

Keyword(s):

Abstract:

Cloudscape: Language Support to Coordinate and Control Distributed
Applications in the Cloud
Andi Bejleri, Andrew Farrell, Patrick Goldsack

HP Laboratories
HPL-2010-197

Coordination, Control, Cloudscape, Smart Frog

Cloud Computing is an innovative computing proposal that has emerged from technological developments
of the last decade in computing, storage and networking. A key feature of this proposal is the ease and
effectiveness of providing a service. There are a number of challenges that a management system for the
Cloud will need to address including: scale, reliability (fault-handling and high availability), security,
multi-tenancy, and service heterogeneity. This paper proposes an object-based language extended with
dependencies, called CLOUDSCAPE, to address coordination and control of components in a distributed
computation to provide reliability and scalability of service in the context of the cloud. The problem
context is further extended with component failure and dynamic addition of new components. Our
language allows programmers to write the dependencies between the lifecycle states of components as
relations between the language objects that are responsible for controlling components behaviour.

External Posting Date: December 6, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: December 6, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

Cloudscape: Language Support to Coordinate and
Control Distributed Applications in the Cloud

Andi Bejleri∗
Department of Computing

Imperial College
London, UK

Email:ab406@doc.ic.ac.uk

Andrew Farrell
and Patrick Goldsack
∗HP Research Labs

Bristol, UK
Email: <name>.<lastname>@hp.com

Abstract—Cloud Computing is an innovative computing pro-
posal that has emerged from technological developments of the
last decade in computing, storage and networking. A key feature
of this proposal is the ease and effectiveness of providing a service.
There are a number of challenges that a management system
for the Cloud will need to address including: scale, reliability
(fault-handling and high availability), security, multi-tenancy, and
service heterogeneity.

This paper proposes an object-based language extended with
dependencies, called CLOUDSCAPE, to address coordination and
control of components in a distributed computation to provide
reliability and scalability of service in the context of the cloud.
The problem context is further extended with component failure
and dynamic addition of new components. Our language allows
programmers to write the dependencies between the lifecycle
states of components as relations between the language objects
that are responsible for controlling components behaviour.

I. INTRODUCTION

Cloud Computing is an innovative computing proposal that
has emerged from technological developments of the last
decade in computing, storage and networking. A key feature
of this proposal is the ease and effectiveness of providing a
service. While ease to provide a service is achieved using the
web, effectiveness, including: scale, reliability (fault-handling
and high availability), security, multi-tenancy, and service
heterogeneity, is addressed by a management system dealing
with a series of challenges.

This paper studies coordination and control of components
in a distributed computation in the context of the cloud,
providing reliability and scalability of service. In our study,
a component is a set of functions written in a mainstream
language, representing real world artifacts, for example, a
service in a Web Services or a task in parallel algorithms and
scientific computations.

Components of a distributed application define dependen-
cies at different states of their lifecycles. For example, in a
basic Client-Server program [8], the running order of the two
components is defined, citing the Java Tutorial [8], as:

“When you start the client program, the server should already
be running and listening to the port, waiting for a client to
request a connection.”

Unfortunately, a violation of the constraint on the state of
server would generate a run-time exception in the client code,

and the computation will be established manually by restarting
the client, as explained in the tutorial:

“If you are too quick, you might start the client before the server
has a chance to initialize itself and begin listening on the port.
If this happens, you will see a stack trace from the client. If this
happens, just restart the client.”

The approach presented in the tutorial of using a human entity
to coordinate the running of components cannot be applied
to the cloud. With millions of different service instances on
roughly an order of magnitude more virtual machines running
on the cloud, coordinating manually the components of every
distributed computation becomes intractable. In addition, fail-
ure coming from components logic or hardware, which affects
the normal lifecycle of components, becomes common place.
Thus, we would like a language that answers this research
question:

How can programmers specify a management system that
describes the dependencies between the lifecycles’ states
of components in a distributed computation and restores
components normal lifecycle in case of failure?

