

Keyword(s):

Abstract:

Managing Data Retention Policies at Scale

Jun Li, Sharad Singhal, Ram Swaminathan, Alan H. Karp

HP Laboratories
HPL-2010-203

large-scale policy management; compliance and regulatory; data retention; encryption key store; cloud
service

Compliance with regulatory policies on data remains a key hurdle to cloud computing. Policies such as EU
privacy, HIPAA, and PCI-DSS place requirements on data availability, integrity, migration, retention, and
access, among many others. This paper proposes a policy management service that offers scalable
management of data retention policies attached to data objects stored in a cloud environment. The
management service includes a highly available and secure encryption key store to manage the encryption
keys of data objects. By deleting the encryption key at a specified retention time associated with the data
object, we effectively delete the data object and its copies stored in online and offline environments. To
achieve scalability, our service uses Hadoop MapReduce to perform parallel management tasks, such as
data encryption and decryption, key distribution and retention policy enforcement. A prototype deployed in
a 16-machine Linux cluster currently supports 56 MB/sec for encryption, 76 MB/sec for decryption, 31,
000 retention policies/sec read and 15,000 retention policies/sec write.

External Posting Date: December 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: December 21, 2010 [Fulltext]
To be published in IFIP/IEEE International Symposium on Integrated Network Management 2011, Dublin, Ireland, May 23-27, 2011.

Copyright IFIP/IEEE International Symposium on Integrated Network Management 2011.

Managing Data Retention Policies at Scale

Jun Li, Sharad Singhal, Ram Swaminathan, and Alan H. Karp
Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94304, USA
{jun.li, sharad.singhal, ram.swaminathan, alan.karp}@hp.com

Abstract— Compliance with regulatory policies on data remains a
key hurdle to cloud computing. Policies such as EU privacy,
HIPAA, and PCI-DSS place requirements on data availability,
integrity, migration, retention, and access, among many others.
This paper proposes a policy management service that offers
scalable management of data retention policies attached to data
objects stored in a cloud environment. The management service
includes a highly available and secure encryption key store to
manage the encryption keys of data objects. By deleting the
encryption key at a specified retention time associated with the
data object, we effectively delete the data object and its copies
stored in online and offline environments. To achieve scalability,
our service uses Hadoop MapReduce to perform parallel
management tasks, such as data encryption and decryption, key
distribution and retention policy enforcement. A prototype
deployed in a 16-machine Linux cluster currently supports 56
MB/sec for encryption, 76 MB/sec for decryption, 31,000
retention policies/sec read and 15,000 retention policies/sec write.

Keywords-large-scale policy management; compliance and
regulatory; data retention; encryption key store; cloud service

I. INTRODUCTION

Cloud computing is a promising paradigm to offer IT cost
reductions and business agility improvements. However,
compliance with regulatory policies still remains a key hurdle
to wide adoption of cloud computing [27]. The service
environment has to manage data owned by the customers
according to mutually agreed data management policies in
order to ensure compliance with regulatory policies such as the
Data Protection Directive under EU privacy law [11], HIPAA
[16], and PCI-DSS [21]. These regulatory policies are often
translated to enforceable or auditable actions, such as data
availability, data integrity, data migration, data retention, and
data access.

Although these compliance and regulatory requirements are
not new and have been addressed in traditional enterprise
computing environments, addressing them in the context of
cloud services introduces new challenges, one of which is
scalable management and enforcement of policies. Imagine a
backup service that offers data retention to 300 enterprises,
with each enterprise having 104 users, and each user owning
105 files. Such a service must be capable of managing 3x1011
files. If each file is encrypted with a 32-byte key, the key store
itself will require over 10 TB. A service capable of managing
medical records for the entire U.S. population of 300 million
people, with each person owning 103 records requires the same
scale.

Our objective is to build a scalable policy management
service with the ultimate goal of managing 1011 data objects.
This paper details the design and prototype implementation of a
policy management service that is primarily focused on data
retention. Data retention belongs to a class of data policies
called action policies that specify what to do under the current
situation [18]. We believe that other policies such as data
backup, data archiving, and data migration [4, 5], can be
expressed in action policies and enforced similarly.

Managing data policies at scale poses various challenges,
including the following two that we believe are key challenges
to managing data retention policies:

 Scalable Policy Enforcement: A scalable engine that
supports policy enforcement in real time for data access,
and updates at the rate data changes is required. State
information [24] and contextual information associated
with data objects need to be tracked for policy
enforcement. Enforcement needs to be carried out
reliably as machine failure in large systems is common.

 High Availability and Security of Management
Metadata: Policy management related metadata, which
can include data management artifacts like encryption
keys, audit logs [2], state and context information for
policy decisions, should be treated as being as critical as
the data being managed. High security and high
availability of such management related metadata are
actually required by compliance regulatory policies
such as HIPAA and PCI-DSS.

