and CUSP
spares them.

2.8 A Brief Discussion of Verilog
Since this paper is targetted to a networking audience,

it is likely that some readers will be unfamiliar with the
Verilog language and what it is like to develop hardware
using Verilog. We briefly describe it here. Readers inter-
ested in a fuller description should consult[9]. Readers
who are familiar with Verilog may skip this section.

4

Hardware Simulation Integration of
System Approach datapath supported HW/SW elements?

NetFPGA User-written Verilog Virtex-II FPGA Verilog No
NP-Click [8] Compiling high-level code to multicore

network processors
IXP1200 NP N/A N/A

CLIFF [3] Composing Verilog blocks representing
Click elements on NetFPGA

Fixed Protocol Verilog No

CUSP [7] Composing VHDL blocks representing
Click elements on NetFPGA, optimiz-
ing parallelism and speculation

Fixed Protocol VHDL No

G [1] Compiling high-level rules into a NetF-
PGA hardware datapath

(unknown) gsim, High-level
simulation (not
cycle accurate)

No

NetThreads [4] Compiling multi-threaded C code onto
soft processors implemented on NetF-
PGA

Mutithreaded
processor cores

N/A N/A

Chimpp Composing Verilog blocks representing
Click elements on NetFPGA together
with software Click elements

Designer’s choice Omnet++ and Ver-
ilog: multi-mode
simulation

Yes

Table 1: Feature Comparison of NetFPGA Programming Environments

The syntax of Verilog is reminiscent of C with ex-
tensive bit operations, but the semantics are very dif-
ferent, reflecting the semantics of the implementation
domain. A hardware circuit is typically composed of
acyclic graphs of logic gates (AND, OR, NOT, etc),
calledcombinational logic blocks, separated by banks of
stateholding elements calledflipflops. The flipflops are
governed by clocks; they change value only on the ris-
ing, or falling, edge of the clock. Conversely, logic gates
change state whenever one of their inputs changes state.

Verilog models this behavior with two separate forms
of assignment operation. Thecontinuous assignmentop-
eration, denoted by the keywordassign, operates as a
logic gate – whenever a value on the right-hand side of
the assignment statement changes, the left-hand side is
re-evaluated. This means that there is no flow of control
in a Verilog program; everyassign statement is con-
ceptually evaluated in parallel, all the time.

The second assignment operation issequential assign-
ment. There are two forms,blocking assignment, de-
noted by the= operator, andnon-blocking assignment,
denoted by the<= operator. These statement both rep-
resent flipflops, and thus only appear when guarded by a
clock, represented by thealways guard, of the form:
always @(posedge clk) c <= d
which indicates thatc is a flipflop, clocked on the ris-

ing edge ofclk, inputd. This statement is only executed
whenclk has a rising edge.

Similarly,modules in Verilog have a superficial sim-
ilarity to C routines, but the semantics are very different.
A module in Verilog represents a chunk of hardware.
Its parameters are physical wires running into and out of

the module. As with continuous assignment, all modules
in Verilog conceptually execute in parallel.

Note that while Verilog has syntactic similarities with
high-level software languages, it does not hide the messy
details of hardware design from the developer. Synthe-
sizable Verilog code must be designed with an idea of
what the synthesized hardware will look like. Timing
considerations are particularly important to be mindful
of. The developer must consider, for example, at which
clock cycle a value will become available, and how to
manage the storage of other values in the meantime, par-
ticularly if pipelining is required to maintain throughput.

Such being the case, it is clear that being able to reuse
Verilog code is very important.

3 Design and implementation
In this section, we describe the design and implemen-

tation of Chimpp.

3.1 Mapping Click concepts to hardware
The Click Modular Router is a software-based plat-

form. While Chimpp aims to map the Click approach to
hardware, we borrowed only those concepts that made
sense in the context of hardware and which yielded prac-
tical benefit without unduly limiting the designer’s flexi-
bility.

The element is the most fundamental Click concept.
In Click, elements are C++ objects, belonging to a par-
ticular element class. Click elements allow per-instance
customization via configuration strings. This is similar
to modules in Verilog, where parameters may be used
for per-instance customization.

Click elements have some number of ports by which

5

they connect to other elements. These connections corre-
spond to paths through which packets may flow. Packet
flow is implemented in software as a virtual function call
from one element to another, where one element passes a
pointer to a packet as a parameter to a method invocation
on another element. This is the natural, intuitive way to
implement packet flow in software.

In hardware, there are many ways a designer might
choose to have a packet flow from module to module,
each with its advantages and disadvantages. In the case
of the NetFPGA reference framework, the datapath for
packet flow consists of a 64-bit data bus and 8-bit con-
trol bus, with upstream and downstream flow control sig-
nals. The entire contents of a packet flow through this
bus, preceded by some per-packet information (referred
to as “module headers”) as indicated by the control bus.

However, one might prefer to use a different method,
perhaps due to a different set of goals or constraints. For
example, one might prefer to have a different bus width,
or to extract the header fields for processing while stor-
ing the payload to memory, or to divide packets into
fixed-sized cells. A common interface for packet flow
between hardware elements is needed, yet there is no
single “right” interface. Note that Click’s push and pull
concepts are specific to procedural implementation; in
hardware with bidirectional flow control, there is no such
distinction.