The solution proposed in this paper is an object-based
language extended with dependencies and non-deterministic
update, called CLOUDSCAPE. An object describes the abstract
state machine of a component lifecycle and a dependency
describes a causality between the states of two objects. Non-
deterministic update is used to describe scenarios where state
can change normally to the next one, according the logic of
the component, or exceptionally due to failure. An object is
not only a blue-print of a component lifecycle but also a
machine interpretation of it. That is, an object controls the
behaviour of a component through the associated transitions
that perform the change of object’s state. While methods in OO
languages are a block of statements, CLOUDSCAPE transitions
are block of statements guarded by a predicate. Constraints are
enforced at runtime, where a transition defined on a state that
is dependent on a state of another object takes place only when
that dependency is true.

Another problem is to coordinate and control new compo-
nents added at run-time to rescale the service due to load. For
example, in the Load Balancer Example, the Load Balancer
adds new Web Servers into the session to handle greater
request load while maintaining reasonable user response time.

Our formal model needs to address also a second research
question:

How can programmers specify a management system that
coordinates and controls dynamically added components?

The solution to this problem is providing CLOUDSCAPE
with the feature of adding new objects from the body of
transitions.

Our solution to both the questions follows a distributed ap-
proach, where objects themselves structure and share the con-
trol on components. This contrasts the centralised approach,
known as the workflow approach to the SOA community,
of actual management systems such as ControlTier [4] and
Capistrano [2], where a central, monolithic unit controls all
the components of an application. Our distributed approach
suits naturally the sort of applications we are trying to manage,
where each application component properties are studied piece
by piece, understanding their lifecycles and dependencies,
and then building the state machines and causalities between
states in CLOUDSCAPE. We have experienced that managing
large-scale systems following the distributed approach leads
to more readable, robust and scalable systems than following
the workflow approach.
Organization. The remainder of this paper is organized as
follows. Section II gives the intuition of the language throw
two real-world examples: Client-Server and Load Balancer.
Section III discusses our syntax and operational semantics,
illustrated by a 2-component example. Section IV illustrates
how our system prevents data races when evaluating global
predicates through the Dinning Philosophers example. Section
V surveys related work and section VI concludes with a
discussion of possible future work for this system.

II. CLOUDSCAPE BY EXAMPLES

This section gives an informal introduction to
CLOUDSCAPE through a series of examples. Examples
include coordination and control of components as in the
Client-Server example, restoration of normal lifecycle in case
of component failure as in the Client-Server example and,
coordination and control of components added dynamically
as in the Load Balancer example. Before giving the examples,
we give the definition of the three main constructs in
CLOUDSCAPE, namely object, transition and dependency.

Definition 1 (CLOUDSCAPE object). An object consists of
attributes that are defined over data fields and transitions.
It describes the state machine of a component lifecycle and
the computation entity that interprets the state machine and
controls the behaviour of a component. Computation happens
mostly via predicate dispatch— a transition runs only when
the guarding predicate is true.

Definition 2 (CLOUDSCAPE transition). A transition consists
of a block of programming statements and a predicate. The
block of statements performs actions in an external language
(Java in our study) and CLOUDSCAPE. The predicate guards
the run of the block of statements. Transitions provide a

serverClient

client

server

interact

 listen

Completed

Raw

Ready

Connection

Established

connect

Completed

Raw

Connection

Established

acceptinteract

close

close

Closed

Closed

start

Fig. 1. State diagram of Client-Server

mechanism to control the behaviour of a component as they
change the state of the object they are associated with.

Definition 3 (CLOUDSCAPE dependency). A dependency con-
sists of a name, a boolean operator to compose instances
of dependencies, a propositional expression to guard the
transitions of an object and two input parameters to customize
the propositional expression, where the second parameter,
denoted by, represents the object that the propositional ex-
pression will guard, called the dependent object while the first
object is called the depending object. Dependencies provide
a mechanism to enforce the constrains between the lifecycle
states of two objects and to define object’s runnability.