Additional challenges include, for example, how to manage
scalable relationships defined between data policies, between
data objects, and between data policies and data objects.
Runtime correlation and decision making require complex
data/policy relationships be captured thoroughly, structured
efficiently, and evaluated quickly. Yet another challenge can be
multi-tenancy. The volume of customers introduces a new
dimension of complexity and scalability. A common policy
management service needs to manage customer specific and
data specific policies. Multi-tenancy introduces issues related
to concurrent data access, combinatorial relationship explosion
(e.g., cross-organizational access rights delegation [24]),
customer-specific data policies, and customer data
compartmentalization [7]. Because data retention policies are
rather simple in relationship expression and policy evaluation,
this paper will not focus on how these additional challenges are
addressed in managing data retention policies.

In our data retention management service, each file can be
associated with a retention policy. An inter-data-center secure
and reliable encryption key store holds encryption keys for
each file under retention management. The encryption key
controls the lifetime of the file. By removing the encryption
key, all the file copies in online and offline environments
become unrecoverable. Our policy store, encryption key store,
and other data management metadata stores, are implemented
with a scalable structured data store [6, 10, 15]. To achieve
scalable management, the data management tasks, which
include encryption and decryption, key distribution and policy
enforcement, are performed concurrently in a machine cluster
with the MapReduce framework [9, 14]. The prototyped cloud
service has been deployed on a 16-machine Linux cluster with
128 cores (8 cores per machine), which supports 56 MB/sec for
encryption, 76 MB/sec for decryption, 31,000 retention
policies/sec read and 15,000 retention policies/sec write.

With respect to the two key challenges identified earlier,
our data retention management service demonstrates that:

 Policy management at scale requires metadata
management at scale. We have developed a highly
available and highly secure cross-data-center encryption
key store as a part of the policy management service to
specifically manage encryption keys, a particular type of
metadata essential to control data lifetime and data access.

 During policy enforcement and management task
execution, failures can happen in a machine cluster and
leave behind side-effects to data objects and policy
enforcement states. Side-effects cannot be handled
automatically by built-in recovery capabilities of Hadoop
MapReduce. We developed a state-aware retry execution
scheme to implement the Map and Reduce functions of
each policy management task. This recovery scheme
allows execution to continue in the next round from the
recorded persistent states and does not rely on
transactional support that can significantly reduce overall
system scalability.

The rest of the paper is structured as follows. Section 2
introduces the data retention management system. Section 3
shows the architecture that exposes the management system as
a service, and how Hadoop and MapReduce are used to
perform management tasks at scale. Section 4 details our
design of the highly secure and available encryption key store.
Section 5 shows how various failure scenarios are handled.
Section 6 reports our service prototype’s running environment
and performance measurements. We contrast our policy
management service with related systems in Section 7 and
conclude the paper in Section 8.

II. DATA RETENTION MANAGEMENT

Corporate data retention policies demand that enterprise
data should remain accessible up to a certain time, and
afterwards be deleted permanently with no recoverable trace.
Timely removal not only allows the enterprise to manage
sensitive data in compliance with regulatory policies, but also
reduces storage costs of ever-growing data [7].

Many solutions exist for record retention [5, 17, 20, 4], but
none has been demonstrated at the scale we envision.
Furthermore, two key concerns have not been addressed in
existing solutions. First, current solutions frequently ignore off-
site data on removable media such as tapes. Tracking and
managing such off-site information assets is challenging, and
often becomes the root cause of data breaches to sensitive data.
Secondly, ensuring deletion of data becomes hard once data is
replicated to multiple storage tiers or sites to achieve high
availability [4, 5]. Often there is no central point of control that
can guarantee deletion of all copies at the proper time.

Figure 1 shows a file-based data retention management
system that addresses the above two concerns. We encrypt data
at rest, and use the encryption key to control the lifetime of the
file object, as introduced in the revocable backup system [3].
By centrally managing encryption keys, the service can
effectively manage both on-line and off-line files. Once an
encryption key is destroyed, all on-line and off-line copies
become instantaneously unrecoverable. This mechanism both
protects data against breaches, and provides an effective way of
making off-site data unusable.

Data sources synchronize their data with the Online File
System. Each file is encrypted by the Encryption Engine with a
unique symmetric key for the life of the file. The encrypted
files are stored online for fast retrieval. They can be further
archived to offline media if their access becomes infrequent,
but due to retention policies, they still need to be preserved for
a long time (e.g., medical images often must be kept for more
than ten years). The Key Management System provides a highly
secure and available key store to hold the encryption keys. The
key store itself is never backed up to offline media to ensure
that keys that are destroyed are unrecoverable. The Policy
Enforcer periodically scans the Policy Repository to determine
keys with expired retention times, and deletes them from the
key store. Other enforcement actions can include the removal
of the encrypted file from online media to reclaim the storage,
and notification of the deletion action to the file owner. Since
all files are encrypted, the Online File System can be
outsourced to a less secure environment such as Amazon’s
Simple Storage Service (S3) [1].

Figure 1. Data retention policy management for file-based data.

