

Keyword(s):

Abstract:

©

Adaptive indexing for relational keys

Goetz Graefe, Harumi Kuno

HP Laboratories
HPL-2010-23

databases, indexes, storage systems, B-trees, adaptive merging, database cracking

Adaptive indexing schemes such as database cracking and adaptive merging have been investigated to-date
only in the context of range queries. These are typical for non-key columns in relational databases. For
complete self-managing indexing, adaptive indexing must also apply to key columns. The present paper
proposes a design and offers a first performance evaluation in the context of keys. Adaptive merging for
keys also enables further improvements in B-tree indexes. First, partitions can be matched to levels in the
memory hierarchy such as a CPU cache and an in-memory buffer pool. Second, adaptive merging in
merged B-trees enables automatic master-detail clustering.

External Posting Date: February 6, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: February 6, 2010 [Fulltext]

To be published and presented at SMDB 2010, Long Beach, CA March 1, 2010

Copyright SMDB 2010

Adaptive indexing for

relational keys
1

Goetz Graefe
1
, Harumi Kuno

2

HP Labs

Palo Alto, CA USA
1goetz.graefe@hp.com

2harumi.kuno@hp.com

Abstract— Adaptive indexing schemes such as database cracking

and adaptive merging have been investigated to-date only in the

context of range queries. These are typical for non-key columns

in relational databases. For complete self-managing indexing,

adaptive indexing must also apply to key columns. The present

paper proposes a design and offers a first performance

evaluation in the context of keys.

Adaptive merging for keys also enables further improvements in

B-tree indexes. First, partitions can be matched to levels in the

memory hierarchy such as a CPU cache and an in-memory

buffer pool. Second, adaptive merging in merged B-trees enables

automatic master-detail clustering.

I. INTRODUCTION

Adaptive indexing should apply to key columns just as well

as to non-key columns. However, neither of the two

techniques for adaptive indexing, database cracking and

adaptive merging, has been designed for this context.

The purpose of the present research is to explore adaptive

indexing in the context of key columns. Specifically, the paper

proposes a design for adaptive merging, explores additional

applications of adaptive merging for indexes on keys, and

presents a preliminary performance evaluation of database

cracking and adaptive merging in this context.

Database cracking [11-13] pioneered adaptive indexing.

New indexes are created and optimized as a side effect of

query execution, with fairly low cost and automatic focus on

the key ranges searched in actual queries. For example, if

most or all queries search for information relevant to the most

recent months, the index is never optimized for prior months.

Adaptive merging [6] is a second adaptive indexing

technique. As in database cracking, an index covers all rows

in a table, index creation and index optimization are side

effects of query execution, and optimization effort focuses on

key ranges searched in actual queries. Unlike database

cracking, adaptive merging uses standard data structures (B-

trees) and algorithms (run generation and merging), it is

designed for block-access devices like disks as well as for in-

memory databases, and it adapts to new query patterns (key

ranges of interest) with relatively few queries. Whereas

database cracking might process millions of queries before

1
 Published by 5th International Workshop on Self Managing

Database Systems (SMDB 2010), March 1, 2010, Long Beach,

California, USA.

index optimization ceases, adaptive merging finishes B-tree

optimization during dozens of queries for the same table and

query sequence [7].

Both database cracking and adaptive merging have been

described and evaluated to-date primarily in the context of

range queries, i.e., predicates of the type “column-value

between low-constant and high-constant”. These predicates

apply to many non-key columns in relational databases but

usually not to key columns. In most cases, a “≤” comparison

for keys has no real-world meaning. For example, two people

arguing who has the higher social security number would be

considered silly. Keys are compared with “=” comparisons

including derivatives such as “in” predicates. This difference

is often reflected in the data type: while non-key columns are

often floating point values, keys are usually integers.

While database cracking applies immediately to key

columns, adaptive merging does not. In particular, database

cracking can perform range partitioning with a single key

supplied by an equality predicate just as well as with two keys

supplied by a range predicate. Adaptive merging, however,

requires a range with start and end keys for each merge step.

