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Abstract— Adaptive indexing schemes such as database cracking 

and adaptive merging have been investigated to-date only in the 

context of range queries. These are typical for non-key columns 

in relational databases. For complete self-managing indexing, 

adaptive indexing must also apply to key columns. The present 

paper proposes a design and offers a first performance 

evaluation in the context of keys. 

Adaptive merging for keys also enables further improvements in 

B-tree indexes. First, partitions can be matched to levels in the 

memory hierarchy such as a CPU cache and an in-memory 

buffer pool. Second, adaptive merging in merged B-trees enables 

automatic master-detail clustering. 

I. INTRODUCTION 

Adaptive indexing should apply to key columns just as well 

as to non-key columns. However, neither of the two 

techniques for adaptive indexing, database cracking and 

adaptive merging, has been designed for this context. 

The purpose of the present research is to explore adaptive 

indexing in the context of key columns. Specifically, the paper 

proposes a design for adaptive merging, explores additional 

applications of adaptive merging for indexes on keys, and 

presents a preliminary performance evaluation of database 

cracking and adaptive merging in this context. 

Database cracking [11-13] pioneered adaptive indexing. 

New indexes are created and optimized as a side effect of 

query execution, with fairly low cost and automatic focus on 

the key ranges searched in actual queries. For example, if 

most or all queries search for information relevant to the most 

recent months, the index is never optimized for prior months.  

Adaptive merging [6] is a second adaptive indexing 

technique. As in database cracking, an index covers all rows 

in a table, index creation and index optimization are side 

effects of query execution, and optimization effort focuses on 

key ranges searched in actual queries. Unlike database 

cracking, adaptive merging uses standard data structures (B-

trees) and algorithms (run generation and merging), it is 

designed for block-access devices like disks as well as for in-

memory databases, and it adapts to new query patterns (key 

ranges of interest) with relatively few queries. Whereas 

database cracking might process millions of queries before 
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index optimization ceases, adaptive merging finishes B-tree 

optimization during dozens of queries for the same table and 

query sequence [7]. 

Both database cracking and adaptive merging have been 

described and evaluated to-date primarily in the context of 

range queries, i.e., predicates of the type “column-value 

between low-constant and high-constant”. These predicates 

apply to many non-key columns in relational databases but 

usually not to key columns. In most cases, a “≤” comparison 

for keys has no real-world meaning. For example, two people 

arguing who has the higher social security number would be 

considered silly. Keys are compared with “=” comparisons 

including derivatives such as “in” predicates. This difference 

is often reflected in the data type: while non-key columns are 

often floating point values, keys are usually integers. 

While database cracking applies immediately to key 

columns, adaptive merging does not. In particular, database 

cracking can perform range partitioning with a single key 

supplied by an equality predicate just as well as with two keys 

supplied by a range predicate. Adaptive merging, however, 

requires a range with start and end keys for each merge step. 

Beyond applying adaptive merging to key columns, we 

propose two novel performance improvements that both seem 

much more promising for keys than for non-key columns and 

range queries. First, partitions within a partitioned B-tree can 

be created and maintained that take optimal advantage of the 

memory hierarchy of CPU cache, in-memory buffer pool, 

flash disk, etc. For example, the smallest partition with the 

hottest data is kept smaller than the CPU cache, another 

partition is kept smaller than the buffer pool, another partition 

is targeted to a flash device, and the remaining data remains 

on slow, inexpensive, traditional disks. Appropriately guided 

data movement between partitions ensures that each partition 

maintains the right size and contents. In other words, adaptive 

indexing with appropriate improvements enables self-

managing and efficient data placement in a memory hierarchy, 

even one with multiple levels. 

Second, adaptive merging can be employed in the context 

of master-detail clustering using merged indexes [6], a 

generalization of combined images [10] and join indexes [18]. 

A successful combination of master-detail clustering and 

adaptive indexing should ensure that joining and clustering 

effort focuses on those complex objects and their components 

actually accessed together. For example, records about 

customers, orders, invoices, line items, payments etc. may be 

clustered only for those customers actually queried, e.g., a 

subset chosen for auditing. Thus, adaptive indexing enables 

self-managing master-detail clustering. Together, the two new 

techniques enable caching of join results. 

