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Abstract— Compliance with regulatory policies on data remains a 
key hurdle to cloud computing. Policies such as EU privacy, 
HIPAA, and PCI-DSS place requirements on data availability, 
integrity, migration, retention, and access, among many others. 
This paper proposes a policy management service that offers 
scalable management of data retention policies attached to data 
objects stored in a cloud environment. The management service 
includes a highly available and secure encryption key store to 
manage the encryption keys of data objects. By deleting the 
encryption key at a specified retention time associated with the 
data object, we effectively delete the data object and its copies 
stored in online and offline environments. To achieve scalability, 
our service uses Hadoop MapReduce to perform parallel 
management tasks, such as data encryption and decryption, key 
distribution and retention policy enforcement. A prototype 
deployed in a 16-machine Linux cluster currently supports 56 
MB/sec for encryption, 76 MB/sec for decryption, 31,000 
retention policies/sec read and 15,000 retention policies/sec write. 

Keywords-large-scale policy management; compliance and 
regulatory; data retention; encryption key store; cloud service 

I.  INTRODUCTION 

Cloud computing is a promising paradigm to offer IT cost 
reductions and business agility improvements. However, 
compliance with regulatory policies still remains a key hurdle 
to wide adoption of cloud computing [27]. The service 
environment has to manage data owned by the customers 
according to mutually agreed data management policies in 
order to ensure compliance with regulatory policies such as the 
Data Protection Directive under EU privacy law [11], HIPAA 
[16], and PCI-DSS [21]. These regulatory policies are often 
translated to enforceable or auditable actions, such as data 
availability, data integrity, data migration, data retention, and 
data access. 

Although these compliance and regulatory requirements are 
not new and have been addressed in traditional enterprise 
computing environments, addressing them in the context of 
cloud services introduces new challenges, one of which is 
scalable management and enforcement of policies. Imagine a 
backup service that offers data retention to 300 enterprises, 
with each enterprise having 104 users, and each user owning 
105 files. Such a service must be capable of managing 3x1011 
files. If each file is encrypted with a 32-byte key, the key store 
itself will require over 10 TB. A service capable of managing 
medical records for the entire U.S. population of 300 million 
people, with each person owning 103 records requires the same 
scale. 

Our objective is to build a scalable policy management 
service with the ultimate goal of managing 1011 data objects. 
This paper details the design and prototype implementation of a 
policy management service that is primarily focused on data 
retention. Data retention belongs to a class of data policies 
called action policies that specify what to do under the current 
situation [18]. We believe that other policies such as data 
backup, data archiving, and data migration [4, 5], can be 
expressed in action policies and enforced similarly. 

Managing data policies at scale poses various challenges, 
including the following two that we believe are key challenges 
to managing data retention policies: 

 Scalable Policy Enforcement: A scalable engine that 
supports policy enforcement in real time for data access, 
and updates at the rate data changes is required. State 
information [24] and contextual information associated 
with data objects need to be tracked for policy 
enforcement. Enforcement needs to be carried out 
reliably as machine failure in large systems is common. 

 High Availability and Security of Management 
Metadata: Policy management related metadata, which 
can include data management artifacts like encryption 
keys, audit logs [2], state and context information for 
policy decisions, should be treated as being as critical as 
the data being managed. High security and high 
availability of such management related metadata are 
actually required by compliance regulatory policies 
such as HIPAA and PCI-DSS. 

Additional challenges include, for example, how to manage 
scalable relationships defined between data policies, between 
data objects, and between data policies and data objects. 
Runtime correlation and decision making require complex 
data/policy relationships be captured thoroughly, structured 
efficiently, and evaluated quickly. Yet another challenge can be 
multi-tenancy. The volume of customers introduces a new 
dimension of complexity and scalability. A common policy 
management service needs to manage customer specific and 
data specific policies. Multi-tenancy introduces issues related 
to concurrent data access, combinatorial relationship explosion 
(e.g., cross-organizational access rights delegation [24]), 
customer-specific data policies, and customer data 
compartmentalization [7]. Because data retention policies are 
rather simple in relationship expression and policy evaluation, 
this paper will not focus on how these additional challenges are 
addressed in managing data retention policies.   



In our data retention management service, each file can be 
associated with a retention policy. An inter-data-center secure 
and reliable encryption key store holds encryption keys for 
each file under retention management. The encryption key 
controls the lifetime of the file. By removing the encryption 
key, all the file copies in online and offline environments 
become unrecoverable. Our policy store, encryption key store, 
and other data management metadata stores, are implemented 
with a scalable structured data store [6, 10, 15]. To achieve 
scalable management, the data management tasks, which 
include encryption and decryption, key distribution and policy 
enforcement, are performed concurrently in a machine cluster 
with the MapReduce framework [9, 14]. The prototyped cloud 
service has been deployed on a 16-machine Linux cluster with 
128 cores (8 cores per machine), which supports 56 MB/sec for 
encryption, 76 MB/sec for decryption, 31,000 retention 
policies/sec read and 15,000 retention policies/sec write. 