As a packet flows through Click elements, some per-
packet information may be attached to it. These are
called annotations, and provide a way for elements to
communicate to downstream elements information as-
sociated with a packet, but external to the packet itself.
A hardware implementation of an annotation would de-
pend on the packet transfer mechanism. In the case of
the NetFPGA reference framework, the so-called “mod-
ule headers” that precede each packet are the equivalent
of Click annotations.

Communication between Click elements is not re-
stricted to these connections for packet flow. Elements
may also export arbitrary method interfaces accessible by
other elements. This communication is not represented
by port connections. Elements may locate each other ei-
ther explicitly by a name in the configuration string, or
implicitly by proximity in the graph. The latter method
is referred to as “flow-based router context”. A hardware
equivalent of these arbitrary method interfaces would be
an arbitrary set of signals. We view flow-based router
context as a way to work around the fact that method in-
terface associations are not directly indicated in the lan-
guage, and as it will be made clear later, we eliminate the
need for it in our framework.

Handlers provide a way for other applications to in-
teract with Click elements. A Click handler can be read
from or written to through the Linux proc file system.

Analogously, a hardware design may provide mecha-
nisms for software interaction and control of hardware
elements. In the case of the NetFPGA reference frame-
work, this interaction takes the form of register reads and
writes initiated by software on the host system.

The fact that Click configurations form a directed
graph, with potentially complex interconnections be-
tween elements, can introduce certain complexities for
hardware implementation. In software these connections
between elements are implemented as a function call. A
complex graph poses no particular difficulty for a soft-
ware implementation – for example, when Click paths
merge during push processing, nothing special needs to
be done.

However, there is an important difference between
software and hardware datapaths. A software datapath
operates on abstractions such as function calls, objects,
and pointers. A hardware datapath operates on data flow-
ing between fixed physical modules over physical wires.

Complex graphs, as used in Click, therefore create
problems for hardware-based designs. In particular,
they require arbiters wherever paths merge. Also, in
an FPGA-based design, a complex graph could make it
more difficult for the development tools to do placement
and routing.

Another difference arises from the fact that, while
Click is single-threaded, hardware elements all operate
simultaneously in parallel. Suppose we have multiple
parallel paths which begin and end at the same element.
In Click, as long as there is no switch between push and
pull processing in between, packet order would be main-
tained. In hardware, the parallel paths can have different
processing delays, so a packet could be forced to wait
for another packet which arrived after it did. If a packet
must pass through multiple arbiters during processing,
then processing time could be highly variable.

In section 3.7 we discuss one design strategy that can
be used to mitigate these problems.

3.2 The Chimpp framework
In this section, we describe the abstractions and frame-

work of Chimpp, by which we generate a top-level Ver-
ilog file from an element library and a user-supplied
script.

In consideration of the fact that there is no single
“right” interface for packet flow in hardware and that it
is desirable to allow other forms of communication be-
tween elements than packet flow, we chose not to require
Chimpp elements to conform to any single standard in-
terface. Instead, Chimpp provides a general method to
specify connections between compatible element inter-
faces, defined in a library of Chimpp hardware elements.
These connections include not only those by which pack-
ets flow from element to element, but also any sort of
inter-element communication. This eliminates the need

6

for something like Click’s flow-based router context, and
also makes the design easier to understand, as there are
no hidden element interactions. Furthermore, there are
no required features that all elements must implement,
and no restrictions on the structure of internal implemen-
tations.

The Click language provides an easy and concise way
to instantiate and customize elements from an existing
element library, and interconnect them to form a directed
graph. The idea of instantiating and interconnecting ele-
ments, rather than writing sequential code, actually maps
much more naturally to hardware than to software. We
have created a simple language to concisely instantiate
and interconnect Chimpp elements at a high level. A
script written in this language, together with a library of
existing elements, generates the top-level Verilog for a
given design. This approach enables the construction of
designs without the need to change any Verilog, provided
that all required elements exist in the library. Even for
those comfortable with coding in Verilog directly, this
provides a valuable productivity benefit. Furthermore,
the approach encourages the development of modular,
reusable elements. Our language does not attempt to
preserve the syntax of the Click language, particularly
because it has different semantics; for example, unlike
Click, Chimpp connections do not have any notion of di-
rection.

3.3 Bus and element types
The Chimpp framework is built on the concepts of

typedbuses, elements, andinterfaces.
A bus consists of a set of signals. A signal corre-

sponds to a single “wire” declaration in Verilog, which
may have a width of one or more. An element is im-
plemented as a Verilog module, which may optionally
contain submodules. Bus instances belong to named bus
types, and element instances belong to named element
types. Bus types specify a set of named signals, and list
some set of named interface types that may connect to
that bus type. Different interfaces may have different di-
rections (input, output, or inout) for each signal in the
bus. Element types specify a set of named interfaces,
each belonging to a type specified by the corresponding
bus type, along with a mapping between the local signal
names and the bus signal names. Bus types carry with
them an understanding of how the bus is to be used by
the various elements which interface with them.

The specific operational semantics of a particular bus
type are not enforced by this framework, but it is ex-
pected that element designers will take care that the op-
erational semantics and assumptions about the meanings
of signal values are consistent across elements that use
a common bus. For example, if there is a signal that in-
dicates that there is data to be read, or that a module is
not yet ready to receive data, then individual elements

are expected to respond appropriately.