A scalable storage service such as S3 [1] has file related
access control policies stored as part of the file metadata and
enforced at data access points (e.g., service front-end). Data
retention is enforced when retention time expires and a
designated policy enforcer has to be responsible for such event
detection and policy enforcement, instead of relying on data
access points that are only activated to respond to data access
requests. The scalable encryption engine and the scalable
encryption key store shown in Figure 1 provide special
functionalities for data retention, but in general are not required
by a scalable storage system which is focused more on
performance, reliability and availability [1, 4, 5].

A data retention policy can be specified in one of two
formats: an absolute future time instant when the retention time
expires, or as the time for data retention after the last data
access or update. Figure 2 shows an example of expressing the
data retention policy as an obligation policy in Ponder [8]. In
this example, the retention policy is applied to a domain which
represents all the files being managed. Due to transient failures,
multiple retries may be required and the maximum number of
retries (5, for example), needs to be set.

III. SERVICE ARCHITECTURE FOR DATA RETENTION

We developed our retention service using Hadoop, an open-
source software platform to support reliable, scalable and
distributed processing. Hadoop has a reliable and distributed
file system called HDFS that follows Google File System [13].
Hadoop supports MapReduce [9] to perform scalable data
processing on a machine cluster. Users define data processing
logic in the Map and Reduce functions and the input data and
output data are both stored in HDFS. HBase [15] is a scalable
structured data store that follows Google’s BigTable [6]. Other
scalable file or block based stores [1] and structured data stores
[6, 10] can provide functionality and scalability similar to
HDFS and HBase. Our service architecture chose HDFS and
HBase mostly due to better integration among HDFS,
MapReduce and HBase. In particular, HBase uses HDFS as its
persistent store and MapReduce can directly accept HBase
tables as input data sources.

Figure 3 shows the overall architecture of our policy
management service. The service architecture is horizontally
scalable. We use HDFS for the persistent file store and HBase
for the backend structured data store to store data retention
policies, encryption keys and status tracking information. We
use MapReduce for the scalable policy management engine.
The backend service architecture is exposed as a Web Service
with four access APIs: (1) file access (upload, download,
update); (2) policy access (create, update, read); (3) encryption

key management across data centers including key distribution
and key reconstruction; and (4) status queries on management
tasks such as file upload and download, key distribution and
reconstruction for long running, batch and asynchronous
processing tasks. Correspondingly, the processing engine
consists of four task controllers for (1) file upload and
encryption, (2) file decryption and download, (3) retention
policy enforcement and (4) key management. Each controller
uses MapReduce to schedule and distribute computation to
cluster machines. We describe the file upload and encryption
process next. Other controllers implement similar workflows.

A. File Encryption Controller

The implementation of the File Encryption Controller is
shown in Figure 4. After the file is uploaded and stored in
HDFS, the encryption requests are en-queued. The queue is
periodically scanned to form a to-be-encrypted-file list, which
is also stored as an HDFS file, and serves as the input to the
MapReduce job. The Hadoop runtime distributes the
encryption tasks to available machines through MapReduce.
Each task receives a subset of to-be-encrypted files (the
MapReduce job input) as the commands to perform file
encryption. For each file to be encrypted, the task downloads
an uploaded file (in plain-text) from the HDFS to the local
machine, generates a key to encrypt it, and then deposits the
encrypted file back to HDFS. The encryption key is stored in
the encryption key store. The file encryption status is updated
to allow encryption to be repeated in case of failures. More

type oblig+ retention (target t) {
 do t.deleteKey()->t.reclaimSpace()->t.notify();

 on Time.before (
 t.policy().expirationTime(), Time.now());
 when t.retryEnforcementTimes() < 5;
}

inst oblig+ retentionPolicy1= retention (/files);

Figure 2. Data retention policy expressed in Ponder.

Figure 4. The distributed workflow based on Hadoop MapReduce for file

encryption controller.

Encryption
Key Store

Policy Store

Figure 3. Data-retention service implemented with Hadoop and HBase.

detailed discussion on failure recovery is provided in Section 5.

B. Concurrent and Batch Oriented Controller Execution

The task controllers submit their MapReduce jobs to the
shared machine cluster concurrently, and are scheduled using
the fair scheduler in Hadoop [14]. Each task controller is
assigned its own unique pool. The weight assigned to each pool
depends on how time sensitive the management task is. The
fair scheduler relies on the weights to allocate MapReduce
tasks and ensures that resources are distributed fairly between
the task controllers.

MapReduce is inherently batch oriented, and therefore the
service access APIs exposed by the architecture in Figure 3 are
also batch oriented. Asynchronous processing is not an issue
for archival solutions. To support real-time synchronous access
for interactive applications such as browsing medical records,
the Online File System in Figure 1 can cache original files or
recently decrypted files. A slight modification of the service
architecture is needed to support on-demand file retrieval with
synchronous (rather than batch-oriented) file decryption.

IV. ENCRYPTION KEY STORE

The encryption key store is the most important component
in our management service. This section presents the design of
a highly secure and highly available encryption key store.