Beyond applying adaptive merging to key columns, we

propose two novel performance improvements that both seem

much more promising for keys than for non-key columns and

range queries. First, partitions within a partitioned B-tree can

be created and maintained that take optimal advantage of the

memory hierarchy of CPU cache, in-memory buffer pool,

flash disk, etc. For example, the smallest partition with the

hottest data is kept smaller than the CPU cache, another

partition is kept smaller than the buffer pool, another partition

is targeted to a flash device, and the remaining data remains

on slow, inexpensive, traditional disks. Appropriately guided

data movement between partitions ensures that each partition

maintains the right size and contents. In other words, adaptive

indexing with appropriate improvements enables self-

managing and efficient data placement in a memory hierarchy,

even one with multiple levels.

Second, adaptive merging can be employed in the context

of master-detail clustering using merged indexes [6], a

generalization of combined images [10] and join indexes [18].

A successful combination of master-detail clustering and

adaptive indexing should ensure that joining and clustering

effort focuses on those complex objects and their components

actually accessed together. For example, records about

customers, orders, invoices, line items, payments etc. may be

clustered only for those customers actually queried, e.g., a

subset chosen for auditing. Thus, adaptive indexing enables

self-managing master-detail clustering. Together, the two new

techniques enable caching of join results.

II. PRIOR WORK

We have identified four areas of work related to the

proposed designs. In addition to database cracking and

adaptive indexing, the following sub-sections discuss index

tuning, object caching, and merged indexes. Much of this

section is copied and derived from prior work [5, 6]. It might

be useful to note that unlike partial indexes [17], an adaptive

index covers all rows but the structure is optimized only when

and where needed by actual queries.

A. Index Tuning

Index tuning is complementary to adaptive indexing. Both

contribute to self-management of database systems. Index

tuning might force or prohibit, encourage or discourage

specific indexes after analyzing an artificial or actual

workload. Adaptive indexing provides mechanisms for index

creation and incremental index optimization. It can be

employed within the guiding policies determined by index

tuning or it may operate independently. In the remainder of

this paper, we assume that creation of a specific index is at

least desirable.

B. Database Cracking

Database cracking combines some features of both

automatic index selection and partial indexes. When a column

is used in a predicate for the first time, a cracker index is

created by copying all data values in the appropriate column

from the table’s primary data structure. When the column is

used in the predicates of further queries, the cracker index is

refined until sequential searching a partition is faster than

binary searching in the AVL tree guiding a search to the

appropriate partition.

The keys in a cracker index are partitioned into disjoint key

ranges and unsorted within each. Each range query analyzes

the cracker index, scans key ranges that fall entirely within the

query range, and uses the two end points of the query range to

further partition the appropriate two key ranges. Thus, in most

cases, each partitioning step creates two new sub-partitions

using logic very similar to partitioning in quicksort [9]. A

range is partitioned into 3 sub-partitions if both end points fall

into the same key range. This happens in the first partitioning

step in a cracker index (because there is only one key range

encompassing all key values) but is unlikely thereafter [11].

Updates and their efficient integration into the data structure

are covered in [12], and multi-column indexes to support

selections and tuple reconstructions are covered in [13].

Recent work [6] has suggested a small improvement to

database cracking, based on an improvement of partitioning in

quicksort [2]. The core idea is to create a partition with keys

equal to the pivot value separate from both lower and higher

keys. Thus, a key range is partitioned into 3 sub-partitions

using one pivot key or into 5 sub-partitions if two query

boundaries fall into the same key range. Doing so enables

subsequent equality queries for a previous partitioning key to

scan precisely the required records.

A. Adaptive Merging

The essence of adaptive merging is to exploit partitioned B-

trees [4] in a novel way, namely to focus merge steps on those

key ranges that are relevant to actual queries, to leave records

in all other key ranges in their initial places, and to integrate

the merge logic as a side effect into query execution. Thus,

adaptive merging is adaptive and incremental like database

cracking. They differ, however, as one relies on merging and

the other relies on partitioning, resulting in substantial

differences in the speed of adaption to new query patterns.

The differences in query performance are due to data being

kept sorted at all times in a B-tree. The difference in

reorganization performance, i.e., the number of queries

required before a key range is fully optimized, is due to

merging with a high fan-in rather than partitioning with a low

fan-out of 2 or 3 and to merging a query’s entire key range

rather than only dividing the two partitions with the query’s

boundary keys.