With respect to the two key challenges identified earlier, 
our data retention management service demonstrates that:  

 Policy management at scale requires metadata 
management at scale. We have developed a highly 
available and highly secure cross-data-center encryption 
key store as a part of the policy management service to 
specifically manage encryption keys, a particular type of 
metadata essential to control data lifetime and data access.  

 During policy enforcement and management task 
execution, failures can happen in a machine cluster and 
leave behind side-effects to data objects and policy 
enforcement states. Side-effects cannot be handled 
automatically by built-in recovery capabilities of Hadoop 
MapReduce. We developed a state-aware retry execution 
scheme to implement the Map and Reduce functions of 
each policy management task. This recovery scheme 
allows execution to continue in the next round from the 
recorded persistent states and does not rely on 
transactional support that can significantly reduce overall 
system scalability. 

The rest of the paper is structured as follows. Section 2 
introduces the data retention management system. Section 3 
shows the architecture that exposes the management system as 
a service, and how Hadoop and MapReduce are used to 
perform management tasks at scale. Section 4 details our 
design of the highly secure and available encryption key store. 
Section 5 shows how various failure scenarios are handled. 
Section 6 reports our service prototype’s running environment 
and performance measurements. We contrast our policy 
management service with related systems in Section 7 and 
conclude the paper in Section 8. 

II. DATA RETENTION MANAGEMENT  

Corporate data retention policies demand that enterprise 
data should remain accessible up to a certain time, and 
afterwards be deleted permanently with no recoverable trace. 
Timely removal not only allows the enterprise to manage 
sensitive data in compliance with regulatory policies, but also 
reduces storage costs of ever-growing data [7].  

Many solutions exist for record retention [5, 17, 20, 4], but 
none has been demonstrated at the scale we envision. 
Furthermore, two key concerns have not been addressed in 
existing solutions. First, current solutions frequently ignore off-
site data on removable media such as tapes. Tracking and 
managing such off-site information assets is challenging, and 
often becomes the root cause of data breaches to sensitive data. 
Secondly, ensuring deletion of data becomes hard once data is 
replicated to multiple storage tiers or sites to achieve high 
availability [4, 5]. Often there is no central point of control that 
can guarantee deletion of all copies at the proper time. 

Figure 1 shows a file-based data retention management 
system that addresses the above two concerns. We encrypt data 
at rest, and use the encryption key to control the lifetime of the 
file object, as introduced in the revocable backup system [3]. 
By centrally managing encryption keys, the service can 
effectively manage both on-line and off-line files. Once an 
encryption key is destroyed, all on-line and off-line copies 
become instantaneously unrecoverable. This mechanism both 
protects data against breaches, and provides an effective way of 
making off-site data unusable.  

Data sources synchronize their data with the Online File 
System. Each file is encrypted by the Encryption Engine with a 
unique symmetric key for the life of the file. The encrypted 
files are stored online for fast retrieval. They can be further 
archived to offline media if their access becomes infrequent, 
but due to retention policies, they still need to be preserved for 
a long time (e.g., medical images often must be kept for more 
than ten years). The Key Management System provides a highly 
secure and available key store to hold the encryption keys. The 
key store itself is never backed up to offline media to ensure 
that keys that are destroyed are unrecoverable. The Policy 
Enforcer periodically scans the Policy Repository to determine 
keys with expired retention times, and deletes them from the 
key store. Other enforcement actions can include the removal 
of the encrypted file from online media to reclaim the storage, 
and notification of the deletion action to the file owner. Since 
all files are encrypted, the Online File System can be 
outsourced to a less secure environment such as Amazon’s 
Simple Storage Service (S3) [1]. 

 
Figure 1. Data retention policy management for file-based data. 



A scalable storage service such as S3 [1] has file related 
access control policies stored as part of the file metadata and 
enforced at data access points (e.g., service front-end). Data 
retention is enforced when retention time expires and a 
designated policy enforcer has to be responsible for such event 
detection and policy enforcement, instead of relying on data 
access points that are only activated to respond to data access 
requests. The scalable encryption engine and the scalable 
encryption key store shown in Figure 1 provide special 
functionalities for data retention, but in general are not required 
by a scalable storage system which is focused more on 
performance, reliability and availability [1, 4, 5].  