II. PRIOR WORK 

We have identified four areas of work related to the 

proposed designs. In addition to database cracking and 

adaptive indexing, the following sub-sections discuss index 

tuning, object caching, and merged indexes. Much of this 

section is copied and derived from prior work [5, 6]. It might 

be useful to note that unlike partial indexes [17], an adaptive 



index covers all rows but the structure is optimized only when 

and where needed by actual queries. 

A. Index Tuning 

Index tuning is complementary to adaptive indexing. Both 

contribute to self-management of database systems. Index 

tuning might force or prohibit, encourage or discourage 

specific indexes after analyzing an artificial or actual 

workload. Adaptive indexing provides mechanisms for index 

creation and incremental index optimization. It can be 

employed within the guiding policies determined by index 

tuning or it may operate independently. In the remainder of 

this paper, we assume that creation of a specific index is at 

least desirable. 

B. Database Cracking 

Database cracking combines some features of both 

automatic index selection and partial indexes. When a column 

is used in a predicate for the first time, a cracker index is 

created by copying all data values in the appropriate column 

from the table’s primary data structure. When the column is 

used in the predicates of further queries, the cracker index is 

refined until sequential searching a partition is faster than 

binary searching in the AVL tree guiding a search to the 

appropriate partition. 

The keys in a cracker index are partitioned into disjoint key 

ranges and unsorted within each. Each range query analyzes 

the cracker index, scans key ranges that fall entirely within the 

query range, and uses the two end points of the query range to 

further partition the appropriate two key ranges. Thus, in most 

cases, each partitioning step creates two new sub-partitions 

using logic very similar to partitioning in quicksort [9]. A 

range is partitioned into 3 sub-partitions if both end points fall 

into the same key range. This happens in the first partitioning 

step in a cracker index (because there is only one key range 

encompassing all key values) but is unlikely thereafter [11]. 

Updates and their efficient integration into the data structure 

are covered in [12], and multi-column indexes to support 

selections and tuple reconstructions are covered in [13]. 

Recent work [6] has suggested a small improvement to 

database cracking, based on an improvement of partitioning in 

quicksort [2]. The core idea is to create a partition with keys 

equal to the pivot value separate from both lower and higher 

keys. Thus, a key range is partitioned into 3 sub-partitions 

using one pivot key or into 5 sub-partitions if two query 

boundaries fall into the same key range. Doing so enables 

subsequent equality queries for a previous partitioning key to 

scan precisely the required records. 

A. Adaptive Merging 

The essence of adaptive merging is to exploit partitioned B-

trees [4] in a novel way, namely to focus merge steps on those 

key ranges that are relevant to actual queries, to leave records 

in all other key ranges in their initial places, and to integrate 

the merge logic as a side effect into query execution. Thus, 

adaptive merging is adaptive and incremental like database 

cracking. They differ, however, as one relies on merging and 

the other relies on partitioning, resulting in substantial 

differences in the speed of adaption to new query patterns. 

The differences in query performance are due to data being 

kept sorted at all times in a B-tree. The difference in 

reorganization performance, i.e., the number of queries 

required before a key range is fully optimized, is due to 

merging with a high fan-in rather than partitioning with a low 

fan-out of 2 or 3 and to merging a query’s entire key range 

rather than only dividing the two partitions with the query’s 

boundary keys. 

When a column is used in a predicate for the first time (and 

a new index is considered desirable at this time), a run 

generation algorithm such as quicksort is used to append as 

many partitions as necessary. Each run forms a partition in the 

new B-tree. Runs are not merged at this time. Their number 

depends primarily on input size and memory allocation but 

also on the sort algorithm and any incidental correlation 

between the sort order in the data source and in the new index. 

The CPU effort for run generation is substantially higher 

than for predicate evaluation; thus, run generation imposes a 

substantial penalty in terms of CPU effort on this first query. 

Judicious memory allocation can control run size, comparison 

count per record, and thus overall CPU effort. Given today’s 

CPUs, however, the principal cost is in movement in the 

memory hierarchy, e.g., disk I/O or cache faults. While run 

generation doubles the movement effort (read-write instead of 

read-only), it maximizes the benefit for subsequent queries. 

When a column is used in a predicate for the second time, 

an appropriate index exists, albeit not yet fully optimized and 

merged into a single partition. In this situation, a query must 

find its required records within each partition, typically by 

probing within the B-tree for the low end of the query range 

and then scanning to the high end. 