When a column is used in a predicate for the first time (and

a new index is considered desirable at this time), a run

generation algorithm such as quicksort is used to append as

many partitions as necessary. Each run forms a partition in the

new B-tree. Runs are not merged at this time. Their number

depends primarily on input size and memory allocation but

also on the sort algorithm and any incidental correlation

between the sort order in the data source and in the new index.

The CPU effort for run generation is substantially higher

than for predicate evaluation; thus, run generation imposes a

substantial penalty in terms of CPU effort on this first query.

Judicious memory allocation can control run size, comparison

count per record, and thus overall CPU effort. Given today’s

CPUs, however, the principal cost is in movement in the

memory hierarchy, e.g., disk I/O or cache faults. While run

generation doubles the movement effort (read-write instead of

read-only), it maximizes the benefit for subsequent queries.

When a column is used in a predicate for the second time,

an appropriate index exists, albeit not yet fully optimized and

merged into a single partition. In this situation, a query must

find its required records within each partition, typically by

probing within the B-tree for the low end of the query range

and then scanning to the high end.

Instead of just scanning the desired key range one partition

at a time, however, the query might as well scan multiple

partitions in an interleaved way, merge these multiple sorted

streams into a single sorted stream, write those records into a

new partition within the partitioned B-tree, erase or invalidate

the records merged and moved to a new partition, and also

return those records as the query result. The data volume

touched and moved is precisely that of the query result. A

table of contents keeps track of key ranges present or absent in

each partition. After a key range has been removed from a

partition, this partition will not again be searched for this key

range. After very few queries, only a single partition needs to

be searched and performance equals that of a traditional B-

tree index built separately from and prior to query processing.

B. Object Caching

Caching enables fast access to frequently accessed “hot”

data items. If caching relies on a buffer pool containing

images of disk pages, cold data records may pollute the cache.

Thus, the hot items are often copied into a separate memory

area together with other hot items. This technique also enables

performance benefits with respect to virtual memory, CPU

cache, etc. A cache of proper size will, simply by usage, be

loaded and retained in the most appropriate level in the

memory hierarchy. For example, if a data record is accessed

frequently and kept in a data structure smaller than the CPU

cache, the standard replacement algorithms in the hardware

ensure that this record indeed remains in the CPU cache.

In addition to extracting and concentrating hot data items,

data items that are accessed together are often copied together.

In relational databases, the concept “together” is usually

expressed by foreign key constraints or by repeated usage of

equivalent join predicates. Thus, it is desirable to exploit

foreign key relationships of hot data items by caching all

records related to them. For example, for the most frequent

customer of a business, it seems like a good idea to cache that

customer’s orders, invoices, their line items, etc.

C. Merged Indexes

Merged indexes are B-trees that contain multiple traditional

indexes and interleave their records based on a common sort

order. For example, a single B-tree may contain indexes on

customer identifiers in a “customer” table and in an “orders”

table, with equal values for customer identifiers enabling co-

location of related records.

In relational databases, merged indexes implement “master-

detail clustering” of related records, e.g., orders and order

details, such that all related records can be retrieved from a

single location, e.g., a single disk block. Thus, merged indexes

shift de-normalization from the logical level of tables and

rows to the physical level of indexes and records, which is a

more appropriate place for it. For object-oriented applications,

clustering can reduce the I/O cost for joining rows in related

tables to a fraction compared to traditional indexes, with

additional beneficial effects on buffer pool requirements.

A strict separation of B-tree and index into two layers of

abstraction enables a design for merged indexes in which the

set of tables, views, and indexes can evolve without restriction.

The set of clustering columns can also evolve freely. A

relational database can search and update index records just as

in traditional indexes. Thus, merged indexes may finally bring

general master-detail clustering to traditional databases

together with its advantages in performance and cost.

If records from multiple indexes are interleaved within a

single B-tree, each record must identify the index to which it

belongs. For maximal flexibility, all leading key fields up to

and including the index identifier are tagged with their domain.

Tags can be represented by very small integers in most cases.