3.4 Connection rules
A few simple rules are used to validate connections

between elements (or rather, connections of element in-
terfaces to a common bus instance):

• The interfaces must belong to the same bus type.
• Each signal must have exactly one “output” driver

or one or more “inout” drivers.

Bus types could be used to prevent a connection be-
tween element interfaces which have different opera-
tional assumptions, even if the signals themselves are
compatible. For example, it might not be desirable to al-
low an interface expecting IPv4 packets to be connected
to an interface which emits IPv6 packets. It is not a re-
quirement that every output signal have an input signal
to drive. However, a warning is presented to the user if
this is the case.

Any useful design must have some connection to the
“outside world.” In Click, these connections are embed-
ded within certain elements. For example, the “ToDe-
vice” and “FromDevice” elements send packets to, and
receive packets from, a given network interface. In a Ver-
ilog design, the interface with the outside world consists
of the interface of the top-level module. This interface
is platform-specific. This “top-level” module could be
the same top-level module used for synthesis, or it may
be some submodule within the design which is intended
to implement the core user logic. In any case, Chimpp
represents this interface to the “outside world” as a spe-
cial type of element which we refer to as anenvironment.
An environment element is instantiated in the same way
as other elements, and uses interfaces in the same way.
However, it is treated differently during the Verilog gen-
eration process, as it provides a skeleton for the top-level
file rather than a module instance within the file. Exactly
one environment element must be present in a design.

3.5 Libraries and packages
Chimpp has no standard or built-in element or bus

types. All types are library-defined, and it is easy to add
new types. The library is structured as a collection of
packages. A package contains a group of related bus
and element definitions. For a particular design, a user
must specify which packages are to be used. This pro-
vides some protection against naming conflicts, and also
makes it easier to distribute and share library elements.
Bus and element types are defined in simple XML files,
which can be easily written and modified by hand. Fig-
ures 1 and 2 show examples of these XML formats.
Element types also come with one or more Verilog files
that implement the element. Our tool does not generate
the Verilog that implements elements, only the Verilog
that instantiates and interconnects them. However, these
element Verilog files could be generated by another tool

7

<?xml version="1.0"?>
<bus name="nf2_pkts">

<interface name="in">
<signal name="data" type="input" width="64"/>
<signal name="ctrl" type="input" width="8"/>
<signal name="wr" type="input" width="1"/>
<signal name="rdy" type="output" width="1"/>

</interface>
<interface name="out">

<signal name="data" type="output"/>
<signal name="ctrl" type="output"/>
<signal name="wr" type="output"/>
<signal name="rdy" type="input"/>

</interface>
<interface name="spy">

<signal name="data" type="input"/>
<signal name="ctrl" type="input"/>
<signal name="wr" type="input"/>
<signal name="rdy" type="input"/>

</interface>
</bus>

Figure 1: An example bus definition
<?xml version="1.0"?>
<element name="ipv4_decrement_ttl">

<interface name="clk" type="clock.in">
<signal name="clk"/>

</interface>
<interface name="reset" type="reset.in">

<signal name="reset"/>
</interface>
<interface name="pkts_in" type="nf2_pkts.in">

<signal name="in_data"/>
<signal name="in_ctrl"/>
<signal name="in_wr"/>
<signal name="in_rdy"/>

</interface>
<interface name="pkts_out" type="nf2_pkts.out">

<signal name="out_data"/>
<signal name="out_ctrl"/>
<signal name="out_wr"/>
<signal name="out_rdy"/>

</interface>
</element>

Figure 2: An example element definition

from some high-level specification (such as G), and used
together with hand-written elements in the same design.

3.6 Language syntax
We use a very simple language for specifying a partic-

ular design. There are three kinds of statements:
1. Those that specify which packages to use
2. Those that instantiate elements
3. Those that connect element interfaces to each other
A short example will quickly illustrate these state-

ments. The example design in Fig. 3 contains three
element instances: two of type someelem and one of
type debugelem. The environment, instantiated with the
name env, is of type someenvironment. The only pack-
age used in this example is called somepkg, so all bus
and element types must be specified in that package. An
element instantiation statement (as indicated by the “::”
token) may or may not include a list of Verilog param-
eters enclosed in parentheses. The string enclosed in
parentheses is not interpreted by this tool but is passed
along to the generated Verilog instantiation.

// some comment
use some_pkg;

env :: some_environment;
elem1 :: some_elem(.SOME_PARAM(1));
elem2 :: some_elem(.SOME_PARAM(2));
debug :: debug_elem(.STR("debug"));

env.clk <=> *.clk;
env.reset <=> *.reset;

env.data_in <=> elem1.in;
elem1.out <=> elem2.in <=> debug.spy;
elem2.out <=> env.data_out;

Figure 3: A simple Chimpp example

The most notable difference between this language
and the Click language is that connections in the Click
language are directed, whereas here they are not. The
“<=>” token indicates that the indicated interfaces are
connected to the same bus. Multiple such connections
may be made with a single statement. For example, the
line “elem1.out<=> elem2.in<=> debug.spy” indi-
cates that interfaceout of elementelem1, interfacein of
elementelem2, and interfacespy of elementdebugare
all connected to the same bus. While their implementa-
tions are specified here, it could be that the debug ele-
ment is there for the purpose of monitoring and perhaps
printing the communications between elem1 and elem2
during simulation.