Having an encryption key store only hosted in the service
data center where the retention management service is hosted,
introduces a single point of failure and vulnerability. Instead, in
our management service, encryption keys are partitioned into
key fragments through polynomial secret sharing [23], and
distributed to different key fragment stores at different data
centers called key distribution data centers. No master keys are
required to secure the key store.

In the encryption key store, each managed object is denoted
by a unique Uniform Resource Identifier (URI). The key store
is a key-value store that consists of a tuple with the object URI
as the key, and the encryption key EK as the value, denoted as
<URI, EK>. The encryption key EKi for a file named by URIi
is partitioned into n key fragments, i.e., EKi,1, EKi,2, …, EKi,n.
Each key fragment is sent to one of n key distribution data
centers, along with URIi. That is, the j-th key distribution data
center hosts the encryption key fragment store for the
encryption key EKi, denoted as <URIi, EKi,j>. The service data
center can reconstruct the encryption key EKi, based on a
sufficiently large subset {EKi,1, … EKi,k } returned from k of
the n key distribution data centers, where k < n. At the j-th key
distribution data center, each pair of <URIi, EKi,j> is stored in a
scalable structured data store.

The encryption key store that employs polynomial secret
sharing is both highly available and highly secure. Only k of n
key fragments are necessary to reconstruct the key, even if
some distribution data centers are down. An intruder will need
access to at least k independent data centers to collect the
necessary key fragments to reconstruct the key. On the other
hand, if the intruder deliberately destroys some of the key
fragments, a sufficient number of the key fragments from the

non-compromised key distribution data centers allows
successful key reconstruction.

An access management protocol is defined for the service
data center to distribute (and retrieve) key fragments from the
key distribution data centers. Standard web-based protocols
such as those used in Amazon S3 [1] can be used to
communicate between the service data center and the key
distribution data centers. The request from the service data
center to put (and retrieve) key fragments is signed with the
secret access key granted to the service data center by the key
distribution data center. A valid digital signature allows the key
distribution data center to prove key ownership and thus grants
key-related access to the service data center. Similarly, a public
key based protocol can be used to sign and verify the request.

A. Secure Key Distribution

Secure key distribution between the service data center and
key distribution data centers is shown in Figure 5. Message
exchange between the service data center and the key
distribution data centers can be achieved via a scalable message
queue mechanism, or a remote procedure call (RPC) based
protocol such as web services.

In the service data center, once user data is encrypted, the
encryption key is temporarily stored in the Transient
Encryption Key Store. The Cross Data-Center Key Distributor
takes the key that is newly inserted in this transient store and
partitions it into key fragments. At the j-th key distribution data
center, the Cross Data-Center Key Distributer receives the key
distribution message and stores the fragment EKi,j in its key
fragment store as <URIi, EKi,j> for the data object with URIi
Once the key distribution to all data centers is successfully
acknowledged, EKi is removed from the Transient Encryption
Key Store and subsequently, the user object (in plain-text) is
deleted and only the encrypted object remains.

Due to machine or network failure, the message sent to the
key distribution data centers may not always be acknowledged
promptly, and key distribution messages may need to be retried
until positive acknowledgements are received. Alternatively, it
is possible to proceed with fewer fragments as along as at least
enough acknowledgements have been received to enable the
service data center to re-construct the key from the fragments
that have been acknowledged. A batch processing task is
invoked by the Cross Data-Center Key Distributor at the

Figure 5. Encryption key partitioning and key fragment distribution.

service data center to scan the Key Distribution Tracker to
perform key fragment distribution, determine whether the
encryption keys have been successfully distributed, and retry
distributions of unsuccessful key fragments. Such a key
distribution batch processing task can be implemented with
MapReduce and incorporated into the key management task
controller shown in Figure 3.

B. Key Reconstruction

The Cross Data Center Key Reconstructor in the service
data center issues the key reconstruction message to key
distribution data centers that hold relevant key fragments. Once
a sufficient number of key distribution data centers respond
with the stored encryption key fragments, the service data
center can reconstruct the encryption key. Because the
communication delay between two data centers within the
same geographical zone is small, to support fast key
reconstruction, the key distribution data centers located within
the same geographic zone as the service data center can be
assigned to hold a sufficient number of key fragments to
reconstruct an encryption key under normal conditions.
However, to protect against natural disasters, a sufficient
number of key fragments are also required to be distributed to
key distribution data centers in other geographical regions, to
facilitate key reconstruction only from the fragments held by
cross-region key distribution data centers.

C. Key Deletion

The service data center receives a key deletion request
either because the corresponding data’s retention time expires,
or because the data owner explicitly requests permanent data
destruction. The request is stored in the Cross-Data-Center Key
Destructor in the service data center and the request is
returned. The key deletion request is then broadcast to all key
distribution data centers to remove the key fragments that they
hold. A batch processing task can be implemented with
MapReduce and incorporated into the key management task
controller to handle key destruction. When transient failures
occur to the key distribution data centers, the key destructor
will retry the unsuccessful key fragment deletions until a
sufficient number of the fragments are successfully deleted.