For example, in a B-tree that merges orders and their line

items based on order number, the sort key consists of 4 to 5

pieces: the tag for the domain “order number,” a value from

that domain, a tag for the domain “index identifier,” a value

from that domain, i.e., the actual index identifier, and the line

number within an order. The last piece occurs only in line

item records. It needs no tag as it follows the index identifier.

If the index identifier is the leading sort key, the record

type is separated from all others. In this case, multiple indexes

may co-exist in the same B-tree, but their records are not

interleaved or clustered based on key values. Prefix truncation

[3] avoids practically all storage overhead but this case is

rarely more useful than a separate B-tree for each index.

III. DATABASE CRACKING FOR KEYS

For indexes on relational keys, equality predicates can

supply boundary keys for range partitioning just as well as

range predicates in previous work. Two differences between

equality queries and range queries deserve mention.

The first difference is that there is only one new boundary

key and new partition for each equality query (not two as for

range queries). Thus, it takes twice as many queries before an

initially unsorted array is partitioned into small partitions and

until an index reaches its final state [11,13].

The second difference is that there is no obvious choice

whether the partitioning key should go to the small or the

large partition. Lacking an obvious choice, it’s best to assign a

separate partition to entries equal to the new partitioning key.

This design choice also ensures that future equality queries

with the same key achieve optimal performance with zero

overhead. Thus, an optional improvement for non-key

columns and range predicates is rather a requirement for key

columns and equality predicates.

IV. ADAPTIVE MERGING FOR KEYS

In prior work, which only considered range queries,

adaptive merging was found to finalize index optimization

with fewer queries than database cracking. This is partially

due to each query optimizing future searches in the query’s

entire key range, whereas database cracking optimizes only

the partitions containing the query’s end points. In the case of

equality queries, this advantage of adaptive merging must

vanish, because the key range is only a single value.

Even in prior work, however, adaptive merging was

designed for block-access devices. For a query with a small

key range that may extract less than an entire data block from

each initial run, it seemed advantageous to merge more than

what is strictly required. In fact, prior experiments expanded

the key ranges based on both the width of the query’s range

predicate and the expected record count in a data block.

A similar technique is required when applying adaptive

merging to indexes on relational keys and equality predicates.

In the experiments reported below, a key range for each data

block is estimated from the record count of the workspace, the

merge fan-in, and the number of initial runs after run

generation. This key range is rounded to maximize suffix

truncation as described for prefix B-trees [3]. If an equality

query needs to search multiple runs or B-tree partitions, it

performs a merge step for the key range thus calculated.

V. ADAPTIVE INDEXES IN A MEMORY HIERARCHY

Prior work on adaptive indexing as well as the sections

above have implicitly assumed a very simple memory

hierarchy. Database cracking was invented primarily for in-

memory databases, adaptive merging for block-access devices.

If a database is stored in a memory hierarchy with multiple

levels, additional challenges and opportunities require

attention. If performance of self-managing indexes is crucial

for their success, exploiting memory hierarchies is critical.

For adaptive merging using partitioned B-trees, one

opportunity is to match partitions to levels in the memory

hierarchy. For example, if one partition contains only “hot”

items that are accessed frequently and is smaller than a given

level in the memory hierarchy, e.g., the buffer pool, it is

virtually assured that those hot items and their B-tree partition

will remain in that level, e.g., the buffer pool.

This leads to adaptive merging with three instead of two

stages: initial runs, a single “big” partition, and a single “hot”

partition. The new technique “un-merges” data items from one

partition, and moves them to another. The implementation of

the “move” operation is very simple in a partitioned B-tree; it

merely requires updating the partition identifier or artificial

leading key field in affected B-tree records.

The number of special partitions of this kind equals the

number of levels in the memory hierarchy above mass storage,

e.g., the disk. An insertion is applied only in the highest level

of the memory hierarchy or, more specifically, the appropriate

partition; a successful search moves the found item to the

highest level in the memory hierarchy and the appropriate

partition; an unsuccessful search inserts a ghost record into

that partition; and a deletion inserts an anti-matter record.