A data retention policy can be specified in one of two 
formats: an absolute future time instant when the retention time 
expires, or as the time for data retention after the last data 
access or update. Figure 2 shows an example of expressing the 
data retention policy as an obligation policy in Ponder [8].  In 
this example, the retention policy is applied to a domain which 
represents all the files being managed. Due to transient failures, 
multiple retries may be required and the maximum number of 
retries (5, for example), needs to be set.  

III.  SERVICE ARCHITECTURE FOR DATA RETENTION 

We developed our retention service using Hadoop, an open-
source software platform to support reliable, scalable and 
distributed processing. Hadoop has a reliable and distributed 
file system called HDFS that follows Google File System [13]. 
Hadoop supports MapReduce [9] to perform scalable data 
processing on a machine cluster. Users define data processing 
logic in the Map and Reduce functions and the input data and 
output data are both stored in HDFS.  HBase [15] is a scalable 
structured data store that follows Google’s BigTable [6].  Other 
scalable file or block based stores [1] and structured data stores 
[6, 10] can provide functionality and scalability similar to 
HDFS and HBase. Our service architecture chose HDFS and 
HBase mostly due to better integration among HDFS, 
MapReduce and HBase. In particular, HBase uses HDFS as its 
persistent store and MapReduce can directly accept HBase 
tables as input data sources. 

Figure 3 shows the overall architecture of our policy 
management service. The service architecture is horizontally 
scalable.  We use HDFS for the persistent file store and HBase 
for the backend structured data store to store data retention 
policies, encryption keys and status tracking information. We 
use MapReduce for the scalable policy management engine. 
The backend service architecture is exposed as a Web Service 
with four access APIs: (1) file access (upload, download, 
update); (2) policy access (create, update, read); (3) encryption 

key management across data centers including key distribution 
and key reconstruction; and (4) status queries on management 
tasks such as file upload and download, key distribution and 
reconstruction for long running, batch and asynchronous 
processing tasks. Correspondingly, the processing engine 
consists of four task controllers for (1) file upload and 
encryption, (2) file decryption and download, (3) retention 
policy enforcement and (4) key management. Each controller 
uses MapReduce to schedule and distribute computation to 
cluster machines. We describe the file upload and encryption 
process next. Other controllers implement similar workflows. 

A. File Encryption Controller 

The implementation of the File Encryption Controller is 
shown in Figure 4. After the file is uploaded and stored in 
HDFS, the encryption requests are en-queued. The queue is 
periodically scanned to form a to-be-encrypted-file list, which 
is also stored as an HDFS file, and serves as the input to the 
MapReduce job. The Hadoop runtime distributes the 
encryption tasks to available machines through MapReduce. 
Each task receives a subset of to-be-encrypted files (the 
MapReduce job input) as the commands to perform file 
encryption. For each file to be encrypted, the task downloads 
an uploaded file (in plain-text) from the HDFS to the local 
machine, generates a key to encrypt it, and then deposits the 
encrypted file back to HDFS. The encryption key is stored in 
the encryption key store. The file encryption status is updated 
to allow encryption to be repeated in case of failures. More 

type oblig+ retention (target t) { 
   do t.deleteKey()->t.reclaimSpace()->t.notify(); 
               
   on Time.before ( 
         t.policy().expirationTime(), Time.now()); 
   when t.retryEnforcementTimes() < 5; 
}  
 
inst oblig+ retentionPolicy1= retention (/files);  

Figure 2. Data retention policy expressed in Ponder. 

 
Figure 4. The distributed workflow based on Hadoop MapReduce for file 

encryption controller. 
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Figure 3.  Data-retention service implemented with Hadoop and HBase. 



detailed discussion on failure recovery is provided in Section 5. 

B. Concurrent and Batch Oriented Controller Execution 

The task controllers submit their MapReduce jobs to the 
shared machine cluster concurrently, and are scheduled using 
the fair scheduler in Hadoop [14]. Each task controller is 
assigned its own unique pool. The weight assigned to each pool 
depends on how time sensitive the management task is. The 
fair scheduler relies on the weights to allocate MapReduce 
tasks and ensures that resources are distributed fairly between 
the task controllers. 

MapReduce is inherently batch oriented, and therefore the 
service access APIs exposed by the architecture in Figure 3 are 
also batch oriented. Asynchronous processing is not an issue 
for archival solutions. To support real-time synchronous access 
for interactive applications such as browsing medical records, 
the Online File System in Figure 1 can cache original files or 
recently decrypted files. A slight modification of the service 
architecture is needed to support on-demand file retrieval with 
synchronous (rather than batch-oriented) file decryption.  