A. Client-Server Example

Figure 1 gives the state diagram of the Client-Server ex-
ample, described in the introduction. The system consists of
two objects client and server, and two dependencies start
and serverClient. A server is initially created listening for
connection from the client. Once a request for connection has
arrived, the server accepts it establishing a connection with
the client. Further, the server interacts with the client and
subsequently completes its run. Lastly, the server closes all
the streams and sockets opened ahead. Whilst this is taking
place, a client is created connecting to a listening server.
Once the connection is established, the client interacts with
the server. Similarly to the server, the client ends by closing
all the streams and sockets opened when the connection was
established.

The implementation in CLOUDSCAPE of the diagram is
shown in Figure 2. Each object controls respectively the
behaviour of each Java component: Client and Server. For
presentation reasons, we omit the full component’s code1,
relegating it to Appendix. An object is created by cloning

1We use the same code as in the Java Tutorial [8].

dependency start{true@on→by}
dependency serverClient {

(on:sState6="raw")@on → by}

let client = clone(Object) 7←{
address "localhost";
port 1234;
cState "raw";

connect [cState="raw"]{
Client theClient =

new Client(address, port);
cState "connEstbl"
};
interact [cState="connEstbl"]{

theClient.interact();
cState "completed"
};

close [cState="completed"]{
theClient.close();
cState "closed"
};
},

server = clone(Object) 7←{
port 1234;
sState "raw";

listen [sState="raw"]{
Server theServer =

new Server(port);
sState "ready"
};

accept [sState="ready"]{
theServer.accept();
sState "connEstbl"
};

interact [cState="connEstbl"]{
theServer.interact();
cState "completed"
};

close [cState="completed"]{
theServer.close();
cState "closed"
};
}

in
start(unit, server);
serverClient(server, client)

Fig. 2: Client-Server example: the CLOUDSCAPE objects
control the behaviour of the Java components (see Figure 3)

another object, Object by default, updating attributes of the
cloned object and adding new attributes. server and client

contain attributes to set up the components, e.g. address

and port, and attributes that store the state of component’s
lifecycle, e.g. cState and sState, initially set to Raw.
Transitions are defined strictly on the component’s own state.
The connect and listen transitions in client and server,
respectively, occur only if the state of the components is
Raw. Furthermore, connect creates an instance of the Client
class, and updates the state attribute with the new component’s
state Connection Established. Java code can be embeded in

class Client{
Socket cSocket = null;
... // stream declarations

public Client(String address, int port){
try {

cSocket = new Socket(address, port);
catch (UnknownHostException e) {

... // handle exception
} catch (IOException e) {

... //handle exception
}

}
... /* definition of other methods: interact,

close */
}
class Server{

ServerSocket sSocket = null;
... // other socket and stream declarations

public Server(int port){
try {

sSocket = new ServerSocket(port);
} catch (IOException e){

... // handle exception
}

}
... /* definition of other methods: accept,

interact, close */
}

Fig. 3: Client-Server example: Java components

CLOUDSCAPE by injecting Groovy scripts— Groovy [17] is a
scripting language that perfectly integrates with all features
of Java and complements it with features from dynamic
languages, including closures, maps, and regular expressions.
The constructor code of Client creates a connection with
Server. In the Server, listen creates an instance of the
Server class, and updates the state attribute to Ready. The
constructor of Server creates a server socket ready to accept
connections from Client. In client, interact controls the
interactions with the server by invoking the interact method
on the Client instance. interact starts the conversation
only when the connection with the server is established and
updates the state of the computation to Completed when the
conversation has completed. close controls the end of the
computation of the client by closing all the streams and
sockets opened ahead. In the server side, accept controls a
ready server to accept a connection, where a ready server

is defined over a listening server socket. interact and close

control the computation of the Server similarly as the ones
of the Client.