V. FAILURE RECOVERY

The traditional data analyses conducted on a Hadoop
cluster can tolerate both machine and task execution failures by
restarting the Map or Reduce tasks on a different machine with
the same file input. The output file is the only effect produced
by the task execution. Such repetitive execution is
straightforward because the analysis-oriented computing in
Map or Reduce task is idempotent. That is, unchanged input
always produces the same output.

In our policy management service, the situation is different.
A Map or Reduce task associated with a policy management
controller consists of multiple execution steps, each of which
can touch multiple persistent stores and leave persistent states
behind. The persistent states resulting from incomplete Map or
Reduce tasks are side-effects. Correct task execution depends
on persistent states recorded by the intermediate steps from the

previously failed task execution. Failures that happen to one of
the Map or Reduce execution steps can lead to unsuccessful file
encryption. Failures can include (1) communication failure to
backend structured data stores, (2) failure to local file systems;
(3) communication failure to HDFS; and (4) crash of machines
and processes.

In this section, we examine how our management task
controllers can be designed to tolerate failures within
MapReduce by using the File Encryption Controller shown in
Figure 4 as an illustration example.

A. File Encryption Map and Reduce Execution Steps

In the distributed workflow shown in Figure 4, a file
denoted as F is initially stored in the HDFS after being
uploaded to our management service. F-HDFS denotes the file
stored in HDFS and F-Local denotes the file stored on a local
task execution machine. F-Encrypted-Local denotes the
encrypted file stored on a local machine and F-Encrypted-
HDFS denotes the encrypted file stored in the HDFS. The Map
Task is implemented in the following steps:

(M1) Download F-HDFS to the scheduled task execution
machine’s local temp directory to become F-Local.

(M2) Encrypt F-Local with encryption key KeyF to produce F-
Encrypted-Local; upload F-Encrypted-Local to HDFS as F-
Encrypted-HDFS.

(M3) Compute Hash HashF from F-Local.

(M4) Remove F-Local and F-Encrypted-Local.

(M5) Publish KeyF and HashF to Encryption Key Store.

(M6) Perform integrity checking on F.

(M7) If the integrity of F is preserved, assign all F-HDFS’s file
attributes to F-Encrypted-HDFS, then remove F-HDFS.

(M8) Update Status Checking Table with F’s encryption status;

(M9) Update Encryption Pending Queue with F’s encryption
status.

The Map function does not produce output to the HDFS. The
Reduce function does not handle management actions at all and
thus is implemented as an identity function [14], which simply
copies the supplied input as the processing output. The integrity
checking routine called at Step M6 involves the steps of:

(M6.1) Download F-Encrypted-HDFS to a local file F-
Encrypted-Local.

(M6.2) Retrieve KeyF and HashF from Encryption Key Store.

(M6.3) Decrypt F-Encrypted-Local to F-Decrypted-Local.

(M6.4) Compute Hash (F-Decrypted-Local)

(M6.5) Remove F-Encrypted-Local and F-Decrypted-Local.

(M6.6) Return comparison result of Hash (F-Decrypted-Local)
with HashF .

The integrity checking is designed to protect against data
corruption due to transient errors. The original file can be
safely removed from the persistent store, only if the stored

encrypted file F-Encrypted-HDFS can be successfully
decrypted with data integrity guaranteed. This checking process
slows down the overall file encryption, as it now involves both
encryption and decryption.

B. Failure Recovery for File Encryption

The baseline mechanism to address failures is through retry
of file encryption in the distributed workflow shown in Figure
4 that centers on the Encryption Pending Queue. If the
encryption fails and no successful encryption status is updated,
at the next scanning of the encryption pending queue, the file
without successful encryption status is put back into the to-be-
encrypted file. File encryption is then repeated at one of the
cluster machines through MapReduce, until the maximum
number of retries is exceeded and the failure status is recorded
to the status tracking table.

Our failure recovery mechanism also takes advantage of the
two features provided by the structured data store such as
HBase. First, any data update to a given row is atomic and
second, data updates to the same row are idempotent, because
inherently the data store is a key-value store with a unique key
for each row. Furthermore, a structured data store such as
HBase is built to be highly available, and the store can self-heal
should an internal failure occur. The internal failure states are
invisible externally to the client.

We next focus only on communication failure to backend
structured data stores to illustrate our failure recovery approach
to deal with MapReduce task execution. Other failure situations
can be handled similarly. As shown in Section 5.A, only the
Map function is required for encryption related actions.

A Map task execution on a particular cluster machine can
encounter a communication failure between the front-end
servers and the back end structured data stores. A transient
communication failure can be resolved by re-trying the data
access request and eventually reaching the backend server [25].
Due to atomic and idempotent row-based update, updating a
data store multiple times is not a problem. A permanent failure
(e.g., due to the broken communication link) can be detected by
the Hadoop job tracker through the established heartbeat
protocol. As a result, the Map or Reduce task that has not
finished will be re-launched on a different machine that is
reachable by the Hadoop job tracker.

