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Abstract

A popular technique for avoiding the difficulties of build-
ing applications that span multiple administrative domains
(MAD) is to create another vendor/application-specific do-
main, as exemplified by services such as Google Docs and
Microsoft Live Mesh. Such a centralized domain adds se-
curity vulnerabilities, reliability risks, and scalability costs.
Our alternative combines authorization-based access con-
trol, a firewall-friendly protocol, and a suitable distributed
checkpointing system to build a peer to peer system that
needs no central control. Here we discuss the lessons
learned in building the Secure Cooperative File Sharing
(SCoopFS) application using this approach.

1 Introduction

Distributed applications that span multiple administra-
tive domains (MAD) face several requirements that are ei-
ther missing or are less severe within a single domain. Such
requirements include:

• Ensuring that a consistent state is maintained in the
face of failures, even though no single administrative
domain can coordinate a global checkpoint of the en-
tire system or orchestrate global recovery. Simplify-
ing, localizing, and bounding checkpointing and roll-
back is crucial.

• Enabling offline operation, as network partition occurs
frequently and uncontrollably.

• Connecting dependably with nodes that may move
among domains, such as laptop computers.

• Crossing firewalls protecting different domains.
• Avoiding dependencies upon the different domains’

local namespaces, e.g., the user namespaces against
which participants authenticate for intradomain re-
source access.

• Limiting the harm that nodes in one domain can inflict
upon nodes in other domains.

Most existing MAD applications employ one of two ap-
proaches. The first is to use Federated Identity Management
(FIdM) to enable authentication, and to use virtual private

networks to reduce the difficulty of operating inside the dif-
ferent firewalls [15]. This approach achieves consistency
by minimizing distribution of the computation: the entities
work with the authoritative central resource in the applica-
tion’s home domain. A problem with this strategy is that
the plan coordination costs for the participant domains’ IT
departments are often prohibitive. This is true even for vari-
ant systems that use roles or attributes for authentication
rather that identities: In all cases the IT departments must
globally coordinate the meanings of the identities or roles
or attributes, which can be a tremendous challenge [4].

An alternative approach, exemplified by Microsoft Live
Mesh [3] and Google Docs [19], is to create yet another
vendor/application-specific administrative domain and re-
quire users to operate within this domain when working
with the application. It addresses consistency by maintain-
ing authoritative state in a central single-domain repository.
Introducing such a centralized domain brings problems of
its own. Notably, this strategy adds an extra central point of
failure with new reliability risks, security hazards, privacy
concerns, and scalability costs.

We built the Secure Cooperative File Sharing (SCoopFS,
pronounced “scoops”) application as a MAD peer-to-peer
(P2P) system that requires neither a new domain nor an IT-
coordinated FIdM solution. SCoopFS’s cross-domain file
sharing goals are similar to the goals of Live Mesh; it is not
a distributed file system akin to CODA [6]. Built on top
of the Waterken distributed system platform [7], SCoopFS
integrates the following techniques to avoid the problems of
both application-specific domains and FIdM integrations:

• A communication-induced checkpointing (CIC) sys-
tem [9], integrated with a turn-based concurrency
model [14,17], facilitates recovery from node and net-
work failures while allowing each node to control its
own checkpointing operations. Earlier work has sug-
gested that recovery with CIC systems may be cum-
bersome in practice [9]; one contribution of our work
is to demonstrate that a judicious synthesis of CIC with
turn-based concurrency eliminates this difficulty.

• A redirectory allows mobile nodes that visit multiple
domains to register their latest location when they go
online, enabling other nodes to find them, ensuring re-
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liable operation even as components of a distributed
application migrate.

• A forwarder enables firewall crossing, ensuring re-
liable operation even though new firewalls may be
erected, or migration may take components into new
firewall-enclosed domains.

• An authorization-based access control system
(ZBAC) [12] bypasses the difficulties of authenticat-
ing at time of access. Authentication is done once at
time of grant. Requested services need not care who is
making requests, they need only know that requestors
are authorized. Such authorizations flow smoothly
across domains despite incompatibilities among local
authentication systems, because the service does not
invoke any local authentication of a remote client.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the facilities of the Waterken platform for
reliably recovering from failures, controlling access, and
crossing domains. Section 3 describes the SCoopFS ap-
plication. Section 4 describes the types of failures that
SCoopFS tolerates. Section 5 discusses the successes and
failures in meeting the goals when running SCoopFS in a
small pilot program. Section 6 reviews related work.