Another way to connect multiple interfaces together
with a single statement is to use “*” as the element name,
as in the line “env.clk<=> *.clk”. This would cause all
interfaces with the name clk to be connected to env.clk.
Note that when we say there is no standard or built-in in-
terface, we don’t make any exception for clock and reset
signals. Some designs may require multiple clocks, so it
is up to the designer to specify these connections as well.

When the script in Fig. 3 is processed, a top-level Ver-
ilog file is generated. All necessary signals are automat-
ically named and declared, and all Verilog modules are
instantiated with the proper connections. Additionally,
the implementing Verilog files for all elements used in
the design are copied into a working directory.

Notice that this framework is not specific to net-
working. In fact, it is not domain-specific at all, and
can therefore be used in a wide variety of applications.
The domain-specific and platform-specific aspects of this
framework are contained within the element libraries
themselves. Nevertheless, we have obtained a concise
and high-level way to instantiate and interconnect ele-
ments, as in Click.

8

3.7 Design of a NetFPGA Element Library
Here we discuss a few of our design decisions relating

to the initial development of a library of packet process-
ing elements specifically for the NetFPGA platform.

The NetFPGA reference framework was designed
with the intent that all application-specific user logic
would be contained within a single module, which is
named userdatapath. Within this module, the user logic
is presented with interfaces to packet queues, to a register
bus, and to off-chip memory, hiding such details as DMA
transfers. Changes outside the userdatapath module are
usually unnecessary. We decided to operate within this
module, adopting it as our environment of choice and
taking advantage of the existing framework.

We used the same interface for packet transfer between
elements as defined in the reference framework, consist-
ing of a 64-bit data bus and an 8-bit control bus, with
upstream and downstream flow control. Additional in-
terfaces for inter-element communication include the ex-
isting register bus and memory interfaces, as well as oth-
ers that were defined as needed. The flexibility provided
by our tool in defining new bus and interface types has
proven itself to be a useful and desirable feature.

In section 3.1 we discussed the problem of requir-
ing arbiters for every path merge. To address this, we
came up with an alternative to having strictly dedicated
interfaces for packet flow, which is to flatten the packet
flow graph, to have all packets pass through all packet-
processing elements, and to mark each packet with an
indication of whether a particular element should pro-
cess it or forward it unchanged. For this purpose we
defined a special packet annotation which we refer to
as a “PTAG”. The PTAG is a 16-bit field that precedes
packets as part of the first annotation word (or “mod-
ule header”). It takes the place of a field that was pre-
viously defined in NetFPGA as the word length of the
packet. The word length is used by the outputqueues
module, but can safely be overwritten and later recon-
structed from the byte length field.

Each element which obeys the PTAG convention has
a PTAG associated with it, and only processes a packet
if its PTAG matches the one contained in the packet an-
notation. When an element processes a packet, it can
change the PTAG annotation to match that of the next
element which should process it. These elements only
require a single input interface and a single output inter-
face for packet flow. The need for arbiters for every path
merger goes away, and processing delays become more
consistent.

A side effect of this approach is that only acyclic
graphs can be represented in this way. We consider this
a good thing, because cycles in the graph can introduce
deadlock due to a flow control loop, unless special care is
taken to avoid it. Note that this approach does not prevent

the use of other dedicated interfaces. The PTAG method
may be freely combined with the method of having ded-
icated interfaces. This may be desirable, for example, if
certain packet streams are to receive higher priority treat-
ment.

More attention will be given to the particular elements
that we implemented in section 6.

4 Modular design with hardware and soft-
ware elements

There are many functions of a network device that are
best implemented in software rather than hardware, ei-
ther because hardware implementation is infeasible, too
costly, or yields a negligible performance benefit. There-
fore software is often written in support of the hardware
datapath. With modular and easily modifiable hardware
designs, it is desirable for the supporting software to also
be modular and easily modifiable. One way to achieve
this goal is to employ Click itself as the control plane
of a hardware-based data plane. Click can not only op-
erate as a control plane for the hardware, but also as an
extension of the data plane for traffic that may require
sophisticated treatment.

There are two mechanisms that are provided by the ex-
isting NetFPGA kernel module and reference framework
for communication between the host software and the
NetFPGA hardware. First of all, the NetFPGA presents
itself as a NIC to the operating system. Thus packets are
sent to and from the NetFPGA in the same way that they
would be sent to and from a NIC. Therefore, Click can
easily be configured to send packets to and receive pack-
ets from the NetFPGA simply by using the appropriate
interfaces.

The other communication mechanism is for reading
and writing 32-bit user-defined registers within the NetF-
PGA. These registers can be embedded within individ-
ual hardware elements. Each hardware element which
contains software-accessible registers must be allocated
some section of the register address space. Click soft-
ware elements can be written to monitor and manipulate
the state of one or more hardware elements.

For example, a Click element could manipulate a rout-
ing table contained within a hardware element. A soft-
ware element can be associated with a hardware element
by providing the base register address of the hardware
element in the configuration string. The individual regis-
ters within that element could then be accessed by using
a known offset from the base address.

A useful practice would be to have special read-only
registers in each hardware element indicating the type
of element and a version number that software elements
can check to avoid possible configuration or consistency
problems.