When the Map task is re-launched, the same file input that
records the to-be-encrypted file list is re-submitted. Some of
the listed files may have already been successfully encrypted.
We need to determine whether a file has been successfully
encrypted by checking both the encryption status tracking table
and the encryption key table. Should either one of the two
tables have not reported consistent positive confirmations, the
file’s encryption will need to re-start from Step M1. However,
it is possible that the previous failure occurred during the
execution of Step M7. If the query to HDFS shows that F-
HDFS is removed and only F-Encrypted-HDFS is left, the Map
task simply proceeds to its output step with a successful
encryption status. Otherwise, the Map task starts from Step M1
and repeats the entire encryption with F-HDFS. A new
encryption key will be created and be associated with F-HDFS.

Overall, for the Map task to address communication failure
(and in fact, to also address the other failures identified earlier
in this section), we can depend on the persistent states recorded
at (a) the encryption status tracking table and the encryption
key table (b) the HDFS regarding F-HDFS and F-Encrypted-
HDFS, to determine which files need to be encrypted, and for
which execution steps needs to be re-executed for individual
file’s encryption, in case the Map task is re-executed.

In general, in our policy management tasks, we can define
all management functionality only in the Map functions. For
each Map function M that supports an operation on an object
(e.g., a file) O, we define an initial state (e.g., F-HDFS for file
encryption), and a set of final states (e.g., updates to the status
tracking table and encryption pending queue) for O. If
operation to O succeeds, a marker action clears the initial state,
before updating the final states. The marker action (e.g., to
remove F-HDFS) needs to be atomic, whereas the update
actions to all the final states do not need to be transactional.
The implementation of M incorporates the following checks. If
all final states of O are reached and consistent, M does not need
to be repeated. Otherwise, M checks whether the initial state is
cleared. If the initial state is cleared, M proceeds to the steps
that only update the final states that represent successful
operation on O, without performing object operation on O. The
Map function M starts from the beginning if the initial state is
not cleared.

The side-effects left from an incomplete Map or Reduce
task’s execution can include local transient files, e.g., F-
Encrypted-Local and F-Decrypted-Local. Monitors installed on
task execution machines can clean up such transient files in the
background.

VI. PERFORMANCE MEASUREMENTS

We have prototyped the data retention management service
shown in Figure 3 in a Linux cluster with 16 machines that are
connected with a 10 Gb/sec network. Each machine has 8
cores and 32 GB RAM and runs with 64-bit Redhat Enterprise
Linux. Hadoop 0.20.2 and HBase 0.20.3 are used in the
prototype. The key management controller currently only
handles key distribution within the same cluster, with the secret
sharing scheme of <n=7, k=3>. That is, a key is partitioned into
7 fragments and 3 fragments are required for reconstruction.
One cluster machine is configured as the master node of both
Hadoop and HBase. The other 15 machines are configured to
be the slave machine nodes. Each slave machine hosts a
Hadoop data node and an HBase region server node. Each
cluster machine is installed with Apache Tomcat 6.0 and the
Axis web service framework as a web service front-end.

Each Hadoop slave machine also serves as a MapReduce
task tracker node. The configuration is that at maximum, each
task tracker node can support 6 concurrent tasks for encryption
or decryption. That is, we allocated 6 out of 8 cores (i.e., 75%
of computational capacity) per machine for encryption and
decryption processing. As a result, there are a total of 90 cores
within the cluster for file encryption and decryption.

Retention Policies Read, Write, Scan. We focused our
performance measurement only on the backend service. The
test clients run on the same machine cluster. Our first

measurement is the read/write throughput of data retention
policies. The URI of each file is randomly generated. We pre-
populated the HBase table with over 20 million policy objects,
with each region server holding at least 4 regions, to ensure
good load balancing among all the HBase region servers. In our
cluster, we obtained 31,000 reads/sec and 15,000 writes/sec.
The read performance is better than the write performance, as
most of the reads are through the in-memory caches on the
region servers [6, 15]. A 4GB heap size is allocated to each of
the 15 HBase region servers. We estimate that the entire cluster
should be able to hold 500 million policy objects in the
combined in-memory caches.

We built a MapReduce-based scanner to scan the policy
repository with about 125 million objects. The total scan took
1038 seconds. Based on this processing speed, the cluster will
need 2.3 hours to scan 1 billion policy objects to determine
which data objects have expired retention times.

File Encryption/Decryption. The second measurement
that we did is on throughput of encryption and decryption. Our
implementation used AES 256 encryption provided by the
standard Sun JDK 1.6 distribution’s crypto library. In our
cluster, we achieved encryption throughput of 56 MB/sec and
decryption throughput of 76 MB/sec. The measurement was
taken after we uploaded 18,000 files, with each file having a
fixed size of 2 MB. Thus we encrypted 36 GB in total. Our
MapReduce Input Format [14] is designed so that the total
encryption (or decryption) load contributed from all the 18,000
files is evenly distributed to each cluster machine and each
machine has its maximum assigned number of cores (i.e., 6
cores) launched for encryption (or decryption). The encryption
is slower than the decryption as our file encryption task
involves file decryption to ensure data integrity.