IV. ENCRYPTION KEY STORE  

The encryption key store is the most important component 
in our management service. This section presents the design of 
a highly secure and highly available encryption key store. 

Having an encryption key store only hosted in the service 
data center where the retention management service is hosted, 
introduces a single point of failure and vulnerability. Instead, in 
our management service, encryption keys are partitioned into 
key fragments through polynomial secret sharing [23], and 
distributed to different key fragment stores at different data 
centers called key distribution data centers. No master keys are 
required to secure the key store. 

In the encryption key store, each managed object is denoted 
by a unique Uniform Resource Identifier (URI). The key store 
is a key-value store that consists of a tuple with the object URI 
as the key, and the encryption key EK as the value, denoted as 
<URI, EK>. The encryption key EKi for a file named by URIi 
is partitioned into n key fragments, i.e., EKi,1, EKi,2, …, EKi,n. 
Each key fragment is sent to one of n key distribution data 
centers, along with URIi. That is, the j-th key distribution data 
center hosts the encryption key fragment store for the 
encryption key EKi, denoted as <URIi, EKi,j>. The service data 
center can reconstruct the encryption key EKi, based on a 
sufficiently large subset {EKi,1, … EKi,k } returned from k of 
the n key distribution data centers, where k < n. At the j-th key 
distribution data center, each pair of <URIi, EKi,j> is stored in a 
scalable structured data store. 

The encryption key store that employs polynomial secret 
sharing is both highly available and highly secure. Only k of n 
key fragments are necessary to reconstruct the key, even if 
some distribution data centers are down. An intruder will need 
access to at least k independent data centers to collect the 
necessary key fragments to reconstruct the key. On the other 
hand, if the intruder deliberately destroys some of the key 
fragments, a sufficient number of the key fragments from the 

non-compromised key distribution data centers allows 
successful key reconstruction.  

An access management protocol is defined for the service 
data center to distribute (and retrieve) key fragments from the 
key distribution data centers. Standard web-based protocols 
such as those used in Amazon S3 [1] can be used to 
communicate between the service data center and the key 
distribution data centers. The request from the service data 
center to put (and retrieve) key fragments is signed with the 
secret access key granted to the service data center by the key 
distribution data center. A valid digital signature allows the key 
distribution data center to prove key ownership and thus grants 
key-related access to the service data center. Similarly, a public 
key based protocol can be used to sign and verify the request. 

A. Secure Key Distribution 

Secure key distribution between the service data center and 
key distribution data centers is shown in Figure 5. Message 
exchange between the service data center and the key 
distribution data centers can be achieved via a scalable message 
queue mechanism, or a remote procedure call (RPC) based 
protocol such as web services.  

In the service data center, once user data is encrypted, the 
encryption key is temporarily stored in the Transient 
Encryption Key Store. The Cross Data-Center Key Distributor 
takes the key that is newly inserted in this transient store and 
partitions it into key fragments. At the j-th key distribution data 
center, the Cross Data-Center Key Distributer receives the key 
distribution message and stores the fragment EKi,j in its key 
fragment store as <URIi, EKi,j> for the data object with URIi 
Once the key distribution to all data centers is successfully 
acknowledged, EKi is removed from the Transient Encryption 
Key Store and subsequently, the user object (in plain-text) is 
deleted and only the encrypted object remains. 

Due to machine or network failure, the message sent to the 
key distribution data centers may not always be acknowledged 
promptly, and key distribution messages may need to be retried 
until positive acknowledgements are received. Alternatively, it 
is possible to proceed with fewer fragments as along as at least 
enough acknowledgements have been received to enable the 
service data center to re-construct the key from the fragments 
that have been acknowledged. A batch processing task is 
invoked by the Cross Data-Center Key Distributor at the 

 
 

Figure 5. Encryption key  partitioning and key fragment distribution. 



service data center to scan the Key Distribution Tracker to 
perform key fragment distribution, determine whether the 
encryption keys have been successfully distributed, and retry 
distributions of unsuccessful key fragments. Such a key 
distribution batch processing task can be implemented with 
MapReduce and incorporated into the key management task 
controller shown in Figure 3. 

B. Key Reconstruction  

The Cross Data Center Key Reconstructor in the service 
data center issues the key reconstruction message to key 
distribution data centers that hold relevant key fragments. Once 
a sufficient number of key distribution data centers respond 
with the stored encryption key fragments, the service data 
center can reconstruct the encryption key. Because the 
communication delay between two data centers within the 
same geographical zone is small, to support fast key 
reconstruction, the key distribution data centers located within 
the same geographic zone as the service data center can be 
assigned to hold a sufficient number of key fragments to 
reconstruct an encryption key under normal conditions. 
However, to protect against natural disasters, a sufficient 
number of key fragments are also required to be distributed to 
key distribution data centers in other geographical regions, to 
facilitate key reconstruction only from the fragments held by 
cross-region key distribution data centers. 