Instead of just scanning the desired key range one partition 

at a time, however, the query might as well scan multiple 

partitions in an interleaved way, merge these multiple sorted 

streams into a single sorted stream, write those records into a 

new partition within the partitioned B-tree, erase or invalidate 

the records merged and moved to a new partition, and also 

return those records as the query result. The data volume 

touched and moved is precisely that of the query result. A 

table of contents keeps track of key ranges present or absent in 

each partition. After a key range has been removed from a 

partition, this partition will not again be searched for this key 

range. After very few queries, only a single partition needs to 

be searched and performance equals that of a traditional B-

tree index built separately from and prior to query processing. 

B. Object Caching 

Caching enables fast access to frequently accessed “hot” 

data items. If caching relies on a buffer pool containing 

images of disk pages, cold data records may pollute the cache. 

Thus, the hot items are often copied into a separate memory 

area together with other hot items. This technique also enables 

performance benefits with respect to virtual memory, CPU 

cache, etc. A cache of proper size will, simply by usage, be 

loaded and retained in the most appropriate level in the 



memory hierarchy. For example, if a data record is accessed 

frequently and kept in a data structure smaller than the CPU 

cache, the standard replacement algorithms in the hardware 

ensure that this record indeed remains in the CPU cache. 

In addition to extracting and concentrating hot data items, 

data items that are accessed together are often copied together. 

In relational databases, the concept “together” is usually 

expressed by foreign key constraints or by repeated usage of 

equivalent join predicates. Thus, it is desirable to exploit 

foreign key relationships of hot data items by caching all 

records related to them. For example, for the most frequent 

customer of a business, it seems like a good idea to cache that 

customer’s orders, invoices, their line items, etc. 

C. Merged Indexes 

Merged indexes are B-trees that contain multiple traditional 

indexes and interleave their records based on a common sort 

order. For example, a single B-tree may contain indexes on 

customer identifiers in a “customer” table and in an “orders” 

table, with equal values for customer identifiers enabling co-

location of related records. 

In relational databases, merged indexes implement “master-

detail clustering” of related records, e.g., orders and order 

details, such that all related records can be retrieved from a 

single location, e.g., a single disk block. Thus, merged indexes 

shift de-normalization from the logical level of tables and 

rows to the physical level of indexes and records, which is a 

more appropriate place for it. For object-oriented applications, 

clustering can reduce the I/O cost for joining rows in related 

tables to a fraction compared to traditional indexes, with 

additional beneficial effects on buffer pool requirements. 

A strict separation of B-tree and index into two layers of 

abstraction enables a design for merged indexes in which the 

set of tables, views, and indexes can evolve without restriction. 

The set of clustering columns can also evolve freely. A 

relational database can search and update index records just as 

in traditional indexes. Thus, merged indexes may finally bring 

general master-detail clustering to traditional databases 

together with its advantages in performance and cost. 

If records from multiple indexes are interleaved within a 

single B-tree, each record must identify the index to which it 

belongs. For maximal flexibility, all leading key fields up to 

and including the index identifier are tagged with their domain. 

Tags can be represented by very small integers in most cases. 

For example, in a B-tree that merges orders and their line 

items based on order number, the sort key consists of 4 to 5 

pieces: the tag for the domain “order number,” a value from 

that domain, a tag for the domain “index identifier,” a value 

from that domain, i.e., the actual index identifier, and the line 

number within an order. The last piece occurs only in line 

item records. It needs no tag as it follows the index identifier. 

If the index identifier is the leading sort key, the record 

type is separated from all others. In this case, multiple indexes 

may co-exist in the same B-tree, but their records are not 

interleaved or clustered based on key values. Prefix truncation 

[3] avoids practically all storage overhead but this case is 

rarely more useful than a separate B-tree for each index. 

III. DATABASE CRACKING FOR KEYS 

For indexes on relational keys, equality predicates can 

supply boundary keys for range partitioning just as well as 

range predicates in previous work. Two differences between 

equality queries and range queries deserve mention. 

The first difference is that there is only one new boundary 

key and new partition for each equality query (not two as for 

range queries). Thus, it takes twice as many queries before an 

initially unsorted array is partitioned into small partitions and 

until an index reaches its final state [11,13]. 

The second difference is that there is no obvious choice 

whether the partitioning key should go to the small or the 

large partition. Lacking an obvious choice, it’s best to assign a 

separate partition to entries equal to the new partitioning key. 