2 The Waterken Platform

The Waterken platform was designed to enable quick de-
velopment of reliable secure distributed applications. Fig-
ure 1 illustrates the basic elements of a Waterken platform
and its environment in the context of the SCoopFS ap-
plication. A node is a shared-memory assembly of hard-
ware resources controlled by a single operating system. It
may support multiple Java virtual machines (JVMs), each
of which may run a single Waterken platform, which may
run multiple concurrentactors. Each actor is an assem-
bly of objects sharing a single thread of control and a sin-
gle incoming event queue; only one event is processed
by an actor at a time. Multiple objects within the actor
may export their interfaces to the outside world. Objects
within an actor may interact with each other usingimme-
diate calls(ordinary method invocations), and block while
waiting for the response. All object references across actors
must be performed with nonblockingeventual sends, us-
ing promises [17] to receive responses from their sent mes-
sages. Anapplicationis a collection of actors that may span
nodes, that have a network of references among themselves,
and that work toward a common goal.

Reliability, including easy recovery in the face of net-
work and node failures, is a key goal of the Waterken de-
sign. The Waterken platform uses a CIC checkpointing
mechanism, which allows actors to checkpoint indepen-
dently, an important feature in a MAD environment where

no one can coordinate a global checkpoint. CIC systems
must overcome a number of obstacles.

CIC systems may suffer from the “domino effect”: while
recovering the checkpoint for one process, the system may
determine that it must roll back other processes to earlier
checkpoints, which may require yet more rollbacks [9]. To
avoid such cascading rollbacks, Waterken uses the known
technique of checkpointing an actor before every message-
sending event [5]. Because the concurrency model is turn-
based, the messages sent during a turn can be accumulated
until the turn ends, at which point a checkpoint is taken and
all the messages are sent in a single message-sending event.
Bundling the sending of messages in this way reduces the
number of checkpoints required. Furthermore, though an
actor can be as large as an entire JVM, experience to date
suggests most actors are small, so most checkpoints are also
small.

Like other CIC systems, Waterken piggybacks check-
pointing information on the application messages; unlike
other CIC systems, this information is purely local, inform-
ing the recipient’s platform whether to expect to queue new
messages or modify mutable state as a result of processing
the message.

Message sending is not the only trigger for checkpoint-
ing. Mutable actor state modification also forces an end-
of-turn checkpoint. All checkpoints include the modified
state, the list of messages to send, the value to be returned
to the sender of the message that initiated the turn, and the
ID of the incoming message which initiated the turn. There
are no useless checkpoints, and every checkpoint advances
the recovery line [9]. Messages are idempotent, so if an
availability failure occurs during processing of a message,
the sender can retry knowing that the message will be pro-
cessed only once: if the recipient did not receive or process
the message the first time, it proceeds upon receipt of the
retry, whereas if the message was processed the first time,
the recipient’s Waterken platform automatically returns the
previously-computed result, and the actor never sees the du-
plicate. Neither is the sending actor aware of the retries:
Waterken automatically retries if necessary, so sent mes-
sages eventually arrive and results are eventually returned;
the platform fulfills the promise (i.e., supplies the response)
to the actor when that response eventually arrives. Mes-
sages between pairs of actors are FIFO ordered. Messages
from multiple senders to a single recipient may be inter-
leaved arbitrarily (subject to the pairwise-FIFO constraint).

Figure 2 summarizes how the Waterken platform drives
an actor through a turn. There are several consequences
of this algorithm. Every message is eventually processed
exactly once unless the sender or recipient is taken offline
forever. There is always a consistent version of the entire
distributed system on stable store, including pending mes-
sages. No actor need ever roll back more than one check-
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Figure 1: Waterken and SCoopFS architecture.

point. No rollback of one actor requires rollback of another
actor. The net result is that recovery from a failstop failure
becomes straightforward: simply restart the platform that
failed. Eventually all pending incoming messages will be
retried and processed, responses will be returned, outgoing
messages will be sent, and the whole system progresses.