This modular approach to mixed hardware and soft-

9

ware design can make it much easier to develop and mod-
ify these kinds of systems. Hardware and software ele-
ment pairs can be co-designed to implement specific fea-
tures, and their insertion into or removal from a larger
system can be done easily. Furthermore, this approach
can make the overall design easier to understand at a high
level.

5 Simulation Environment
The current practice for testing a NetFPGA design is

to first simulate the hardware in isolation using manually
generated stimuli. Then, if those tests are successful,
the design is synthesized and loaded onto a NetFPGA,
and tested with independently written software in a real
network. When things do not interoperate correctly in a
running system, it can be very difficult to debug. Incre-
mental hardware changes can result in a long develop-
ment cycle when synthesis is required after each change.
Furthermore, the network topology scenarios that can be
tested are limited to those which are physically available
to the developer.

To address this, and to aid in the development of mod-
ular hardware and software designs, we created an envi-
ronment in which the hardware and software components
of a design can be simulated together within a simulated
network topology. The foundation for this environment
is OMNeT++ [10], a popular discrete-event network sim-
ulator.

5.1 Integrating the hardware simulator
In order to integrate Verilog simulation into the net-

work simulator, it is necessary that the Verilog simula-
tor be interactive: that is, the inputs can be determined
dynamically at run-time and the outputs can be reported
to the network simulation kernel as they are generated.
To satisfy this requirement, we used Verilator1, an open-
source Verilog-to-C++ compiler. Verilator compiles a
synthesizable Verilog design into a C++ class. This class
provides a simple way to manipulate the top-level inputs,
allow the stimuli to propagate within the design, and read
the outputs. Aside from the fact that this enables the in-
teractivity that we require, it also happens to be very fast,
and the fact that it can be linked directly into the network
simulator is valuable for performance reasons.

We use Verilator to compile the userdatapath mod-
ule, which contains the application-specific packet pro-
cessing logic. A wrapper around the resulting class pro-
vides an interface for injecting packets into the MAC and
CPU queues, injecting register reads and write requests,
advancing the clock, and receiving any generated out-
put packets or responses to the register requests. Once a
packet is injected into the wrapper object, it is fed into
the Verilator-generated object one 64-bit word at a time.
The injection of a packet into the wrapper corresponds

1http://www.veripool.org/wiki/verilator

to the completed receipt of a full frame by the MAC or
by DMA transfer. Packets are likewise received from the
output queues 64 bits at a time, subject to external flow
control (for example, due to a simulated bandwidth limi-
tation corresponding to that of a PCI bus). Once a packet
has fully been received from an output queue, the wrap-
per reports the event. Another wrapper around this wrap-
per turns it into an OMNeT++ simple module.

We had to extend the OMNeT++ scheduler to support
this integration. NetFPGA modules register themselves
with the scheduler during initialization. Then, before
each event is removed from the event heap, the clocks
of all registered NetFPGA modules are advanced until
either the time of the next scheduled event is reached,
or until a NetFPGA emits a packet or register access re-
sponse. If the latter occurs, then all such events emitted
during that cycle are converted into objects which can
be handled by the simulator, and inserted into the event
heap, after which the new next event is removed and pro-
cessed as usual.

To shed light on the internal operation of a NetFPGA
module during simulation, it may optionally be config-
ured to dump a waveform to a specified file. Addition-
ally, Verilog’s $display system task is available. For ex-
ample, this can be used to implement hardware elements
similar to Click’s Print element, effective within the sim-
ulation environment.

5.2 Integration with simulated software
After integrating the Verilog simulator into the net-

work simulator, our next step was to integrate the soft-
ware component as well. We explored two alternative
approaches to this integration.

The first approach, in line with our goal of supporting
designs with modular hardware and software elements,
consisted of integrating Click into OMNeT++. Because
Click had previously been integrated into the ns-2 simu-
lator2, we were able to harness the existing nsclick inter-
face, inserting the appropriate hooks and writing an ap-
propriate wrapper to create an OMNeT++ simple mod-
ule. A compound module could then be easily cre-
ated by combining a NetFPGA module with a Click
module. Bandwidth and delay characteristics of hard-
ware/software communication can be represented by set-
ting OMNeT++’s datarate and delay parameters on the
connections between Click elements and hardware mod-
ules. This setup is enough to simulate packet flows span-
ning hardware and software. To add NetFPGA register
access support to Click within the simulation environ-
ment, however, some special attention is needed. Spe-
cial attention would also be needed to support elements
which use user-level sockets.

Before discussing these issues for Click simulator in-
tegration, we will discuss an alternative framework for

2http://www.isi.edu/nsnam/ns/

10

integrating software into a network simulation. For some
developers or applications, Click might not be the pre-
ferred or ideal way to implement a software control
plane. Therefore, we considered a more general ap-
proach: simulating a single-threaded program imple-
mented as a C++ object.

OMNeT++ modules which represent user-level appli-
cations are typically created for the purpose of generating
synthetic network traffic, with characteristics that resem-
ble real applications. In contrast, we would like to exe-
cute real application code with real data in a simulated
environment.