Items are moved up when accessed and moved down using

a replacement policy such as LRU. When, upon an insertion

into a level in the memory hierarchy, the corresponding

partition exceeds an appropriate size, some items must be

moved down in the memory hierarchy by updating the

artificial leading key field. Obviously, a buffer pool is

required in addition to the partitions, but the buffer pool at

each level can be kept small, just large enough to hide access

latencies. For partitions primarily designed to match levels in

the memory hierarchy, size limitations should be enforced

sufficiently aggressively to avoid “double page faults” [15].

In database indexes on non-key columns, neighboring key

values are often accessed together due to range predicates.

Overall performance depends more on bandwidth than on

latency. For key columns, access latency to specific key

values is the crucial performance characteristic. Raising

individual key values in the memory hierarchy is the most

promising technique for self-managing indexes.

We may also employ a new optimization for adaptive in-

dexing, and insert a “tomb stone” or “ghost record” into the

final partition of the B-tree index. Non-existent keys could

thus participate in “hot” partitions optimized for the memory

hierarchy. Ghost records are a well known and often used

technique for key deletion in B-tree indexes [8].

VI. MERGED INDEXES AND ADAPTIVE INDEXES

Merged indexes [5] implement master-detail clustering of

related records or entire complex objects based on equal join

keys. Merged indexes have not been combined with

partitioned B-trees or with adaptive indexing in prior work.

This combination opens new opportunities for self-managing

indexes and for very efficient database retrieval.

If a merged index is stored in a partitioned B-tree, the

partition identifier precedes the sort key within the merged

index. Thus, if a merged index is loaded from an unsorted data

stream interleaving multiple record types, the in-memory sort

algorithm compares records based on key values as used in the

merged index and then adds a run number as it emits runs.

If indexes (and thus record types) are loaded one at-a-time,

they fit into a merged index using an index identifier as

leading index key, immediately following the partition

identifier. The additional index key is mostly logical for both

partition identifier and index identifier, because prefix

truncation [3] avoids practically all storage overhead.

Adaptive merging applied to a merged index permits

focusing all reorganization and optimization effort on only

those complex objects retrieved by actual queries. If a

complex object is accessed for the first time, its components

are gathered from the partitions created during the initial load

operation. The appropriate records are modified with both a

new partition identifier and, if required, the index identifier is

moved to trail the user-defined sort key, e.g., order number.

Any subsequent access to that object can retrieve all its

components from a single location, e.g., a single disk block.

The new techniques described above apply to merged

indexes just as well as to “pure” indexes: empty query results

can be marked by “tomb stone” records, updates can be

appended into new partitions including deletions in the form

of “anti-matter” records, and a merged index can be optimized

for a memory hierarchy. Thus, the combination of old and

new techniques extends adaptive indexing from a mechanism

for self-managing traditional indexes to one for self-managing

complex objects in a deep memory hierarchy. What started as

a research effort to extend adaptive indexing from non-key

columns to keys is turning into a technology for self-

managing high-performance database systems.

Interestingly, this extension is possible with fairly limited

modifications to traditional indexing code: multi-column B-

trees enable partitioned B-trees, tagged key values enable

master-detail clustering, prefix truncation reduces storage

overhead, quicksort and replacement selection enable run

generation, and B-trees enable selective retrieval within runs.

VII. PERFORMANCE EVALUATION

Due to lack of space, the performance evaluation here is

very short and, admittedly, preliminary.

For a short comparison of database cracking and adaptive

merging on keys, assume 10
7
 records with distinct values.

Leaving these records entirely unsorted requires 10
7

comparisons in each query execution. A traditional B-tree

index (created and fully optimized prior to query execution)

requires 24 comparisons for each search. In adaptive merging,

run generation by replacement selection with an in-memory

workspace of 10
5
 records produces about 51 runs; 51 searches

require 51×24=1,224 comparisons. This is immediately after

run generation; subsequent merging reduces the number of

comparisons to 24 when only a single partition requires

searching. Database cracking with unsorted range partitions

requires at least 10
7
÷1,224=8,169 partitions or 8,168 equality

queries before it can process a new equality query with 1,224

comparisons (on average), i.e., before it can match the initial

performance of adaptive merging using partitioned B-trees.