The way a Waterken platform handles incoming and out-
going messages for an actor and implements restarts follow-
ing a failure prevents inconsistencies from propagating to
other actors. Intuitively, there is no way for an actor to tell
whether another actor has failed or is merely slow. The re-
sult is that all actors pass through a set of states following
the recovery that they could have passed through had the
failure not occurred. This enables “eventual distributed re-
covery,” requiring only that every actor eventually complete
all its turns and every message eventually be delivered.

Waterken uses webkeys [22] for access control to
objects. Webkeys are unspoofable, unguessable, self-
authorizing references embodied as URLs transmitted using
HTTPS protocol with self-signed certificates. Webkeys are
somewhat analogous to car keys: the car does not need to
check your driver’s license before you drive it, it only needs
to know that you have the key that starts it.

Reliability is further enhanced by the redirectory in-
tegrated with Waterken platforms. The redirectory is a
Waterken-based application with which Waterken platforms
register their IP addresses when they launch. If a Waterken
platform and its actors move to a new IP address or a differ-
ent domain name, platforms with actors that are clients find
the relocated platform in its new location by querying the
redirectory. The actors and applications neither know nor
care that a part of the system has moved: nothing breaks.
Since webkey references are unspoofable, buggy or mali-
cious redirectories cannot steal any authorities, nor cause
messages to be sent to the wrong recipient, despite migra-
tion.

For the SCoopFS project we built an additional applica-
tion for the Waterken infrastructure, a rudimentary firewall-
penetrating forwarder. The forwarder extends the reliabil-
ity of distributed Waterken applications by enabling plat-
forms to operate together even though new firewalls might
be erected, even though nodes and platforms might migrate
across firewalls. The webkey strategy of using HTTPS pro-
tocol facilitated the building of the forwarder, since few fire-
walls block HTTPS traffic.

3 SCoopFS

SCoopFS is a P2P file sharing system designed to en-
able easy, intuitive collaborative editing in a MAD environ-
ment [13]. It is designed to impose neither IT costs for the
administrators of participating domains, nor privacy con-
cerns due to a central administrator, nor hardware provision-
ing costs for a central server farm. It uses an email metaphor
(but not SMTP email) for file sharing: the owner of a docu-
ment brings up his SCoopFS mailbox in his browser, spec-
ifies a recipient and a file attachment, and sends a scoopfs-
mail. The recipient saves the attachment somewhere on sta-
ble store; when the attachment is sent with read/write au-
thorization (embodied as a webkey reference to an update
channel for the original file), SCoopFS sets up synchroniz-
ers such that, any time either user edits the file, the other
user’s copy of the file is updated. Offline editing operations
result in queued updates that are delivered upon reaquisition
of network access. The SCoopFS mailboxes detect simul-
taneous edits resulting in conflicts, and assist the users to
resolve them. There is no notion of locking.

SCoopFS fully supports “rich sharing,” integrating the
abilities to dynamically cross domains, chain attenuated
delegations, recompose authorities from different domains,
and hold entities accountable for misuse [21]. Rich shar-
ing enabled users in the pilot program to devise unantic-
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• Pick the next message sent eventually to an object in
this actor from the actor’s event queue

• If this message was already processed,

• return previously computed response

• Else,

• Deliver the message to the object
• While the actor processes the incoming message,

• If the actor makes an eventual send of a new
message,

• put that message in the list of messages
to send

• Upon return of a response from the actor

• Take a new checkpoint, including:

• response to return to the message sender
• ID of the received message for which the

response has been computed
• modifications to actor state
• list of new messages to send

• Delete the old checkpoint
• Return the response to the sender
• Send, and resend as necessary, the new mes-

sages on platform threads concurrently with
picking the next message

Figure 2: Waterken main event loop.

ipated uses. One relevant application was a patch update
system. By using attenuated chaining, the developers of
program updates were able to push patches to one user in
each user-community, whose machine would in turn auto-
matically push the patch to the other members of that com-
munity and other associated communities. No specially
provisioned central site with high bandwidth was required.
This type of application is not possible for conventional file
sharing systems like Live Mesh, since they do not support
chained delegation of attenuated authorities, i.e., the recip-
ient of a read-only authority cannot derive and re-grant a
separately revocable read-only authority to another party:
Sharing requires access control list editing authority, which
conveys de facto full authority. Indeed, this inability to en-
able attenuated delegation is a key reason why most file
sharing is done, not with file sharing tools, but rather with
email [11].