There are a number of challenges associated with try-
ing to run real applications within a network simula-
tor such as OMNeT++; Some of these are discussed
in [5]. One is the simple problem of control flow and
program structure. OMNeT++ uses a callback function,
handleMessage(), to deliver messages to simple mod-
ules. However, real user-level applications are built on
system calls, some of which may block until an event
of interest occurs. If there is more than one potentially
blocking system call within a given application, then this
means that there should be multiple entry and exit points
at which the control flow transfers between the applica-
tion module and the rest of the simulation environment.
When control is restored to the application module, the
stack should be in the same state in which it was before
the blocking call was made. The callback mechanism of
OMNeT++ does not provide these semantics, and mod-
ifying an application to fit this structure could require
significant code refactoring.

There is, however, a feature of OMNeT++ that can
provide these semantics. Simple modules have the option
either to use the handleMessage() callback function or to
run as a coroutine in an infinite loop. In the latter case,
modules export an activity() function, which is the entry
point at the beginning of the simulation. At any point,
modules can call a receive(), function which yields con-
trol to the simulation environment until the next message
for that module is received, at which point the receive()
function returns a pointer to the message. Each module
which uses activity()/receive() is allocated its own stack,
which enables this kind of behavior. All context switches
between coroutines are cooperative, and only one exe-
cutes at any given point in time.

The activity()/receive() approach is discouraged by
OMNeT++ developers on the grounds that it requires
more memory (for the stack) and that it can make for
sloppy code in the hands of careless developers. How-
ever, it serves our goals quite well, and since we are
interested in smaller-scale simulations, the memory re-
quirements are not a significant concern.

We can use the activity()/receive() approach to simu-
late an I/O-bound process with potentially blocking sys-

tem calls. We assume the process is I/O-bound and that
CPU processing time is negligible because, to the pro-
cess, simulation time only advances during a receive()
call. We consider this to be a reasonable assumption to
make. If a more accurate timing model is desired, we
could actually measure the elapsed time between block-
ing calls and perform a simulated sleep for that amount
of time. All receive() calls are made through a single
wrapper function which is prepared to process any kind
of message, and which buffers events appropriately. For
a given blocking call, this wrapper function is called re-
peatedly until the desired condition is met: for example,
some receive buffer is not empty, or the response to a
NetFPGA register read has been received, or a timer has
expired.

We have used this framework to enable real applica-
tions to operate in the simulated environment with very
little special treatment in the source code. In particular,
we can use the same source code for both implementa-
tion and simulation, requiring only recompilation.

Because of incompatibilities of OMNeT++ and mul-
tithreading, we limit our attention to single-threaded ap-
plications. To facilitate simulator integration, we imple-
ment the application as a C++ class. Applications can
use the standard sockets API for network communica-
tion and a user-level NetFPGA library for register ac-
cess. When compiled for use in a real environment, these
functions operate unhindered. When compiled for sim-
ulation, these function calls are intercepted (by declar-
ing class member functions with the same interface) and
routed to the the associated application module in the
simulated environment to handle. This enables protocols
such as TCP to operate in simulation time rather than real
time, since simulator implementations of TCP would use
simulator time for things like round trip time and time-
outs.

Now that we have discussed this in detail, I will
briefly explain what is needed to provide register access
or socket support to Click while in simulation. Basi-
cally, the same approach is needed because these are calls
made within Click which must return control to the sim-
ulation environment. In the case of a register read, some
small amount of time must pass for the NetFPGA to pro-
cess the request and return the value. This requires that
we use the activity() approach to enable this feature.

6 Experimental evaluation
In order to evaluate the effectiveness of our frame-

work, and to begin development of a useful element li-
brary, we experimented with a few example designs. In
particular, we attempt to validate several specific claims
made in this paper:

1. Chimpp makes it easy to create and modify NetF-
PGA designs.

2. Chimpp hardware elements can be easily integrated

11

Figure 4: A Simple IPv4 Router Example

Figure 5: A Router enhanced with NAT, IP-in-IP encapsulation, and hardware-generated ARP responses

with Click software elements in the same system.
3. We can simulate these mixed hardware-software de-

signs within a simulated network.
4. Performance in terms of packet-processing rate is

competitive and FPGA resource consumption is
comparable.

We developed several designs as part of our evalua-
tion:

• An IPv4 router: to compare against the standard
NetFPGA implementation.

• Hardware-based ARP support: as a modification
of the IPv4 router.

• NAT support: also as a modification of the IPv4
router.

• IP-in-IP encapsulation and decapsulation: also
as a modification of the IPv4 router.

6.1 IPv4 router design
Figure 4 provides a graphical depiction of the hard-

ware portion of the simple IPv4 router composed of
Chimpp elements. Several different bus types are rep-
resented by the lines interconnecting elements. The di-
rection of the arrows reflects the direction of informa-
tion flow across these buses. The directions are depicted
for clarity; again, they are not represented in the lan-
guage. The elements in the main packet pipeline have
a notation indicating their behavior with respect to the
PTAG convention discussed in Section 3. For exam-
ple, the notation “2->3,7” indicates that the element pro-

12

cesses packets with PTAG equal to 2, and may then
modify that PTAG to a value of 3 or 7. The elements
along the top, which include “inarb” (input arbiter), “in-
terfaceconf”, “routing table”, “arp table”, and “outqs”
(output queues), each have a register interface. This al-
lows the software to perform operations such as config-
uring the MAC and IP addresses of each interface and to
insert routing table and ARP cache entries.

The routing table and ARP table are implemented as
separate elements from those that perform the lookup and
data transformation logic. The motivation for this sepa-
ration was so that other tables could be easily plugged
in. For example, it may be desired to use a different ta-
ble lookup algorithm or structure, or to store the table in
off-chip memory.