C. Key Deletion 

The service data center receives a key deletion request 
either because the corresponding data’s retention time expires, 
or because the data owner explicitly requests permanent data 
destruction. The request is stored in the Cross-Data-Center Key 
Destructor in the service data center and the request is 
returned. The key deletion request is then broadcast to all key 
distribution data centers to remove the key fragments that they 
hold. A batch processing task can be implemented with 
MapReduce and incorporated into the key management task 
controller to handle key destruction. When transient failures 
occur to the key distribution data centers, the key destructor 
will retry the unsuccessful key fragment deletions until a 
sufficient number of the fragments are successfully deleted.  

V. FAILURE RECOVERY  

The traditional data analyses conducted on a Hadoop 
cluster can tolerate both machine and task execution failures by 
restarting the Map or Reduce tasks on a different machine with 
the same file input. The output file is the only effect produced 
by the task execution. Such repetitive execution is 
straightforward because the analysis-oriented computing in 
Map or Reduce task is idempotent. That is, unchanged input 
always produces the same output. 

In our policy management service, the situation is different. 
A Map or Reduce task associated with a policy management 
controller consists of multiple execution steps, each of which 
can touch multiple persistent stores and leave persistent states 
behind. The persistent states resulting from incomplete Map or 
Reduce tasks are side-effects. Correct task execution depends 
on persistent states recorded by the intermediate steps from the 

previously failed task execution. Failures that happen to one of 
the Map or Reduce execution steps can lead to unsuccessful file 
encryption.  Failures can include (1) communication failure to 
backend structured data stores, (2) failure to local file systems; 
(3) communication failure to HDFS; and (4) crash of machines 
and processes.  

In this section, we examine how our management task 
controllers can be designed to tolerate failures within 
MapReduce by using the File Encryption Controller shown in 
Figure 4 as an illustration example.   

A. File Encryption Map and Reduce Execution Steps 

In the distributed workflow shown in Figure 4, a file 
denoted as F is initially stored in the HDFS after being 
uploaded to our management service. F-HDFS denotes the file 
stored in HDFS and F-Local denotes the file stored on a local 
task execution machine. F-Encrypted-Local denotes the 
encrypted file stored on a local machine and F-Encrypted-
HDFS denotes the encrypted file stored in the HDFS. The Map 
Task is implemented in the following steps:  

(M1) Download F-HDFS to the scheduled task execution 
machine’s local temp directory to become F-Local. 

(M2)  Encrypt F-Local with encryption key KeyF to produce F-
Encrypted-Local; upload F-Encrypted-Local to HDFS as F-
Encrypted-HDFS. 

(M3) Compute Hash HashF from F-Local. 

(M4) Remove F-Local and F-Encrypted-Local. 

(M5) Publish KeyF and HashF to Encryption Key Store. 

(M6) Perform integrity checking on F.   

(M7) If the integrity of F is preserved, assign all F-HDFS’s file 
attributes to F-Encrypted-HDFS, then remove F-HDFS.  

(M8) Update Status Checking Table with F’s encryption status; 

(M9) Update Encryption Pending Queue with F’s encryption 
status. 

The Map function does not produce output to the HDFS. The 
Reduce function does not handle management actions at all and 
thus is implemented as an identity function [14], which simply 
copies the supplied input as the processing output. The integrity 
checking routine called at Step M6 involves the steps of:  

(M6.1) Download F-Encrypted-HDFS to a local file F-
Encrypted-Local. 

(M6.2) Retrieve KeyF and HashF from Encryption Key Store.  

(M6.3) Decrypt F-Encrypted-Local to F-Decrypted-Local. 

(M6.4) Compute Hash (F-Decrypted-Local) 

(M6.5) Remove F-Encrypted-Local and F-Decrypted-Local. 

(M6.6) Return comparison result of Hash (F-Decrypted-Local) 
with HashF . 

The integrity checking is designed to protect against data 
corruption due to transient errors. The original file can be 
safely removed from the persistent store, only if the stored 



encrypted file F-Encrypted-HDFS can be successfully 
decrypted with data integrity guaranteed. This checking process 
slows down the overall file encryption, as it now involves both 
encryption and decryption.  