For deployment, a Waterken platform is installed onto
every machine in a SCoopFS file sharing system. The
Waterken platform is then launched, and a set of actors
that comprise a SCoopFS mailbox is created, along with
a webkey reference to the user-facing mailbox actor. The

user interacts with the mailbox using the mailbox webkey
from within his browser (typically the webkey’s domain is
hardwired to localhost on the machine, so the browser gets
a direct connection to the mailbox). If two SCoopFS users
who do not have scoopfsmail addresses for each other in
their address books decide to share, one of them gets a new
message-channel webkey from his SCoopFS system, and
the other puts that webkey into his SCoopFS system. Each
user then appears in the other’s address book. Webkeys
for update channels on a specific file are transferred in the
scoopfsmail message that carries the file as an attachment.
Checkpoints are taken automatically by the platform of the
relevant actors at the critical junctures during the exchange
of the webkeys and the updates, ensuring a reliable ex-
change of webkeys and data.

4 Failure Model

SCoopFS is designed to be robust in the face of the fol-
lowing failures:

• Transient network failures. Message insertions, dele-
tions, alterations, and replays can only degrade perfor-
mance.

• Failstop failures of the node hardware, operating sys-
tems, and Java virtual machines. Transient failstop
failures of these elements on a node can be fixed by
restarting the platform. If the failure of one of these
elements is deterministic, the problem can be solved
by migrating the application state to a node with re-
placement hardware/alternate OS/upgraded JVM for
the broken element. After such a migration, other
nodes find the migrated platform via the redirectory.

• An arbitrary number of failstop failures of arbitrary
nodes at arbitrary times. Recovery is done by re-
launching failed platforms in any order.

SCoopFS and Waterken both assume correct operation
of the stable stores for all the nodes. If a node’s stable
store fails, those application activities requiring objects on
the failed node will cease, but the rest of the system will
continue to progress. A deterministic failstop failure of a
Waterken platform will produce the same level of degrada-
tion of the system.

Using the BAR categories of node behavior [2], at least
one redirectory and at least one forwarder must be altruistic.
Byzantine redirectories and forwarders can only reduce sys-
tem performance. SCoopFS mailboxes are assumed to be
rational. Byzantine mailboxes can do harm only up to the
limit of their webkey-derived authorities. Under no circum-
stance can a Byzantine mailbox corrupt the checkpoint of
another mailbox, for example, but it can corrupt shared files
for which it has been granted a webkey reference for an up-
date channel (i.e., if it has been granted edit authorization on
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a shared file). Actions such as updates and message sends
are unspoofably bound to petnames [20]. Thus abusers of
authorizations may be held accountable, for example by re-
voking their authorizations using the ZBAC-oriented care-
taker pattern [18].

5 Experiences

SCoopFS was deployed for nine months in an end user
pilot program with a dozen users [13]. Users routinely
carried SCoopFS-enabled laptops between administrative
domains and across firewalls, shutting the machines down
with arbitrary abruptness, leaving them off for arbitrary pe-
riods. Despite this, no loss, damage, or duplication of mes-
sages, updates, or shared files was ever observed. No re-
covery ever required rollback of more than one platform,
achieved by simple relaunching.

Any time a SCoopFS node could reach the Internet, file
sharing and message sending/receiving was operational. No
firewalls were encountered that impeded the transmission
of webkey-based messages. No IT department assistance
was required to enable SCoopFS operation across any of
the domains.

In one experiment, file updates were passed via the
forwarder between two nodes that were shut down and
restarted in sequence so that they were never both alive at
the same time. Eventually the entire multistep activity com-
pleted with no errors.

A reliability risk in many concurrency models is dead-
lock. The promise pipelining concurrency model is dead-
lock free, though a related liveness issue,datalock, is possi-
ble [16]. Datalock involves cycles of unresolved promises.
Although the actors associated with such promises continue
to execute—because actors and all interactions among them
are nonblocking—the code associated with the promises
will never execute. A contribution of our work is experien-
tial support for the prediction that datalocks should be rare
in practice [16]: No datalock was ever observed at any stage
in development or deployment of SCoopFS.