The “mapptag” element sets the PTAG according to
the source port, and the “mapdst port” element sets
the destination output port according to the source port.
The purpose of both these elements is to send packets
which originate from the host CPU directly out on the
right network interface, and to send certain packets up
to to host CPU (for example, non-IP packets or a lookup
miss). The input arbiter and output queues elements were
adopted from the NetFPGA reference library unmodi-
fied. All other elements were written from scratch.

This simple router design has essentially the same
functionality as the NetFPGA reference router. How-
ever, the structure of it is very different. The reference
router encapsulates all of the functionality between the
input arbiter and the output queues into a single module
called “outputport lookup”. It implements layer 2 and
layer 3 processing in a very tightly coupled way. The op-
erations of filtering Ethernet addresses, validating the IP
header, performing the next hop lookup and ARP lookup,
decrementing the TTL, recomputing the checksum, and
managing packet flow to and from the host CPU are all
performed within this module, coordinated by a single
“mastermind” module. The advantage to this approach
is that many of these things can be done in parallel. The
disadvantage is that it is very difficult to add new func-
tionality to this design, or to extract portions of the de-
sign for reuse elsewhere. In contrast, our design decou-
ples these functions into finer-grained elements. Each
element has a simple and well-defined operation to per-
form, and the task of determining the correct output port
is distributed across these elements.

6.2 Quantitative comparisons
We can make a few quantitative comparisons between

our Chimpp router and the NetFPGA reference router.
It should be noted that during the development of the
Chimpp router, there was no attempt to optimize any of
these metrics, save that we required line rate operation.

1. Lines of Verilog: The only difference in Verilog
code between the two router designs is between the

input arbiter and the output queues. To implement
this portion, the Chimpp router used 2,093 lines of
Verilog, and the reference router used 3,096 lines
of Verilog. Neither of these figures include the the
userdatapath module itself.

2. FPGA Resources: The reference router uses 46%
of the slices on the FPGA (a slice is a basic unit of
reconfigurable logic) and 11% of the block RAMs.
The Chimpp router uses 50% of the slices and 12%
of the block RAMs. The higher slice utilization ap-
pears to be due to the use of more distributed RAM,
though there are fewer slices used as logic.

3. Processing Latency: The processing latency
through the main pipeline (the section between the
input arbiter and the output queues) for the ref-
erence router is 18 cycles, or 144 ns. The pro-
cessing latency for the Chimpp router is 26 cycles,
or 208 ns. This is due to the fact that the refer-
ence router performs certain operations in parallel.
The lower latency makes little difference, however;
as the NetFPGA framework does not allow cut-
through operation, large frames incur a store-and-
forward delay of over 1500 cycles. The input ar-
biter introduces its own latencies due to contention,
and the biggest source of latency overall is likely to
be the output queues, even if buffers are relatively
small.

4. Throughput: Both routers operate at line rate for all
packet sizes.

6.3 Integration with Click
The Click portion of our router design essentially con-

sists of a basic router with an overall structure which is
similar to the hardware datapath. It looks like a plain
Click router, but contains elements which are modified
to reflect their state in their corresponding hardware el-
ements. We modified (subclassed) two existing Click
elements and created one new element. The new ele-
ment, called NF2AddrInit, takes as parameters the reg-
ister block tag of the interfaceconf element and the
MAC and IP addresses of those elements. This element
simply initializes the appropriate registers when Click
loads. The other two elements, NF2ARPQuerier and
NF2LinearIPLookup are equivalent to their superclasses
ARPQuerier and LinearIPLookup except that they push
their ARP tables and routing tables into their associ-
ated hardware elements. This can be thought of as a
hardware-accelerated Click router. We grouped these
NetFPGA-specific elements into a separate Click pack-
age. By packaging up these specialized Click elements
separately, they can easily be distributed along with
packages of Chimpp hardware elements.

6.4 Adding features to the router
We will now discuss our experiments in extending the

functionality of the example router.

13

ARP Responder: The ARP responder is simple: it
consumes ARP requests, and when the request is for
the configured IP address of the interface on which the
packet was received, it generates an ARP response. This
can easily be inserted after the l3classify element, which
should be configured to set the appropriate PTAG for
ARP requests. Due to the relative infrequency of ARP
requests, this will not yield a significant performance im-
pact. However, it does demonstrate the ease with which
the router can be extended.

This is an example of a feature which was already
present in the Click configuration but which was pushed
down into the hardware. Figure 5 depicts a modified
version of the router which contains this ARP responder
(labeled arpresp), as well as other additional elements
which we will now discuss.

Network Address Translation: The next enhance-
ment to the IPv4 router that we implemented was a Net-
work Address (Port) Translation element. This NAT im-
plementation was implemented purely in hardware using
simple mechanisms.

Outgoing packets are identified by having a private
source IP address and a public destination IP address.
For these packets, the source IP address and TCP/UDP
port number are hashed to a 15-bit value which is used
to replace the source port (We only use the upper half
of the port space for NAT). The source IP address is re-
placed with the IP address of the external NetFPGA in-
terface (for simplicity we assumed only one external in-
terface). When the hash is performed, a reverse mapping
of 15-bit port number to the internal IP address and port
is installed in a directly indexed table.