The behaviour of client is guarded by the serverClient

dependency. That is, client is active only if server is not in
the Raw state. While, the behaviour of server is guarded by
a dependency that does not enforce any constraint but rather
simply starts the behavior of the object, allowing transitions
listen, accept, interact and close to be evaluated in
the listing order. The server uses “unit” to denote lacking

serverClient

client

server

interact

 listen

Completed

Raw

Ready

Connection

Established

connect

Completed

Raw

Connection

Established

accept
interact

close

close

Closed

Closed

start

Fig. 4. State diagram of Client-Server handling failure

of depending object, in a similar sense as the “void” type in
Java denotes lack of returning output. We use the term “unit”
from ML. Hence, the behaviour that invokes starting the client
will be applied after the server is listening for connections.
The constraint described in the tutorial is expressed as a
propositional expression on the state of components, guarding
the behaviour of an object.

B. Client-Server Example with Failure

Every transition of each object may fail, transiting the state of
an object to Raw2 as shown in Figure 4. In case of an erroneous
action caused by component logic or hardware failure, the Java
runtime engine interrupts the program, affecting the normal
lifecycle of the component and possibly of all the other
components of an application.

The Java runtime provides a mechanism to handle erroneous
actions through the try− catch clause. In the example of the
previous section, exceptions were handled at the component
level, interrupting the running of one component, and con-
sequently of the other, without notifying the CLOUDSCAPE
objects. As a consequence, the state machine represented in
the CLOUDSCAPE object is erroneously active on an abstract
component state that does not match the real one.

Figure 5 shows how to restore the computation in the Client
component (Client-Server example) in case of failure using
CLOUDSCAPE. Our solution shifts the handle of exceptions
at the CLOUDSCAPE objects and so, updating the attributes
that abstract the state of components to Raw. That is, the state
machine of a component is set to Raw if an exception is raised
when executing part of the component behaviour. In the Client-
Server example, if an exception is raised in one of the methods
connect, listen, accept, interact, and close that are

2The design to handle failure by transiting the state to the initial one is
related to this particular example and should not be considered as a design
pattern on how design failure handling in CLOUDSCAPE.

client = clone(Object) 7←{
address "localhost";
port 1234;
cState "raw";

connect [cState="raw"]{
try{

Client theClient = new
Client(address, port);

cState "connEstbl"
}catch(UnknownHostException e){

... /* handle exception for
component */

cState "raw"
}catch(IOException){

...
cState "raw"

}
};
interact [cState="connEstbl"]{

try{
theClient.interact();
cState "completed"

}catch(IOException e){
...
cState "raw"

}
};
close [cState="completed"]{

try{
theClient.close();
cState "closed"

}catch(IOException e){
...
cState "raw"

}
};

}

class Client{
Socket cSocket = null;
... // stream declarations

public Client(String address, int port)
throws IOException,

UnKnownHostException{
cSocket = new Socket(address, port);

}
... /* definition of other methods: interact,

close */
}

Fig. 5: Client-Server example: Client—Handling component
failure in the object and not in the component

RawRaw

Ready

webServerLB

LB WS1

create

run

create

Ready

NewComp

createWS

in
c
re
a
s
e
W
S
In
s
tn
c
s …

Raw

Ready

WSN

run

create

Perform

accept

Perform

accept

start start start

Fig. 6. State diagram of Load Balancer

controlled by the transitions of the same names, the latters
restore the computation of each component at the initial state.
A restore of the computation of one participant will cause the
other participant to restore the computation to the initial state,
leading the two components to the initial state Raw.

C. Load Balancer

The Load Balancer manages and dispatches the load of work
to several Web Servers in relation to time response. That is, it
adds a new Web Server into the session if the response time
is lower than a threshold and then dispatches the work load
to each of them. For presentation reasons, we have simplified
the specification and state diagram of the problem to only the
dynamic features of it. The state diagram, given in Figure 6,
consists of the LB object and the WS objects, and dependencies
start and webServerLB. The transitions of the LB object flow
over three states: Raw, Ready and NewComp, where the cycle
between states Ready and NewComp creates new web server
objects and addresses the load of work to the new web servers.
The transitions of the WS objects are defined over the Raw,
Ready and Perform states, where create creates an instance
of a Web Server, accept delegates to the instance created a
load of work to perform and run accomplish the processing
of the work. A web server is always accepting requests of
work and processing them, represented in the diagram through
a cycle between the Ready and Perform states. The work is
dispatched to the new Web Server only when the latter have
been created and are ready to accept requests of work. Figure
7 gives the modeling of this specification in CLOUDSCAPE.