B. Failure Recovery for File Encryption  

The baseline mechanism to address failures is through retry 
of file encryption in the distributed workflow shown in Figure 
4 that centers on the Encryption Pending Queue. If the 
encryption fails and no successful encryption status is updated, 
at the next scanning of the encryption pending queue, the file 
without successful encryption status is put back into the to-be-
encrypted file. File encryption is then repeated at one of the 
cluster machines through MapReduce, until the maximum 
number of retries is exceeded and the failure status is recorded 
to the status tracking table. 

Our failure recovery mechanism also takes advantage of the 
two features provided by the structured data store such as 
HBase. First, any data update to a given row is atomic and 
second, data updates to the same row are idempotent, because 
inherently the data store is a key-value store with a unique key 
for each row. Furthermore, a structured data store such as 
HBase is built to be highly available, and the store can self-heal 
should an internal failure occur. The internal failure states are 
invisible externally to the client. 

We next focus only on communication failure to backend 
structured data stores to illustrate our failure recovery approach 
to deal with MapReduce task execution. Other failure situations 
can be handled similarly.  As shown in Section 5.A, only the 
Map function is required for encryption related actions.   

A Map task execution on a particular cluster machine can 
encounter a communication failure between the front-end 
servers and the back end structured data stores. A transient 
communication failure can be resolved by re-trying the data 
access request and eventually reaching the backend server [25]. 
Due to atomic and idempotent row-based update, updating a 
data store multiple times is not a problem. A permanent failure 
(e.g., due to the broken communication link) can be detected by 
the Hadoop job tracker through the established heartbeat 
protocol. As a result, the Map or Reduce task that has not 
finished will be re-launched on a different machine that is 
reachable by the Hadoop job tracker. 

When the Map task is re-launched, the same file input that 
records the to-be-encrypted file list is re-submitted. Some of 
the listed files may have already been successfully encrypted. 
We need to determine whether a file has been successfully 
encrypted by checking both the encryption status tracking table 
and the encryption key table. Should either one of the two 
tables have not reported consistent positive confirmations, the 
file’s encryption will need to re-start from Step M1. However, 
it is possible that the previous failure occurred during the 
execution of Step M7. If the query to HDFS shows that F-
HDFS is removed and only F-Encrypted-HDFS is left, the Map 
task simply proceeds to its output step with a successful 
encryption status. Otherwise, the Map task starts from Step M1 
and repeats the entire encryption with F-HDFS. A new 
encryption key will be created and be associated with F-HDFS.  

Overall, for the Map task to address communication failure 
(and in fact, to also address the other failures identified earlier 
in this section), we can depend on the persistent states recorded 
at (a) the encryption status tracking table and the encryption 
key table (b) the HDFS regarding F-HDFS and F-Encrypted-
HDFS, to determine which files need to be encrypted, and for 
which execution steps needs to be re-executed for individual 
file’s encryption, in case the Map task is re-executed.  

In general, in our policy management tasks, we can define 
all management functionality only in the Map functions.  For 
each Map function M that supports an operation on an object 
(e.g., a file) O, we define an initial state (e.g., F-HDFS for file 
encryption), and a set of final states (e.g., updates to the status 
tracking table and encryption pending queue) for O. If 
operation to O succeeds, a marker action clears the initial state, 
before updating the final states. The marker action (e.g., to 
remove F-HDFS) needs to be atomic, whereas the update 
actions to all the final states do not need to be transactional. 
The implementation of M incorporates the following checks. If 
all final states of O are reached and consistent, M does not need 
to be repeated. Otherwise, M checks whether the initial state is 
cleared. If the initial state is cleared, M proceeds to the steps 
that only update the final states that represent successful 
operation on O, without performing object operation on O. The 
Map function M starts from the beginning if the initial state is 
not cleared. 

The side-effects left from an incomplete Map or Reduce 
task’s execution can include local transient files, e.g., F-
Encrypted-Local and F-Decrypted-Local. Monitors installed on 
task execution machines can clean up such transient files in the 
background.  

VI. PERFORMANCE MEASUREMENTS 

We have prototyped the data retention management service 
shown in Figure 3 in a Linux cluster with 16 machines that are 
connected with a 10 Gb/sec network.  Each machine has 8 
cores and 32 GB RAM and runs with 64-bit Redhat Enterprise 
Linux. Hadoop 0.20.2 and HBase 0.20.3 are used in the 
prototype. The key management controller currently only 
handles key distribution within the same cluster, with the secret 
sharing scheme of <n=7, k=3>. That is, a key is partitioned into 
7 fragments and 3 fragments are required for reconstruction. 
One cluster machine is configured as the master node of both 
Hadoop and HBase. The other 15 machines are configured to 
be the slave machine nodes. Each slave machine hosts a 
Hadoop data node and an HBase region server node. Each 
cluster machine is installed with Apache Tomcat 6.0 and the 
Axis web service framework as a web service front-end. 