This design choice also ensures that future equality queries 

with the same key achieve optimal performance with zero 

overhead. Thus, an optional improvement for non-key 

columns and range predicates is rather a requirement for key 

columns and equality predicates. 

IV. ADAPTIVE MERGING FOR KEYS 

In prior work, which only considered range queries, 

adaptive merging was found to finalize index optimization 

with fewer queries than database cracking. This is partially 

due to each query optimizing future searches in the query’s 

entire key range, whereas database cracking optimizes only 

the partitions containing the query’s end points. In the case of 

equality queries, this advantage of adaptive merging must 

vanish, because the key range is only a single value. 

Even in prior work, however, adaptive merging was 

designed for block-access devices. For a query with a small 

key range that may extract less than an entire data block from 

each initial run, it seemed advantageous to merge more than 

what is strictly required. In fact, prior experiments expanded 

the key ranges based on both the width of the query’s range 

predicate and the expected record count in a data block. 

A similar technique is required when applying adaptive 

merging to indexes on relational keys and equality predicates. 

In the experiments reported below, a key range for each data 

block is estimated from the record count of the workspace, the 

merge fan-in, and the number of initial runs after run 

generation. This key range is rounded to maximize suffix 

truncation as described for prefix B-trees [3]. If an equality 

query needs to search multiple runs or B-tree partitions, it 

performs a merge step for the key range thus calculated. 

V. ADAPTIVE INDEXES IN A MEMORY HIERARCHY 

Prior work on adaptive indexing as well as the sections 

above have implicitly assumed a very simple memory 

hierarchy. Database cracking was invented primarily for in-

memory databases, adaptive merging for block-access devices. 

If a database is stored in a memory hierarchy with multiple 

levels, additional challenges and opportunities require 

attention. If performance of self-managing indexes is crucial 

for their success, exploiting memory hierarchies is critical. 

For adaptive merging using partitioned B-trees, one 

opportunity is to match partitions to levels in the memory 



hierarchy. For example, if one partition contains only “hot” 

items that are accessed frequently and is smaller than a given 

level in the memory hierarchy, e.g., the buffer pool, it is 

virtually assured that those hot items and their B-tree partition 

will remain in that level, e.g., the buffer pool. 

This leads to adaptive merging with three instead of two 

stages: initial runs, a single “big” partition, and a single “hot” 

partition. The new technique “un-merges” data items from one 

partition, and moves them to another. The implementation of 

the “move” operation is very simple in a partitioned B-tree; it 

merely requires updating the partition identifier or artificial 

leading key field in affected B-tree records. 

The number of special partitions of this kind equals the 

number of levels in the memory hierarchy above mass storage, 

e.g., the disk. An insertion is applied only in the highest level 

of the memory hierarchy or, more specifically, the appropriate 

partition; a successful search moves the found item to the 

highest level in the memory hierarchy and the appropriate 

partition; an unsuccessful search inserts a ghost record into 

that partition; and a deletion inserts an anti-matter record. 

Items are moved up when accessed and moved down using 

a replacement policy such as LRU. When, upon an insertion 

into a level in the memory hierarchy, the corresponding 

partition exceeds an appropriate size, some items must be 

moved down in the memory hierarchy by updating the 

artificial leading key field. Obviously, a buffer pool is 

required in addition to the partitions, but the buffer pool at 

each level can be kept small, just large enough to hide access 

latencies. For partitions primarily designed to match levels in 

the memory hierarchy, size limitations should be enforced 

sufficiently aggressively to avoid “double page faults” [15]. 

In database indexes on non-key columns, neighboring key 

values are often accessed together due to range predicates. 

Overall performance depends more on bandwidth than on 

latency. For key columns, access latency to specific key 

values is the crucial performance characteristic. Raising 

individual key values in the memory hierarchy is the most 

promising technique for self-managing indexes. 

We may also employ a new optimization for adaptive in-

dexing, and insert a “tomb stone” or “ghost record” into the 

final partition of the B-tree index. Non-existent keys could 

thus participate in “hot” partitions optimized for the memory 

hierarchy. Ghost records are a well known and often used 

technique for key deletion in B-tree indexes [8]. 

VI. MERGED INDEXES AND ADAPTIVE INDEXES 

Merged indexes [5] implement master-detail clustering of 

related records or entire complex objects based on equal join 

keys. Merged indexes have not been combined with 

partitioned B-trees or with adaptive indexing in prior work. 

This combination opens new opportunities for self-managing 

indexes and for very efficient database retrieval. 