The CLOUDSCAPE object that describes the state machine
of the Load Balancer, firstly, starts the Load Balancer compo-
nent and then, repeatedly adds a new CLOUDSCAPE object
responsible for a Web Server, if the response time of a
service is lower than a certain threshold. The work to the
new Web Server component is dispatched if the Web Server
has been created by the object. The state machine of a Web
Server, described in the WS object, firstly, creates a Web Server
component and then starts it. The constraint that part of the
work load is dispatched to the new Web Server only if it has
been created, is defined as a dependency on the state machine

dependency start{true@on → by}
dependency webServerLB {

&(on:wsState="created")@on → by}

let LB = clone(Object) 7←{
respTime 0;
threshold 1000;
wsInstncs 0;
lbState "raw";

create [lbState="raw"]{
new LoadBalancer();
state "ready"

};
createWS [respTime>threshold

& lbState="ready"] {
let ws=clone(WS)
in{

start(unit, ws);
webServerLB(ws, LB);
lbState "newComp"

}
};
increaseWSInstncs [lsState="newComp"]{

wsInstncs wsInstncs+1;
lbState "ready"

}
}

WS = clone(Object) 7←{
wsState "raw";

create [wsState="raw"]{
WebServer ws = new WebServer();
wsState "ready"

};
accept [wsState="ready"]{

ws.accept();
wsState "perform"

};
run [wsState="perform"]{

ws.run();
wsState "ready"

}
}

in
start(unit, LB)

Fig. 7: Load Balancer example: CLOUDSCAPE objects

of the Load Balancer webServerLB, i.e. the state machine
becomes inactive to transit from the state newComp to ready

through run if the dependency added at addWS is not true.
The start dependency is used in the same way as in the
Client-Server example, to start each component.

The attribute respTime stores the response time of a
service and is updated in the Load Balancer component code.
The wsInstncs attribute stores the number of web server
created and its value is used by Load Balancer component
code when dispatching the workload. Section V explains how
CLOUDSCAPE attributes values can be read and written from
Java code in our study.

III. FORMAL MODEL

We now introduce the core CLOUDSCAPE language to
formalize the intuitions given above. This section contains the
full syntax and operational semantics.

A. Syntax

Figure 8 provides the syntax of our language. The metavari-
able N ranges over dependency names; on, by range over
dependency variables; e, e′, g, ... range over expressions; x,
y, ... range over variables; k, l, ... range over attributes names;
L,L′, L′′, ... ranges over locations.

A program is a list of objects, followed by a list of instances
of dependencies. Dependencies are defined over two objects
bound by the @ operator. Dependencies in CLOUDSCAPE are
defined over any propositional expression to capture states of
objects as shown in the above examples. In CLOUDSCAPE,
dependencies are composed by the & and | operators to com-
pose different states of the same object through | and different
states of different depending objects through &. Proposition
expressions include boolean values, in- equality tests (<, >, =)
on attribute values of objects, and two expressions composed
using the boolean operators and, denoted &, or, denoted |,
and not, denoted !.

Expressions define behaviour in CLOUDSCAPE. An attribute
is defined over a name and value. An object is created
by cloning another object, Object by default, and update it
with new attributes similarly as in the system of Fisher et
al. [12]. An instance of a dependency is created when two
objects are applied. The sequential composition is standard.
A data attribute can be updated non-deterministically by two
values to represent a normal transition of one state to another
following the normal flow of the component and an exception
transition due to component failure. Values include transitions
and primitive values such as natural numbers and boolean
values.

Transitions labeled object represent the guarded behavior
of an object, where dependencies’ instances upon the object
define the predicate (the guard) and the transitions(behaviour)
associated to the object define the scope of the expression
(the block of statements). We will refer throughout the paper
to the guarded behaviour of an object as object transition and
to the single transition associated to an object as transition.
The predicate of object transitions is typically defined over
other components attributes (global), while in transitions,
predicate is defined over component’s own data attributes
(These constraints are ensured by the operational semantics
in Figure 9).

