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actually meeting in person. Current systems, however, do a poor job of integrating video streams presenting
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content within a meeting using augmented reality and computer vision. Real and virtual content is
seamlessly integrated into the collaboration space. We develop new vision based methods for interacting
with inserted digital content including target finding and gesture based control. These improvements let us
deliver an immersive collaboration experience using natural gesture and object based interaction.
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Abstract 

 
Video conferencing systems are designed to deliver a 
collaboration experience that is as close as possible to 
actually meeting in person. Current systems, however, do 
a poor job of integrating video streams presenting the 
users with shared collaboration content. Real and virtual 
content are unnaturally separated, leading to problems 
with nonverbal communication and the overall conference 
experience. Methods of interacting with shared content 
are typically limited to pointing with a mouse, which is not 
a natural component of face-to-face human conversation. 
This paper presents a natural and intuitive method for 
sharing digital content within a meeting using augmented 
reality and computer vision. Real and virtual content is 
seamlessly integrated into the collaboration space. We 
develop new vision based methods for interacting with 
inserted digital content including target finding and 
gesture based control. These improvements let us deliver 
an immersive collaboration experience using natural 
gesture and object based interaction. 

 

1. Introduction 
The usage of video conferencing continues to increase, 

from low cost consumer products up to high-end enterprise 
solutions. In the consumer space improvements in 
computational power and available bandwidth mean that 
video conferencing is possible on an increasing number of 
platforms and devices. Video conferencing in the 
enterprise is being driven by the desire to reduce travel 
costs while still maintaining the experience of an in-person 
meeting.  High-end products designed for full room 
installations, including systems such as Cisco’s 
TelePresence and HP’s Halo, rely on life-size display of 
remote participants in an attempt to create the illusion of 
meeting in the same physical space. When it comes to how 
shared digital content is displayed to meeting participants, 
all current systems fall short of simulating a face to face 
meeting. Some systems emphasize the shared content 

while minimizing the video of the users, making it difficult 
to perceive non-verbal cues such as facial expressions and 
reactions. Others relegate the digital content to a secondary 
display area that is not naturally integrated into the 
meeting. An example is shown in Figure 1, where 
collaboration content occupies a separate area above the 
video screens showing the remote users. Gesture and gaze 
signals related to collaboration content are not reproduced 
naturally in such systems. If a meeting participant attempts 
to point to an area of interest on the collaboration screen 
remote users will be unable to determine what they are 
indicating. Desktop conferencing systems suffer from 
similar issues with shared content. The layout of 
collaboration content and people video is often 
inconsistent from user to user, so even if a participant 
could point with their hand to indicate an area of interest 
different users would interpret the gesture differently. All 
current systems present cumbersome methods for 
interacting with the shared content, or prevent remote 
participants from interacting with the content entirely. 

1.1. Augmented Reality 
Augmented reality is the combination of real and virtual 

elements into an integrated image or video stream. 
Historically augmented reality was used with head-
mounted displays capable of displaying digital content 
overlaid with a user’s view of the real world. Head-
mounted displays generally obstruct the view of the 
wearer’s eyes, resulting in loss of eye contact which is 
critical for a good video conference experience. In spite of 
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Figure 1: Collaboration using HP Halo Collaboration Studio. 
Shared media is shown above the people screens. 
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this limitation head-mounted augmented reality has been 
applied to video conferencing using static images as 
avatars [3]. This was later extended to include live video 
of remote participants superimposed on the direct view of 
the real world at the locations of carefully designed 
augmented reality targets [4]. 3D reconstructions of remote 
users were superimposed in the work of Prince et al. [22]. 
If the AR targets are not found in the visual area then the 
remote participants are not displayed. Shared digital 
content is also not supported in these systems. 

Early work on inserting digital content using augmented 
reality targets was presented in [23]. This work was in the 
context of a single user desktop. The possibility of using 
augmented reality without complex camera calibration was 
shown in [13]. Previous work on using AR targets in a 
video conferencing scenario was presented in [2]. In their 
work users must always hold up the AR target for 
collaboration content to be visible, and sometimes multiple 
targets must be held simultaneously. Requiring the users to 
continuously hold targets in the camera field of view can 
result in problems with fatigue. Collaborative interaction 
was limited due to latency issues. 