To examine how encryption/decryption engine handles
different file sizes, the measurement was repeated with a
different fixed file size Sd (across all the uploaded files), that is,
0.25MB, 0.5 MB, 1 MB, 4 MB, in addition to 2 MB, while
keeping the same total number of files, N (N=18,000), loaded
in the cluster. To simulate heavy traffic from service front ends,
the files were uploaded simultaneously by 5 concurrent test
clients in each of the 16 cluster machines (i.e., each test client
had 225 files to upload). Table 1 shows the total time spent on
encryption (denoted as Te) and decryption (denoted as Td), and
the measured throughput for encryption (Ce) and for decryption
(Cd), given the input file size Sd. Ce is defined as the total file
content to be uploaded (denoted as L, L=N×Sd), over the
encryption time measured (Te). Cd is defined similarly.

Table 1 shows that when the input file size is small (less
than 1 MB), the encryption or decryption throughput is much
smaller than the one measured from input file sizes larger than

1 MB, indicating that our encryption/decryption engine is not
efficient for files with small file sizes. As shown in Section
5.A, an encryption task execution consists of the steps that
carry out crypto processing (i.e., encryption and hashing), and
the steps that involve network file transfer to/from HDFS.
Network file transfer is the overhead in throughput
measurement and HDFS is designed for large files [13, 14].
When the files are small, such transfer overhead is significant,
compared to the time for file encryption/decryption related
operations. Table 1 also shows that after the file size reaches 1
MB, the encryption/decryption throughput becomes much less
sensitive to the file size.

The performance measurement reported here is focused on
the retention policy read/write throughput, retention policy
enforcement, and data encryption/decryption throughput. The
system availability related measurement requires further
development and is not within the scope of this paper.

VII. RELATED WORK

Scalable Policy Management. In networked services and
systems management, such as [24] that manages and enforces
policies in Ponder [8], policies are distributed to policy
management agents residing in networked computers and
devices. Scalable policy management is achieved by having
these distributed agents enforce the policies locally at each
computer or device. In contrast, our management service is
designed to manage data stored in a cloud environment.
Specific to data retention policy, each physical machine does
not assume the sole responsibility to control the lifetime of the
data stored in such a distributed storage environment, and each
machine can fail independently. Therefore the distributed
management agent based approach is not viable in our
environment.

A policy-based lifecycle management framework for the
SAN-based file system is reported in [26], in which file-based
lifecycle related policies such as data migration are enforced by
the file-system’s metadata server cluster. In our solution, the
machine cluster in the policy management service serves the
same role as the metadata server cluster. The key difference is
that we use a common Hadoop and MapReduce framework to
perform parallel policy enforcement actions with failure
recovery being considered.

Enterprise-Level Compliance Solutions. HP TRIM [17]
and Oracle’s Universal Records Management [20] offer
information lifecycle management (ILM) capabilities to help
enterprises be regulatory compliant. They target single
enterprises and offer no effective control over backup data,
especially offline removable media. The archival solutions on
fixed-content data (e.g., medical images) with long retention
period (e.g., ten years and beyond) support data migration
through a multi-tiered architecture (e.g., SAN, SCSI, and Tape)
[5]. Overall, such solutions do not address effective deletion
across multiple storage tiers when data retention period expires.

Compliance-Aware Cloud Services. Amazon.com Web
Service (AWS) has little built-in data protection other than
recommending that sensitive data should be encrypted.
Applications that are developed with AWS, need to manage
sensitive data within in-house environments and store only

Table 1. Encryption/Decryption throughput with respect to input file size.

 Te(sec) Td(sec) Ce(MB/sec) Cd(MB/sec)
Sd=0.25MB 203 103 22.2 43.7
Sd=0.5MB 223 149 40.4 60.4
Sd=1MB 345 233 52.2 77.2
Sd=2MB 639 473 56.3 76.1
Sd=4MB 1274 883 56.5 81.5

encrypted data in AWS. Such applications are confronted with
the challenge of building a scalable key management system.
Salesforce.com supports disaster-recovery capabilities [22]
mandated by regulations such as Sarbanes-Oxley and HIPAA,
by backing up customer data to tapes in a separate data center,
but not transporting tapes offsite. Our encryption-key based
solution can help manage the data being backed up effectively.

Key Management. Vanish [12] relies on public, globally
distributed hash tables (DHTs) to store the key fragments into
DHTs, with the key fragments being constructed from the
secret key sharing mechanism [23]. Our encryption key store is
designed to be part of the management service that needs to
regulatory compliant. All the key distribution data centers are
under our control, and key operations are monitored. In
contrast, the public DHTs that Vanish employs involve random
machines from the Internet that join and leave irregularly.
Moreover, Vanish relies on the un-guaranteed short-lived
nature of the encryption key stored in public DHTs, and key
operations cannot be monitored.