The remaining constructs are part of the runtime syntax.
Location of an object and parallel composition is standard,
composing in parallel the behaviour of two or more objects.
At run-time, the object behaviour are prefixed by the object
location to define rules of scoping when new objects are
created as we shall see later in the operational semantics.

Objects’s attributes are stored in a heap that is a pair of
object location and description. The object description is a

D ::= dependency N{&/|/ 3P@x→ y}

P ::= true | false | x:k | L:k | P op v
| P& P ’ | P | P ’ | !P

e ::= k e | clone (e) 7← {e’} | N(e, e’)
| e;e’ | e⊕e’ | v | L | e| e’ | L:e

v ::= object/ 4 [P]{e} | n | true | false · · ·

H ::= L → Odescr, H
Odescr ::= Odescr 7← k e

Fig. 8. User and run-time sytax

sequence of attributes. Our attribute-based object encoding is
similar to standard object encodings [9], [12].

a) Encoding of the let construct: In Section II, we used
the let construct to define more easy to read and understand
programs. The let variable binding construct can be simulated
in our language, using the attribute and sequential composition
constructs as shown below.

let k = e in e′ , k e; e′

B. Operational Semantics

Figure 9 gives the operational semantics via the reduction
relation −→ where the state of computation is defined by terms
of the language and a heap of objects. The interesting features
of the rules are how they initiate a session, create a new object
in the heap and in the evaluation scope, add a dependency
to an object, evaluate an object transition and a transition
associated to an object behavior, update non-deterministically
an attribute, and prevent race conditions regarding evaluation
of global predicates.

Rule R-Init initiates a session by introducing the Main
reference to the main program that is defined as a list of object
declarations and instances of dependencies on those objects.
Once the session has been initiated, new objects are created in
the heap through rule R-Cloning. In the heap, the new object
contains the attributes of the cloned object and the ones added
by the user. The attributes of the cloned object that have the
same name to the user ones are replaced by the latter using
the] operator defined in Figure 10.

The behaviour of a new object (object transition) is created
only when the first dependency is applied to him. Rule R-New
places the new behavior inside the scope of the evaluating
object, prohibiting it to run until the running transition has
terminated. This design allows to capture all the dependencies
instances on the created object that could be present in the
running transition before making the behaviour of the object
runnable. Env defines the environment of dependencies for a
program. The dependency returned is instantiated by replacing
x with the first argument and y with the second argument
in the propositional expression. transitions looks up the
object descriptor for transitions (see Figure 10). Rule R-DepO
applies an instance of dependency to an object. The instance is

3&/|/ denotes either & or | or none of them.
4object/ denotes either object or none.

H; k′ clone(L) 7← {k e};e′ −→ H;Main : k′ clone(L) 7← {k e};e′ R-Init

H(L′) = Odescr L′′ /∈ dom(H) H ′ = H[L′′ 7→ Odescr] k e]

H;L : k′ clone(L′) 7← {k e}; e′ −→ H ′;L : e′{L′′/k′}
R− Cloning

P = Env(N){L′/x}{L′′/y} transitions(H(L′′)) = [P ′]{e′}
H;L : N(L′, L′′); e −→ H;L : (e|L′′ : object [P]{[P ′]{e′}})

(L′′ /∈ dom(e)) R−New

&/| P ′ = Env(N){L′/x}{L′′/y}
H;L : (N(L′, L′′); e|L′′ : object [P]{e′}) −→ H;L : (e|L′′ : object [P &/| P ′]{e′})

R−DepO

&/| P ′ = Env(N){L′/x, L/y}
H;L : (N(L′, L); e; object [P]{e′} | g) −→

H;L : (e; object [P &/| P ′]{e′} | g)