1.2. Gesture Recognition 
The idea of using a camera for user interaction has led 

to the development of software applications like 
CameraMouse [7] and Nouse [19]. In these applications, a 
user's face or facial feature (like nose) is tracked in 
webcamera images to move the mouse pointer. The 
objective of CameraMouse is to enable physically-
challenged users to interact with a computer. However, for 
normal people, moving one's face or nose in front of a 
camera is not only cumbersome and tiring but is also an 
unnatural way for any interaction with the computer. 

Freeman and Weissman built one of the frst systems for 
vision based hand-gesture recognition to control a 
television set [10]. In the past few years, there has been an 
increasing interest in using hand gestures for computer 
interactions. There are several survey papers on hand-
gesture recognition [16, 21, 24, 26, 27, 29] which also 
serve as an indicator of the growing interest in this topic.  

Hand gesture recognition from depth data has been 
reported recently. Although depth data can be estimated 
using a stereo rig for hand gesture recognition as presented 
in [8], the use of time-of-fight based infra-red depth 
sensors [28] has been reported for various applications. 
The use of human body gestures for gaming using depth 
sensing has been reported in [25]. This uses a combination 
of mean-shift tracking [9] and hidden Markov models 
(HMM) for gesture recognition. The influence of depth 
information for gesture recognition as depth silhouettes is 
proposed in [18]. The depth silhouettes used along with 
principal component analysis (PCA) and HMM are shown 

to perform better than PCA used with support vector 
machines (SVM). A laser-based camera producing low-
resolution images at video rate is used to recognize hand 
poses in terms of finger poses and finger inter-relations in 
real-time [17]. Tracking pointing gestures using a stereo 
vision system that uses an FPGA-based dense depth 
mapping has been reported in [12]. The combination of 
depth and visual information as captured by a CSEM 
SwissRanger SR-2 camera has been used for view 
invariant gesture recognition using a probabilistic Edit 
distance classifier [11]. In [5], an articulated hand model is 
used to fit the depth data of a user's hand for estimating the 
hand pose. 

Our present work uses a depth camera for image 
analysis. The depth data in images is used for segmenting 
the hand from an image. We use optical flow of the 
segmented hand regions in images and apply a rule-based 
approach to interpret the hand gestures. Our method does 
not depend either on hand models or machine learning 
methods to recognize a gesture. 

2. Our Solution 

2.1. Frame-based Insertion 
Our first technique is inspired by a classic advertisement 
for the company HP [30], and involves tracking a simple 
rectangular frame in real time. While the HP ads required 
an artist to manually mark locations in every frame of the 
commercial, we use computer vision to locate a 
rectangular frame in a live video stream. Our system first 
performs a color similarity test on the video stream to 
identify regions matching our known target color. The 
algorithm must examine pixels within a relatively wide 
range of similar colors since the target’s brightness and 
even chrominance can change significantly due to the 
lighting conditions in the user’s location. The result is 
thresholded and median filtered to remove noise. After 
identifying pixels in the image that are close enough to the 
target values we connect neighboring candidate pixels into 
regions. The software then processes each connected set of 
pixels to look for regions that are ring shaped. We only 
want to use regions that are in the shape of our target, a 
connected ring matching our target color containing a non-
target background in the center. This step is required to 
exclude areas of the scene that might happen to match our 
target color but that have different shapes. We compute the 
centroid of each region and then calculate the minimum 
distance from the centroid to pixels in the region. If the 
centroid overlaps pixels in the region, or is closer than a 
threshold the region cannot be our target and is excluded. 



 
 
 

3 

For the identified ring-shaped regions we then compute 
interior corner locations to identify the inner edges of the 
frame target. The target identification stages are illustrated 
in Figure 2. We use image warping on the GPU to insert 
virtual digital content into the real frame, based on the 
identified location of the tracked frame in each video 
image. The inserted digital content can be media that the 
users are sharing, including presentation material such as 
slides, and even video sequences. The digital content is 
naturally integrated into the meeting.  