Each Hadoop slave machine also serves as a MapReduce 
task tracker node. The configuration is that at maximum, each 
task tracker node can support 6 concurrent tasks for encryption 
or decryption. That is, we allocated 6 out of 8 cores (i.e., 75% 
of computational capacity) per machine for encryption and 
decryption processing. As a result, there are a total of 90 cores 
within the cluster for file encryption and decryption.  

Retention Policies Read, Write, Scan. We focused our 
performance measurement only on the backend service. The 
test clients run on the same machine cluster. Our first 



measurement is the read/write throughput of data retention 
policies. The URI of each file is randomly generated. We pre-
populated the HBase table with over 20 million policy objects, 
with each region server holding at least 4 regions, to ensure 
good load balancing among all the HBase region servers. In our 
cluster, we obtained 31,000 reads/sec and 15,000 writes/sec. 
The read performance is better than the write performance, as 
most of the reads are through the in-memory caches on the 
region servers [6, 15]. A 4GB heap size is allocated to each of 
the 15 HBase region servers. We estimate that the entire cluster 
should be able to hold 500 million policy objects in the 
combined in-memory caches.  

We built a MapReduce-based scanner to scan the policy 
repository with about 125 million objects. The total scan took 
1038 seconds. Based on this processing speed, the cluster will 
need 2.3 hours to scan 1 billion policy objects to determine 
which data objects have expired retention times.  

File Encryption/Decryption. The second measurement 
that we did is on throughput of encryption and decryption. Our 
implementation used AES 256 encryption provided by the 
standard Sun JDK 1.6 distribution’s crypto library. In our 
cluster, we achieved encryption throughput of 56 MB/sec and 
decryption throughput of 76 MB/sec. The measurement was 
taken after we uploaded 18,000 files, with each file having a 
fixed size of 2 MB. Thus we encrypted 36 GB in total. Our 
MapReduce Input Format [14] is designed so that the total 
encryption (or decryption) load contributed from all the 18,000 
files is evenly distributed to each cluster machine and each 
machine has its maximum assigned number of cores (i.e., 6 
cores) launched for encryption (or decryption). The encryption 
is slower than the decryption as our file encryption task 
involves file decryption to ensure data integrity. 

To examine how encryption/decryption engine handles 
different file sizes, the measurement was repeated with a 
different fixed file size Sd (across all the uploaded files), that is, 
0.25MB, 0.5 MB, 1 MB, 4 MB, in addition to 2 MB, while 
keeping the same total number of files, N (N=18,000), loaded 
in the cluster. To simulate heavy traffic from service front ends, 
the files were uploaded simultaneously by 5 concurrent test 
clients in each of the 16 cluster machines (i.e., each test client 
had 225 files to upload). Table 1 shows the total time spent on 
encryption (denoted as Te) and decryption (denoted as Td), and 
the measured throughput for encryption (Ce) and for decryption 
(Cd), given the input file size Sd. Ce is defined as the total file 
content to be uploaded (denoted as L, L=N×Sd), over the 
encryption time measured (Te). Cd is defined similarly.  

Table 1 shows that when the input file size is small (less 
than 1 MB), the encryption or decryption throughput is much 
smaller than the one measured from input file sizes larger than 

1 MB, indicating that our encryption/decryption engine is not 
efficient for files with small file sizes. As shown in Section 
5.A, an encryption task execution consists of the steps that 
carry out crypto processing (i.e., encryption and hashing), and 
the steps that involve network file transfer to/from HDFS. 
Network file transfer is the overhead in throughput 
measurement and HDFS is designed for large files [13, 14]. 
When the files are small, such transfer overhead is significant, 
compared to the time for file encryption/decryption related 
operations. Table 1 also shows that after the file size reaches 1 
MB, the encryption/decryption throughput becomes much less 
sensitive to the file size.  

The performance measurement reported here is focused on 
the retention policy read/write throughput, retention policy 
enforcement, and data encryption/decryption throughput. The 
system availability related measurement requires further 
development and is not within the scope of this paper.  

VII. RELATED WORK 

Scalable Policy Management. In networked services and 
systems management, such as [24] that manages and enforces 
policies in Ponder [8], policies are distributed to policy 
management agents residing in networked computers and 
devices. Scalable policy management is achieved by having 
these distributed agents enforce the policies locally at each 
computer or device. In contrast, our management service is 
designed to manage data stored in a cloud environment. 
Specific to data retention policy, each physical machine does 
not assume the sole responsibility to control the lifetime of the 
data stored in such a distributed storage environment, and each 
machine can fail independently. Therefore the distributed 
management agent based approach is not viable in our 
environment.  