R−DepS

eval(H(L), P) = true
H;L : object [P]{e} −→ H;L : e; object [P]{e}

R−ObjectT
eval(H(L), P) = false

H;L : object [P]{e} −→ H;L : object [P]{e}
R−ObjectF

∀j ∈ {1..l − 1}.eval(H(L), Pj) = false eval(H(L), Pl) = true

H;L : [Pi]{ei}1..n; object [P]{e} −→ H;L : el; object [P]{e}
(l ∈ {1..n}) R− TranT

∀j ∈ {1..n}.eval(H(L), Pj) = false

H;L : [Pi]{ei}1..n; object [P]{e} −→ H; 0
R− TranF

H;L : k e⊕ k′ e′; g −→ H;L : k e; g H;L : k e⊕ k′ e′; g −→ H;L : k′ e′; g R-NUpdateL, R-NUpdateR

k ∈ dom(H(L)) H ′ = H(L)[k→ v]

H;L : k e; e′ −→ H ′;L : e′
(e ↓ v) R−Attribute

If H; g −→ H ′; g′ and e ≡ g then H; e −→ H ′; g′ R-Congr

ON(P,L) = {L1, ..., Ln}
∀i ∈ {1..n}.if ei = k gi;hi then k /∈ aname(P,Li)

H;L : object [P]{e} −→ H;L : e′ H;Li : ei[1..n] −→ H ′;Li : e′i[1..n]

H;L : object [P]{e}|Li : ei[1..n] −→ H ′;L : e′|Li : e′i[1..n]
(dom(H) = {L,L1, ..., Ln}) R− Par

H1;L : E −→ H ′1;L : e′ H2; g −→ H ′2; g
′ dom(H ′1α) ∩ dom(H ′2) = ∅

H1, H2;L : E|g −→ H ′1α, H
′
2;L : e′α|g′

(dom(H1) = {L}) R− CPar

Fig. 9: Operational Semantics

created similarly as in R-New and is added to the guard of the
second object’s behaviour, following the composibility rules
of | or &. Other rules add a dependency to the running object
(self) by adding it to the guard of object behaviour after the
current transitions has been executed (R-DepS).

An object transition evaluates the block of expressions
(transitions associated to the object), concatenated to the object
behavior to provide continuity of computation, if the global
predicate evaluates true (rule R-ObjectT), otherwise it reduces
to itself. This contrasts the semantics of transitions where
rule R-TranT looks up in the list of transitions associated
to the object for a transition that predicate evaluates to true,
returning the block of statements of the latter. Rule R-TranF
signifies the end of an object’s behavior since no transition
is available to run; i.e. all transitions predicates evaluate to
false. Both these rules allow predicates to be defined strictly
over object’s attributes by restricting the scope of the heap
H to H(L) when evaluating the predicates (see Figure 10).
A clear separation at the language definition between the

kind of attributes used in dependencies and guards of local
transitions educates programmers to use the state machine
metaphor while modeling lifecycle management of systems,
where local transition defines a change of lifecycle state of a
component and dependency defines a causality between two
lifecycle states of two components.

The value of an attribute can be updated from the scope
of a local transition. The rule R-Attribute allows change to
attributes that are part only to the current objects’s attributes.
The expression (e ↓ v) denotes the evaluation of the expression
e to the value v, where v denotes primitive values and
transitions. Rules R-ChoiceL and R-ChoiceR represent the non-
deterministic choice on the two data attribute updates, respec-
tively the left and right attribute update. The computation
follows on the data attribute chosen. Rule R-Congr spawns
the behavior of new objects according to structural congruent
rules given below:

L: (object [P]{e}|L1:object [P1]{e1} | ... |Ln:object [Pn]{en})≡
L:object [P]{e}|L1:object [P1]{e1} | ... |Ln:object [Pn]{en}

Main:(L1:object [P1]{e1} | ... |Ln:object [Pn]{en})≡
L1:object [P1]{e1} | ... |Ln:object [Pn]{en}

Union of attributes
{..., k e, ...}] {k e′} = {..., k e′, ...}
{..., k e, ...}] {k′ e′} = {..., k e, ..., k′ e′}
{..., k e, ...}] {k′ e′, l g} = {..., k e, ...}] {k′ e′}] {l g}