As shown in Figure 3, a white rectangular frame is being 
held up and a video clip is inserted within the frame. This 
prototype demonstrates one of the significant advantages 
of using augmented reality in a remote collaboration 
system; the virtual digital content is tightly integrated into 
the real world video of the meeting participants. This 
allows the users to naturally interact with the digital 
content, such as by pointing at the virtual objects to 
indicate areas of interest. In traditional collaboration 
technologies, including even high-end telepresence 
systems, shared digital content is kept separate from the 
video streams containing the users, often on a separate 
screen entirely. As a result users cannot interact naturally 
with the digital content as there is not a consistent virtual 
space in which to indicate interest or interact with the 
objects. 

We can also use the frame as a virtual capture device. 
Instead of using the frame as an indicator of where to 
display virtual content, the frame can be used to identify an 
area of interest to be captured. The actual capture event 
can be triggered when the system detects that the user has 
held the frame stationary around an object. Alternatively 
voice commands may be used to trigger capture events. 

Our system can be configured to retain the inserted 
content at the last identified target location so that the user 
can position their content as desired keep it there without 
needing to hold the frame. The action of freezing the 
content location can also be triggered using keyboard or 
voice commands. The transparency of the inserted virtual 
content can also be adjusted to allow the user to be seen 
through the content. This enables pointing and gesturing at 
areas of interest to be directly and accurately perceived by 
remote meeting participants.  

2.2. Gesture Recognition 
Our second interface uses hand gestures that are 

identified based on an active depth camera which allows 
the users to control the augmented reality content based on 
those gestures. The gestures supported in our work are 
illustrated in Figure 4. 

Hand gestures are recognized using a depth camera, 
which measures the time of flight of a pulsed IR source to 
determine a distance value for each pixel in its view. We 
currently use depth cameras such as the ZCam from 3DV 
Systems [1] (shown in Figure 5) and Canesta [6] for 
gesture recognition. These camera use active illumination 
for depth sensing - they emit modulated infra-red (IR) light 
and based on the time-of-flight principle, the reflected 
light is used to calculate depth (distance from camera) in a 
scene. The Zcam camera provides both RGB (VGA size) 
image and a grayscale depthmap (half-VGA size) image at 
30 frames per second (fps). While depth cameras are 
currently limited to expensive, high-end devices, costs are 
coming down rapidly. The first mass-market device to 
feature an active 3D sensors will be the Xbox Kinect 
(Project Natal) video game controller from Microsoft [15]. 
The Project Natal camera also uses IR light as a way of 
determining distance to game players in front of the 
screen. Our system uses the ZCam camera to generate 
similar depth information. This data is combined with a 
regular RGB image to allow more information about the 

Figure 2: Target finding stages: Source, Color Match, Threshold/Filter, Region growing 

Figure 3: Frame based insertion 
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hand and shape to be captured than is feasible with just an 
RGB image alone. 

The technical approach used for gesture recognition is 
shown in Figure 6.  The depth image from the camera is 
used to find the threshold using Otsu’s method [20] and 
generate a binary mask of the hand. This mask is used to 
segment the hand from the grayscale image, obtained from 
the color image.  The segmented hand is then tracked over 
time using Lucas-Kanade method [14] to generate a flow 
vector. The flow vector is used to recognize if the hand-
movement corresponds to a gesture supported by the 
system. 

2.3. Interaction 
Our system currently supports several gestures for 

adjusting the placement of digital content within the 
meeting video stream, and drawing annotations into the 
video. Gestures identified when the user moves one arm in 
front of the camera are interpreted as commands to move 
the collaboration content and, when the user moves both 
arms in front of the camera, the commands are used to 
resize the collaboration content. We detect gestures only 
within a controllable distance from the camera to avoid 
unintended interactions. 