A policy-based lifecycle management framework for the 
SAN-based file system is reported in [26], in which file-based 
lifecycle related policies such as data migration are enforced by 
the file-system’s metadata server cluster. In our solution, the 
machine cluster in the policy management service serves the 
same role as the metadata server cluster. The key difference is 
that we use a common Hadoop and MapReduce framework to 
perform parallel policy enforcement actions with failure 
recovery being considered.  

Enterprise-Level Compliance Solutions. HP TRIM [17] 
and Oracle’s Universal Records Management [20] offer 
information lifecycle management (ILM) capabilities to help 
enterprises be regulatory compliant. They target single 
enterprises and offer no effective control over backup data, 
especially offline removable media. The archival solutions on 
fixed-content data (e.g., medical images) with long retention 
period (e.g., ten years and beyond) support data migration 
through a multi-tiered architecture (e.g., SAN, SCSI, and Tape) 
[5]. Overall, such solutions do not address effective deletion 
across multiple storage tiers when data retention period expires.  

Compliance-Aware Cloud Services. Amazon.com Web 
Service (AWS) has little built-in data protection other than 
recommending that sensitive data should be encrypted. 
Applications that are developed with AWS, need to manage 
sensitive data within in-house environments and store only 

Table 1. Encryption/Decryption throughput with respect to input file size. 

 Te(sec) Td(sec) Ce(MB/sec) Cd(MB/sec) 
Sd=0.25MB 203 103 22.2 43.7
Sd=0.5MB 223 149 40.4 60.4
Sd=1MB 345 233 52.2 77.2
Sd=2MB 639 473 56.3 76.1
Sd=4MB 1274 883 56.5 81.5



encrypted data in AWS. Such applications are confronted with 
the challenge of building a scalable key management system. 
Salesforce.com supports disaster-recovery capabilities [22] 
mandated by regulations such as Sarbanes-Oxley and HIPAA, 
by backing up customer data to tapes in a separate data center, 
but not transporting tapes offsite. Our encryption-key based 
solution can help manage the data being backed up effectively.   

Key Management. Vanish [12] relies on public, globally 
distributed hash tables (DHTs) to store the key fragments into 
DHTs, with the key fragments being constructed from the 
secret key sharing mechanism [23]. Our encryption key store is 
designed to be part of the management service that needs to 
regulatory compliant. All the key distribution data centers are 
under our control, and key operations are monitored. In 
contrast, the public DHTs that Vanish employs involve random 
machines from the Internet that join and leave irregularly. 
Moreover, Vanish relies on the un-guaranteed short-lived 
nature of the encryption key stored in public DHTs, and key 
operations cannot be monitored.  

The Revocable Backup system [3] encrypts a file with a 
secret key. A master key encrypts the key file (in which all 
keys are stored) before the key file is backed up. File 
revocation is guaranteed by removing its encryption key and 
forgetting the master key of the key file from the previous 
backup run. Our system design adopts the same concept of 
using an encryption key to control the lifetime of a file, but 
focuses on managing the large collection of file objects in a 
centralized and scalable manner. Furthermore, our system does 
not need a master key to protect the encryption key store, and 
the key store is designed to be highly available and highly 
secure across different data centers, without the need to be 
backed up.   

VIII. CONCLUSIONS 

We have developed a data-retention policy management 
service, the first step towards building a scalable policy-aware 
policy management service that ultimately aims to support 1011 
data objects and conform to compliance and regulatory 
policies. The service architecture is horizontally scalable. The 
data-retention service relies on a reliable and secure encryption 
key store that spans multiple data centers to store the 
encryption keys of data objects under management. The current 
system relies on Hadoop and MapReduce that are commonly 
available in a cloud-based environment to perform batch 
processing over a machine cluster for management tasks. We 
developed a state-aware failure recovery mechanism based on 
the recovery support from MapReduce to implement Map and 
Reduce functions for our policy management tasks. We 
prototyped the service and demonstrated it on a 16-node 
machine cluster. This cluster currently supports 56 MB/sec for 
encryption, 76 MB/sec for decryption, 31,000 retention 
policies/sec read and 15,000 retention policies/sec write. 

We are currently extending the policy management service 
framework beyond data retention, to incorporate access control 
and privacy protection, and applying the framework to different 
application domains, such as healthcare, that involve sensitive 
data management to meet regulatory compliance requirements. 
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