Incoming packets destined to a port number for which
such an entry exists will have their destination IP address
and port number replaced with these internal entries.

The advantages to this implementation are that it is fast
and that the table is small enough to fit in on-chip mem-
ory. The disadvantages are that external port collisions
can occur, and it does not currently validate the source IP
address for incoming traffic (this would be easy to do but
would require more storage). Once addresses have been
replaced, the packet can be routed normally, so this el-
ement should be placed before the nexthop lookup ele-
ment. However, this demonstrates the point that we were
able to add this functionality simply by inserting an ele-
ment into the design.

IP-in-IP encapsulation: The final enhancement to the
IPv4 router that we have made thus far is simple IP-in-
IP encapsulation and decapsulation. The desired behav-
ior here is to conditionally insert a basic IP header with
some configured source and destination IP address. At
the terminating node of this IP tunnel, the header should
be removed.

The decision about whether to apply encapsulation

or decapsulation of a packet is currently made stati-
cally by generic classifiers (labeled ipencapfilter and
ip decapfilter). These classifiers are provided with sets
of bitmasks and values to match on for one or more of the
first eight words of a packet. In this way, any combina-
tion of arbitrary field bits in the first 64 bytes of a packet
may be matched against specific values. In the case of
the encapsulator filter, it checked for IPv4 packets with a
particular destination IP prefix. In the case of the decap-
sulator filter, it checked for IPv4 packets with a protocol
field value of 4 (indicating IP-in-IP) and a specific desti-
nation IP address.

These generic classifiers are fairly flexible, and the im-
plementation is trivial. Ideally, however, we would like
these encapsulation and decapsulation elements to be
configurable at runtime (for example, to correspond with
a configured interface IP address). One possible way to
achieve this would be to use dynamic generic classifiers,
where the bitmasks and values to match against are con-
tained in software-accessible registers.

During the development of all of these features, we
used Verilator for individual unit tests and the mixed
simulation environment based on OMNeT++ for multi-
element simulations, before attempting to synthesize a
design. The simulation environment proved to be quite
useful, and the synthesized designs generally operated
exactly as expected. The ability to simulate arbitrary
C++ programs had other uses aside from acting as a con-
trol plane for the NetFPGA. For example we could write
a program to transfer a file from one virtual node to an-
other through the NetFPGA and write it to a file. We
could do the same for multiple node instances, and ver-
ify that the file was transmitted correctly.

7 Summary and conclusions
In this paper, we presented Chimpp, a development

environment for reconfigurable network hardware, and
its implementation for NetFPGA. Chimpp differs from
previous attempts in that it permits a wide variety of
communication patterns and bus structures in the im-
plemented design, handles communications with a Click
software layer, and, as part of the Chimpp environment,
incorporates common simulation tools. We demon-
strated a sample design with Chimpp, the IPv4 router,
and showed it had minor overhead in LUT count, latency,
and no penalty in throughput compared to the hand-
coded router design , and 33% less Verilog code. We
were able to demonstrate easily adding enhancements to
the router: Network Address Translation, ARP response,
and IP-in-IP encapsulation.

Chimpp is primarily designed to be a vehicle for net-
work researchers wishing to use the NetFPGA platform
for experimentation. We believe that the value of an en-
vironment like Chimpp is determined by its user com-
munity. In particular, essential to Chimpp’s success is

14

a broad range of pre-written modules to permit network
experimenters to rapidly build novel and interesting de-
signs on the NetFPGA platform. Therefore, we will re-
lease Chimpp and our library of Chimpp hardware mod-
ules on the NetFPGA website, and encourage network
researchers and NetFPGA users to use the environment
and contribute back any modules they have designed for
use with Chimpp.

References
[1] M. Attig and G. Brebner. High-level programming of

the FPGA on NetFPGA. InProc. NetFPGA Developers’
Workshop, August 2009.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router.TOCS, 18(3):263–
297, 2000.

[3] C. Kulkarni, G. Brebner, and G. Schelle. Mapping a Do-
main Specific Language to a Platform FPGA. InProc.
Design Automation Conference, pages 924–927, June
2004.

[4] M. Labrecque, J. G. Steffan, G. Salmon, M. Ghobadi,
and Y. Ganjali. NetThreads: Programming NetFPGA
with Threaded Software. InProc. NetFPGA Developers’
Workshop, August 2009.

[5] C. P. Mayer, T. Gamer, and C. P. Mayer. Integrating real
world applications into omnet++, 2008.

[6] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. A Pro-
gramming Model for Reusable Hardware in NetFPGA. In
Proc. PRESTO, Aug. 2008.

[7] G. Schelle and D. Grunwald. CUSP: A Modular Frame-
work for High Speed Network Applications on FPGAs.
In FPGA ’05, pages 246–257, February 2005.

[8] N. Shah, W. Plishker, and K. Keutzer. NP-Click: A Pro-
gramming Model for the Intel IXP1200. InProc. 2nd
Workshop on Network Processors, February 2003.

[9] D. E. Thomas and P. R. Moorby.The Verilog hardware
description language. Kluwer Academic Publishers, 101
Philip Drive, Assinippi Park, Norwell, MA, 02061, fifth
edition, 2002.

[10] A. Varga. The OMNeT++ discrete event simulation sys-
tem. In Proc. European Simulation Multiconference,
pages 319–324, 2001.