The greatest source of systemic unavailability was plan
coordination with the IT department. IT periodically re-
quired the forwarder’s node to be patched with security up-
grades, requiring shutdown and relaunch of the forwarder.
Once IT shut down the forwarder’s network for a week.
In all cases, pending messages and updates that had been
awaiting service were delivered successfully after the for-
warder came back online. The unavailability of the for-
warder did not prevent creation and queuing of messages
and updates on individual SCoopFS nodes for eventual de-
livery. Hence forwarder unavailability generally went un-
noticed by users.

Though the architecture of SCoopFS eliminated all cen-
tral points of failure, the pilot implementation did not. Only

one forwarder and one redirectory were supported in the pi-
lot. In a large-scale deployment, we believe the forwarder
would be the first overutilized resource, and a network of
forwarders would be required.

Another deficiency of the pilot implementation was that
the forwarder transiently held data and authorities in the
clear, making it a privacy and security vulnerability. Again,
the architecture supported elimination of this weakness.

We observed one performance problem late in the pi-
lot program. Waterken was checkpointing each actor with
many small files that accumulated. On the NTFS file sys-
tem, performance degraded with 100K files in a single
folder; 400K files made SCoopFS unusable. On the other
hand, the forwarder accumulated 350K files on ReiserFS
with no noticeable degradation. Analysis enabled modifi-
cation of the Waterken checkpointing algorithm and elimi-
nated this problem.

Aside from this one bit of analysis and tuning done in
response to lessons from the SCoopFS application, no other
performance work has been done, though many candidate
optimizations for improving performance of the current sys-
tem are known; this is now an area of active research.

Additional performance tuning was unneeded for
SCoopFS: no other noticeable performance problem oc-
curred at the user level. Part of the reason SCoopFS op-
erated so effectively was its P2P architecture: as more users
were added to the system, more user compute resources
were implicitly added as well.

Until further performance tuning has been performed,
the Waterken platform may be ill-suited for high per-
formance distributed computing applications. However,
SCoopFS did demonstrate that it meets some of the require-
ments for programmer-transparent checkpointing and easy
rollback that have been identified for future peta-scale sys-
tems [10].

From a dependability perspective, our experience run-
ning the pilot program was consistent with our expectation.

6 Related Work

Like Waterken, the Sinfonia platform was designed to
ease the process of building scalable reliable distributedsys-
tems [1]. A key goal was to allow proving the dependability
properties of the platform once, and thereby avoid having to
prove the dependability properties repeatedly for every dis-
tributed application. Sinfonia is focused primarily on rapid
development of systems within a single administrative and
trust domain. The CatchAndRetry proposal [14] for han-
dling distributed system failures, designed for turn-based
concurrency such as that used by Waterken, is partly in-
corporated in the platform: availability errors are handled
automatically by retry, the application programmer neither
knows nor cares that such failures have occurred (the pro-
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grammer can explicitly timeout if prompt action is required;
such timeouts were unnecessary in the SCoopFS system
because the default retry system was always appropriate).
Tongo [8], a framework for developing and executing SOA
applications for mobile devices, uses a centralized appli-
cation server/domain and is focused primarily on enabling
implementation modifications at runtime. The E program-
ming language [16] uses the same promise pipelining model
of concurrency as the Waterken platform, but does not in-
clude CIC checkpointing, or the forwarder, or the redirec-
tory, that give the Waterken platform many of its reliability
characteristics.

7 Conclusion

When communication induced checkpointing is com-
bined with a suitable turn-based concurrency model and
a redirectory system, restart of failed services in a
MAD environment ceases to be cumbersome in practice.
Authorization-based access control with webkeys supplies
a form of Web-based computation that easily and securely
conveys attenuatable authorities across multiple administra-
tive domains. The performance penalties for CIC systems
may be ameliorated, or rendered unimportant, for peer to
peer applications that scale out the resources as they scale
up the utilization. Furthermore, as faster stable storage tech-
nologies fall in cost, these types of turn-based CIC systems
will receive comparatively greater speedups, and will de-
serve more consideration for a wider variety of distributed
applications.
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