In the following experiments, 10
7
 records with distinct key

values are queried 2,500 times repeatedly with random search

keys across the entire domain. The workspace during run

generation fits 10
5
 records, the merge fan-in is 100. In terms

of balancing the effort for index creation between run

generation and merging, each record participates in 17-18

comparisons during run generation and in about 6-7

comparisons when merged, and each record is copied and

moved once during run generation and once during merging.

The following diagrams illustrate the overhead of

initializing, searching and optimizing adaptive indexes beyond

the effort required to search a traditional B-tree index created

a priori. Note that our cost metric is focused on movements in

the memory hierarchy and it measures the number of records

touched; it does not reflect the number of comparisons. Based

on the assumption that a B-tree index fully optimized prior to

query processing is efficient, the following diagrams show the

additional query processing effort due to adaptive indexing.

Zero additional effort is the most desirable outcome in these

experiments. Not having an index at all, probably in many

situations the most realistic alternative to adaptive indexing,

imposes an overhead of scanning 10
7
 records in each query

instead of a single record. Both techniques essentially

implement sort algorithms O (N log N) comparisons.

The curves reflect original database cracking (top curve),

database cracking with our optimizations, in particular sorting

minimal partitions (dashed curve), and adaptive indexing

(bottom curve). Each data point averages 1% of the workload,

i.e., of 25 queries, including the first data point.

Figure 1. 10
7
 distinct key values.

Figure 1 shows how original database cracking burdens

many queries with partitioning steps. Even after 2,500 queries

(100% of the workload), partitioning continues. Improved

database cracking has similar overhead early in the query

sequence but once a sub-partition is smaller than the

workspace (10
5
 records), the entire sub-partition is sorted and

future searches can use binary search rather than sequential

search. “Spikes” indicate queries in key ranges not yet sorted.

Adaptive indexing converges most efficiently towards the

performance of a traditional index created a priori. It benefits

from the sort effort during the initial copy step (run generation)

and from merging entire data blocks around the specific key

sought by a query. After about 2,000 queries (80% of the

workload), query processing with a partitioned B-tree

optimized as a side effect of query execution is as efficient as

with a traditional B-tree index created a priori.

Figure 2. Master index with distinct keys.

Figure 2 shows adaptive indexing for primary keys, i.e., an

index of moderate size (10
5
 records) with unique keys. As

expected, both optimized database cracking and adaptive

merging have no overhead compared to a traditional index

except in the very first query when the index is created. In fact,

their curves are indistinguishable in Figure 2. Adaptive

merging generates runs (including sorting in the in-memory

workspace) as part of the copy step; optimized database

cracking sorts as side effect of the first query. Original

database cracking, on the other hand, only performs binary

partitioning during each query execution and thus requires a

long query sequence before the index is fully optimized.

Figure 3. Detail index with 99 records per distinct key.

Figure 3 illustrates the performance of adaptive indexing

for foreign keys, i.e., an index on the matching details table.

There are 99 detail records for each master record in Figure 2.

Database cracking

Database cracking

Database cracking Adaptive merging

Adaptive merging

Adaptive merging

Improved

database

cracking

Improved

database

cracking

Overall, progress towards a fully optimized index and thus

overhead per query are similar to the experiment in Figure 1,

indicating that the techniques are robust for moderate number

of duplicate key values in an index.

Figure 4. Master-detail clustering − 100 records per key.

Finally, Figure 4 shows the performance of adaptive

merging in a merged index with master and detail records, or

100 records per distinct key value. Again, not surprisingly, the

swift optimization and reducing of overhead are similar to the

experiment in Figure 3.

Due to limits in paper size and the speed of our coding, we

cannot report on measurements of benefits and overheads of

adaptive indexing optimized for a memory hierarchy.

VIII. SUMMARY AND CONCLUSIONS

In summary, adaptive indexing can be a pillar of self-

managing database systems. Both database cracking and

adaptive merging apply to non-key columns and range

predicates as well as key columns and equality predicates. In

online analytical processing, keys correspond to dimensions

and non-key columns to measures. Modifying database

cracking is trivial. One rather than two new partition

boundaries per query imply twice as many queries before

index optimization is complete, with completion time already

identified as a weakness of database cracking compared to

adaptive merging. Adaptive merging for key columns actually

requires rounding boundary keys whereas it merely benefits

from rounding in the case non-key columns. Adaptive

merging for key columns enables self-tuning and self-

managing master-detail clustering as well as self-tuning and

self-managing optimization of B-trees for memory hierarchies.