The Revocable Backup system [3] encrypts a file with a
secret key. A master key encrypts the key file (in which all
keys are stored) before the key file is backed up. File
revocation is guaranteed by removing its encryption key and
forgetting the master key of the key file from the previous
backup run. Our system design adopts the same concept of
using an encryption key to control the lifetime of a file, but
focuses on managing the large collection of file objects in a
centralized and scalable manner. Furthermore, our system does
not need a master key to protect the encryption key store, and
the key store is designed to be highly available and highly
secure across different data centers, without the need to be
backed up.

VIII. CONCLUSIONS

We have developed a data-retention policy management
service, the first step towards building a scalable policy-aware
policy management service that ultimately aims to support 1011
data objects and conform to compliance and regulatory
policies. The service architecture is horizontally scalable. The
data-retention service relies on a reliable and secure encryption
key store that spans multiple data centers to store the
encryption keys of data objects under management. The current
system relies on Hadoop and MapReduce that are commonly
available in a cloud-based environment to perform batch
processing over a machine cluster for management tasks. We
developed a state-aware failure recovery mechanism based on
the recovery support from MapReduce to implement Map and
Reduce functions for our policy management tasks. We
prototyped the service and demonstrated it on a 16-node
machine cluster. This cluster currently supports 56 MB/sec for
encryption, 76 MB/sec for decryption, 31,000 retention
policies/sec read and 15,000 retention policies/sec write.

We are currently extending the policy management service
framework beyond data retention, to incorporate access control
and privacy protection, and applying the framework to different
application domains, such as healthcare, that involve sensitive
data management to meet regulatory compliance requirements.

REFERENCES
[1] Amazon.com Simple Storage Service, http://aws.amazon.com/s3/.

[2] Z. Baird and J. Barksdale, “Implementing a trusted information sharing
environment—using immutable audit logs to increase security, trust and
accountability”, Markle Foundation, 2006.

[3] D. Boneh and R. Lipton, “A revocable backup system,” Proc. USENIX
Security, pp. 91-96, 1996.

[4] P. L. Bradshaw, K. W. Brannon, T. Clark, K. Dahman, S.
Doraiswamy, and L. Duyanovich, “Archive storage systems design for
long-term storage of massive amounts of data,” IBM J. Res. & Dev.,
Vol. 52, 2008.

[5] Bycast, http://www.netapp.com/us/products/storage-
software/storagegrid/.

[6] F. Chang, J. Dean, G. Ghemawat, W.C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” Proc. OSDI, pp. 205-218, 2006.

[7] Cloud Security Alliance,
http://www.cloudsecurityalliance.org/csaguide.pdf.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder policy
specification language,” 2nd Int’l Workshop on Policies for Distributd
Systems and Networks, pp. 18-38, 2001.

[9] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Comm. ACM, 51(1):107–113, 2008.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon's highly available key-value store,” SOSP '07, pp. 205-220.

[11] Directive 95/46/EC of the European Parliament and of the Council,
http://ec.europa.eu/justice_home/fsj/privacy/docs/95-46-ce/dir1995-
46_part1_en.pdf.

[12] R. Geambasu, T. Kohno, A. A. Levy, H. M. Levy, “Vanish: increasing
data privacy with self-destructing data,” USENIX Security, 2009.

[13] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google File System,”
Proc. SOSP '03, pp. 29-43, 2003.

[14] Hadoop, http://hadoop.apache.org/

[15] HBase, http://hadoop.apache.org/hbase/.

[16] HIPAA, http://www.hhs.gov/ocr/privacy/index.html.

[17] HP TRIM,
http://h18006.www1.hp.com/products/software/im/governance_ediscove
ry/trim/index.html.

[18] J. O. Kephart and W. E. Walsh, “An artificial intelligence perspective on
automatic computing policies,” 5th IEE Int’l Workshop on Policies for
Distributed Systems and Networks, June 2004.

[19] K. L. Law and A. Saxena , “Scalable design of a policy –based
management system and its performance,” IEEE Commun. Mag., pp.
72-79, 2003.

[20] Oracle Universal Records Management,
http://www.oracle.com/products/middleware/content-
management/universal-records-management.html.

[21] PCI DSS (Version 1.2, Oct. 2008),
https://www.pcisecuritystandards.org/security_standards/pci_dss_downl
oad.html.

[22] Salesforce.com Security and Compliance,
http://www.salesforce.com/community/crm-best-practices/it-
professionals/security-and-compliance.

[23] A. Shamir, “How to share a secret, “ Comm. ACM, v.22, n.11, pp. 612--
613, Nov. 1979.

[24] M. Sloman, “Policy driven management for distributed systems,” J. Net.
Sys. Mgmt. Vol. 2, No. 4, 1994, pp. 333-60.

[25] Varia, J.: Cloud Architectures. Available at
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf

[26] A. Verma, U. Sharma, J. Rubas, D. Pease, M. Kaplan, R. Jain, M.
Devarakonda, and M. Beigi, “An architecture for lifecycle management
in very large file systems,” 2nd IEEE /13th Goddard Conf. on Mass
Storage Systems and Technologies (MSST’05), April 2005.

[27] L. Wood, “Cloud computing and compliance: be careful up there,”
InfoWorld, 2009.