If a merged index is stored in a partitioned B-tree, the 

partition identifier precedes the sort key within the merged 

index. Thus, if a merged index is loaded from an unsorted data 

stream interleaving multiple record types, the in-memory sort 

algorithm compares records based on key values as used in the 

merged index and then adds a run number as it emits runs. 

If indexes (and thus record types) are loaded one at-a-time, 

they fit into a merged index using an index identifier as 

leading index key, immediately following the partition 

identifier. The additional index key is mostly logical for both 

partition identifier and index identifier, because prefix 

truncation [3] avoids practically all storage overhead. 

Adaptive merging applied to a merged index permits 

focusing all reorganization and optimization effort on only 

those complex objects retrieved by actual queries. If a 

complex object is accessed for the first time, its components 

are gathered from the partitions created during the initial load 

operation. The appropriate records are modified with both a 

new partition identifier and, if required, the index identifier is 

moved to trail the user-defined sort key, e.g., order number. 

Any subsequent access to that object can retrieve all its 

components from a single location, e.g., a single disk block. 

The new techniques described above apply to merged 

indexes just as well as to “pure” indexes: empty query results 

can be marked by “tomb stone” records, updates can be 

appended into new partitions including deletions in the form 

of “anti-matter” records, and a merged index can be optimized 

for a memory hierarchy. Thus, the combination of old and 

new techniques extends adaptive indexing from a mechanism 

for self-managing traditional indexes to one for self-managing 

complex objects in a deep memory hierarchy. What started as 

a research effort to extend adaptive indexing from non-key 

columns to keys is turning into a technology for self-

managing high-performance database systems. 

Interestingly, this extension is possible with fairly limited 

modifications to traditional indexing code: multi-column B-

trees enable partitioned B-trees, tagged key values enable 

master-detail clustering, prefix truncation reduces storage 

overhead, quicksort and replacement selection enable run 

generation, and B-trees enable selective retrieval within runs. 

VII. PERFORMANCE EVALUATION 

Due to lack of space, the performance evaluation here is 

very short and, admittedly, preliminary. 

For a short comparison of database cracking and adaptive 

merging on keys, assume 10
7
 records with distinct values. 

Leaving these records entirely unsorted requires 10
7
 

comparisons in each query execution. A traditional B-tree 

index (created and fully optimized prior to query execution) 

requires 24 comparisons for each search. In adaptive merging, 

run generation by replacement selection with an in-memory 

workspace of 10
5
 records produces about 51 runs; 51 searches 

require 51×24=1,224 comparisons. This is immediately after 

run generation; subsequent merging reduces the number of 

comparisons to 24 when only a single partition requires 

searching. Database cracking with unsorted range partitions 

requires at least 10
7
÷1,224=8,169 partitions or 8,168 equality 

queries before it can process a new equality query with 1,224 

comparisons (on average), i.e., before it can match the initial 

performance of adaptive merging using partitioned B-trees. 



In the following experiments, 10
7
 records with distinct key 

values are queried 2,500 times repeatedly with random search 

keys across the entire domain. The workspace during run 

generation fits 10
5
 records, the merge fan-in is 100. In terms 

of balancing the effort for index creation between run 

generation and merging, each record participates in 17-18 

comparisons during run generation and in about 6-7 

comparisons when merged, and each record is copied and 

moved once during run generation and once during merging. 

The following diagrams illustrate the overhead of 

initializing, searching and optimizing adaptive indexes beyond 

the effort required to search a traditional B-tree index created 

a priori. Note that our cost metric is focused on movements in 

the memory hierarchy and it measures the number of records 

touched; it does not reflect the number of comparisons. Based 

on the assumption that a B-tree index fully optimized prior to 

query processing is efficient, the following diagrams show the 

additional query processing effort due to adaptive indexing. 

Zero additional effort is the most desirable outcome in these 

experiments. Not having an index at all, probably in many 

situations the most realistic alternative to adaptive indexing, 

imposes an overhead of scanning 10
7
 records in each query 

instead of a single record. Both techniques essentially 

implement sort algorithms O (N log N) comparisons. 

The curves reflect original database cracking (top curve), 

database cracking with our optimizations, in particular sorting 

minimal partitions (dashed curve), and adaptive indexing 

(bottom curve). Each data point averages 1% of the workload, 

i.e., of 25 queries, including the first data point. 