Single hand motions to the left/right or up/down move 
the object in the corresponding direction. We cause the 
detected motions to impart a velocity onto the object so 
that the user has the natural experience of pushing on the 
object. We apply frictional forces to smoothly dampen out 
the velocity over a short amount of time. Note that if a user 
moves their hand to the left they will see the object on the 
screen also move to the left. However on the remote users’ 
displays they see the user from the perspective of the 
camera and as a result see them gesturing to the right hand 
side of the remote user’s display. The motion of the object 
is kept consistent with each user’s view of the displayed 
person streams. Maintaining a consistent presentation that 
matches the users’ perceptions is critical for a natural 
experience. If a user must consciously think about what 
will happen when they make a gesture then intuitive 
interactions will not be possible. 
 Two handed gestures are interpreted as enlarge/shrink 
commands. If the user’s hands are moving apart then the 
displayed content is enlarged. Shrinking happens similarly 
when the user’s hands are detected moving together. In our 
testing most users find two handed gestures intuitive as 
they have a natural mapping to the two finger pinch/zoom 
touch gestures that exist on hand-held devices. 
 Our system also analyzes the depth data to identify 
pointing gestures based on the hand shape. We compute a 
pointing location based on the location of the closest finger 
to the depth camera. We currently paint into the video 
stream at the detected pointing location, using a different 
color for each user. We use alpha blending so drawings 
blend naturally into the video. We’ve found that users 
typically use drawing and mark-up to temporarily indicate 
areas of interest so we gradually reduce the opaqueness of 
the drawings so that they fade out over time. If permanent 
mark-ups are desired the alpha fading could be turned off 
using voice commands or other controls.  

Figure 4: Illustration of camera based hand-gesture 
interaction.  Vocabulary of gestures supported in our work: 
(a) move (left/right/up/down) (e) zoom (in/out – 
enlarge/shrink). 

 

(a)      (b)  

Figure 5: (a) ZCam from 3DV Systems. (b) Data output from ZCam - primary and secondary infrared images, a depthmap 
and a RGB color image. (c) Volumetric view of depth values fused with the RGB image. 

(a)             (b)                    (c) 
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3. Results 
We have created two computer vision technologies for 

enabling new interaction methods that allow for natural 
insertion of shared digital content into distributed 
meetings. Each of our solutions work in real time at full 
video frame rates, at least 30 frames per second, which is 
required for reproducing natural motions. The detection 
and sensing algorithms are implemented in C++ and run on 
standard laptop and desktop CPUs. Our system is 
implemented in a custom dataflow software framework, 
similar to DirectShow or GStreamer. This enables different 
computational tasks, such as detection, video coding, and 
audio processing to be processed in parallel on the 
available compute cores to efficiently take advantage of 
the CPU parallelism present in current hardware. All 
compositing, warping, and blending is performed on the 
GPU. We have measured the end-to-end latency of our 
system at around 150 milliseconds, with some variation 
depending on the type of camera and display that is used, 
which is sufficient for remote collaboration given typical 
network latencies. 

The majority of current desktop video conferencing 
systems give users the option of seeing live videos of 
themselves during the meeting. In systems such as these a 
user interacting with our technologies can directly see what 
the system is sensing and they receive immediate feedback. 
Systems such as in-room telepresence studios often 
attempt to create the illusion of all parties being in the 
same physical space, so they avoid showing a mirror-like 
view of the local participants. In configurations where the 
user does not see themselves we must provide some 
feedback to show the user what the vision algorithms are 
sensing. During frame-based tracking we can simply insert 

a virtual frame into the displayed video stream 
corresponding to where the frame is detected. During 
gesture interaction we use the captured depth information 
to display a ghost-like image of the user’s own hand over 
the video, as shown in Figure 7. This is particularly 
important when pointing gestures are used. 

During user testing we’ve found that even people who 
are inexperienced with gesture interfaces and computer 
vision quickly understand how to interact with the system. 

4. Conclusion 
We have presented a solution that uses real-time 

computer vision to enable intuitive interaction with digital 
content during live video conferencing. Users can control 
the system using simple objects and gestures without 
interrupting the normal meeting flow. Having shared 
media naturally integrated with the user displays also 
allows for much richer, more expressive interactions which 
significantly enhances the meeting experience. Looking 
ahead, we believe that augmented reality and computer 

Figure 6: Our approach for hand gesture recognition.  

 

Figure 7: Visual feedback of hand location 
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vision techniques will make remote meetings more natural 
than the experience offered by today’s video conferencing 
systems. In the future, it is possible that remote meetings 
may one day even surpass real meetings in effectiveness. 
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