The performance evaluation demonstrates that all three

techniques support equality queries similarly well to range

queries, that the proposed optimizations for database cracking

reduce the overhead during query execution, and that adaptive

indexing converges towards a fully optimized B-tree and

adapts to a new query pattern much faster than either variant

of database cracking.

In conclusion, index creation and optimization can be

entirely automatic for both key columns and non-key columns,

and it focuses on key values retrieved by actual queries,

avoiding wasted effort on other key values. If desirable,

adaptive indexing can be subject to policy decisions by tuning

tools that may force or prohibit, encourage or discourage

indexes; adaptive indexing provides enabling mechanisms for

index creation and optimization as side effect of query

execution, i.e., in a very non-intrusive way. Among the two

principal techniques for adaptive indexing, adaptive merging

implemented using partitioned B-trees exploits available

memory and processing power during initial index creation

and during subsequent index optimization; thus, index

optimization terminates more quickly and optimal query

performance is achieved with few queries in any key range.

Self-managing optimizations for memory hierarchies and for

complex object storage, introduced in the present paper, round

out the capabilities of adaptive indexing and of adaptive

merging.

ACKNOWLEDGMENT

Stratos Idreos and Stefan Manegold very graciously and

generously contributed insightful comments and suggestions

to our papers on adaptive merging. Barb Peters suggested

multiple improvements in the text.

REFERENCES

[1] José A. Blakeley, Per-Åke Larson, Frank Tompa: Efficiently Updating
Materialized Views. SIGMOD 1986: 61-71.

[2] Jon Louis Bentley, M. Douglas McIlroy: Engineering a sort function.

Softw., Pract. Exper. 23(11): 1249-1265 (1993).
[3] Rudolf Bayer, Karl Unterauer: Prefix B-trees. ACM TODS 2(1): 11-26

(1977).

[4] Goetz Graefe: Sorting and indexing with partitioned B-trees. CIDR

2003.

[5] Goetz Graefe: Master-detail clustering using merged indexes. Inform.,

Forsch. Entwickl. 21(3-4): 127-145 (2007).
[6] Goetz Graefe, Harumi Kuno: Self-selecting, self-tuning, incrementally

optimized indexes. To appear in EDBT 2010.

[7] Goetz Graefe, Harumi Kuno: Two adaptive indexing techniques:
improvements and performance evaluation. Submitted.

[8] Jim Gray, Andreas Reuter: Transaction processing: concepts and

techniques. Morgan Kaufmann 1993.
[9] C. A. R. Hoare: Algorithm 64: Quicksort. Comm. ACM 4(7): 321

(1961).

[10] Theo Härder: Implementing a generalized access path structure for a
relational database system. ACM TODS 3(3): 285-298 (1978).

[11] Stratos Idreos, Martin L. Kersten, Stefan Manegold: Database cracking.
CIDR 2007: 68-78.

[12] Stratos Idreos, Martin L. Kersten, Stefan Manegold: Updating a

cracked database. SIGMOD 2007: 413-424.
[13] Stratos Idreos, Martin Kersten, Stefan Manegold. Self-organizing tuple

reconstruction in column stores. SIGMOD 2009: 297-308.

[14] C. Mohan, Inderpal Narang: Algorithms for creating indexes for very
large tables without quiescing updates. SIGMOD 1992: 361-370.

[15] Michael Stonebraker: Operating system support for database

management. Comm. ACM 24(7): 412-418 (1981).
[16] Dennis G. Severance, Guy M. Lohman: Differential files: their

application to the maintenance of large databases. ACM TODS 1(3):

256-267 (1976).
[17] Praveen Seshadri, Arun N. Swami: Generalized partial indexes. ICDE

1995: 420-427.

[18] Patrick Valduriez: Join indices. ACM TODS 12(2): 218-246 (1987).

Adaptive merging