 

Figure 1. 10
7
 distinct key values. 

Figure 1 shows how original database cracking burdens 

many queries with partitioning steps. Even after 2,500 queries 

(100% of the workload), partitioning continues. Improved 

database cracking has similar overhead early in the query 

sequence but once a sub-partition is smaller than the 

workspace (10
5
 records), the entire sub-partition is sorted and 

future searches can use binary search rather than sequential 

search. “Spikes” indicate queries in key ranges not yet sorted. 

Adaptive indexing converges most efficiently towards the 

performance of a traditional index created a priori. It benefits 

from the sort effort during the initial copy step (run generation) 

and from merging entire data blocks around the specific key 

sought by a query. After about 2,000 queries (80% of the 

workload), query processing with a partitioned B-tree 

optimized as a side effect of query execution is as efficient as 

with a traditional B-tree index created a priori. 

 

Figure 2. Master index with distinct keys. 

Figure 2 shows adaptive indexing for primary keys, i.e., an 

index of moderate size (10
5
 records) with unique keys. As 

expected, both optimized database cracking and adaptive 

merging have no overhead compared to a traditional index 

except in the very first query when the index is created. In fact, 

their curves are indistinguishable in Figure 2. Adaptive 

merging generates runs (including sorting in the in-memory 

workspace) as part of the copy step; optimized database 

cracking sorts as side effect of the first query. Original 

database cracking, on the other hand, only performs binary 

partitioning during each query execution and thus requires a 

long query sequence before the index is fully optimized. 

 

Figure 3. Detail index with 99 records per distinct key. 

Figure 3 illustrates the performance of adaptive indexing 

for foreign keys, i.e., an index on the matching details table. 

There are 99 detail records for each master record in Figure 2. 
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Overall, progress towards a fully optimized index and thus 

overhead per query are similar to the experiment in Figure 1, 

indicating that the techniques are robust for moderate number 

of duplicate key values in an index. 

 

Figure 4. Master-detail clustering − 100 records per key. 

Finally, Figure 4 shows the performance of adaptive 

merging in a merged index with master and detail records, or 

100 records per distinct key value. Again, not surprisingly, the 

swift optimization and reducing of overhead are similar to the 

experiment in Figure 3. 

Due to limits in paper size and the speed of our coding, we 

cannot report on measurements of benefits and overheads of 

adaptive indexing optimized for a memory hierarchy. 

VIII. SUMMARY AND CONCLUSIONS 

In summary, adaptive indexing can be a pillar of self-

managing database systems. Both database cracking and 

adaptive merging apply to non-key columns and range 

predicates as well as key columns and equality predicates. In 

online analytical processing, keys correspond to dimensions 

and non-key columns to measures. Modifying database 

cracking is trivial. One rather than two new partition 

boundaries per query imply twice as many queries before 

index optimization is complete, with completion time already 

identified as a weakness of database cracking compared to 

adaptive merging. Adaptive merging for key columns actually 

requires rounding boundary keys whereas it merely benefits 

from rounding in the case non-key columns. Adaptive 

merging for key columns enables self-tuning and self-

managing master-detail clustering as well as self-tuning and 

self-managing optimization of B-trees for memory hierarchies. 

The performance evaluation demonstrates that all three 

techniques support equality queries similarly well to range 

queries, that the proposed optimizations for database cracking 

reduce the overhead during query execution, and that adaptive 

indexing converges towards a fully optimized B-tree and 

adapts to a new query pattern much faster than either variant 

of database cracking. 

In conclusion, index creation and optimization can be 

entirely automatic for both key columns and non-key columns, 

and it focuses on key values retrieved by actual queries, 

avoiding wasted effort on other key values. If desirable, 

adaptive indexing can be subject to policy decisions by tuning 

tools that may force or prohibit, encourage or discourage 

indexes; adaptive indexing provides enabling mechanisms for 

index creation and optimization as side effect of query 

execution, i.e., in a very non-intrusive way. Among the two 

principal techniques for adaptive indexing, adaptive merging 

implemented using partitioned B-trees exploits available 

memory and processing power during initial index creation 

and during subsequent index optimization; thus, index 

optimization terminates more quickly and optimal query 

performance is achieved with few queries in any key range. 

Self-managing optimizations for memory hierarchies and for 

complex object storage, introduced in the present paper, round 

out the capabilities of adaptive indexing and of adaptive 

merging. 
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