Transitions look up
transitions(Odescr 7← k e) = transitions(Odescr) ∪ transitions(e)
transitions([P]{e}) = {[P]{e}} transitions(e) = ∅, e notInstanceOf Transition

Evaluation of predicates
eval(Odescr, true) = true eval(Odescr, false) = false
eval([k1v1, ..., knvn], k) = vi if ki = k and i ∈ {1..n}
eval(Odescr, P&/|P ′) = eval(Odescr, P)&/|eval(Odescr, P ′)
eval(Odescr, !P) =!eval(Odescr, P) eval(Odescr, P op v) =!eval(Odescr, P) op v

Depending object look up
ON(true, L) = ∅ ON(false, L) = ∅ ON(L : x, L) = L ON(L′ : x, L) = ∅
ON(P op v, L) = ON(P,L) ON(P&/|P ′) = ON(P,L) ∪ON(P ′, L)
ON(!P,L) = ON(P,L)

Attribute names look up
aname(L : k, L) = {k} aname(L′ : k, L) = ∅
aname(P&/|P ′, L) = aname(P) ∪ aname(P ′) aname(!P,L) = aname(P)
aname(true/false/x : k, L) = ∅

Fig. 10: Auxiliary definitions

where the first rule spawns the behaviors after the transition
that has generated them in L1 is reduced to the object tran-
sition, following rule R-ObjectT, and the second rule spawns
the behaviors after the main program has been evaluated.

The dependencies of an object (global predicate) are evalu-
ated only if the depending objects are not updating in parallel
the attributes that define those dependencies. This is to prevent
race conditions between the dependent and several depending
objects where the former is reading and the latters are writing
on the same attributes. In the rule R-Par, function ON(P,L)
looks up for depending objects of L by scanning the global
predicate P for references different from L (see Figure 10).
The second condition checks the scope of the runnable objects
whether the depending objects are updating attributes; in that
case, the condition is satisfied only if the attributes are different
from the ones in dependencies, resulting in the evaluation of
the object transition in parallel with the evaluation of the other
running objects. aname looks up for attribute names in the
part of proposition P defined by L’s attributes (see Figure
10). Rule R-CPar defines how execution of other expression,
different from object transitions, occur in parallel composition.
The formal definition of E is given in Appendix. The reduction
of these expressions occur independently with a memory of
only the object they are associated to. The new heap returned
by the first sub-reduction is refreshed with new reference
names in the scope, so that the new reference names created
in the heaps H ′

1 and H ′
2 do not clash when they are combined

together. Refreshing of reference names is defined through α-
conversion as in the lambda calculus. This allows to define
a parallel composition rule that preserves a consistent shared
memory.

Created Created

Removed Removed

toCreate

toRemove

toStart

Component A Component B

Fig. 11. State diagram of Two Components

C. Example of Two Components

We illustrate how the formal model of this work can coordinate
and control a system of two components, namely A and B. The
logic of each component consists of creating and removing an
entity (e.g. a virtual machine). The specification of the system
defines component A to create first an entity followed by the
creation of a second entity by B. Component B can create and
remove an entity repetitively in the system until component A
has removed its entity. The last action takes place only when
B has removed its entity.

Figure 11 shows the state machine of the two component
system. Each component includes two states, namely Created

and Removed. The dashed arrows define the dependencies
between the two states of components. The toStart de-
pendency starts the session, while dependencies toCreate

and toRemove define respectively the order of creating and
removing entities between components B and A.

Below, we provide the CLOUDSCAPE implementation of the
said state machine:

dependency toStart{ !by : created@on→ by}
dependency toCreate{on : created@on→by}
dependency toRemove{ | (on : removed)@on→by}

let O = clone(Object) 7← {
created false;
removed false;
create [!created]{

#create entity
created true;
removed false};

remove [created & !removed]{
#remove entity

removed true;
created false}

}
in

let A = clone(O) 7← {name A},
B = clone(O) 7← {name B}

in
toStart(unit, A);
toCreate(A,B);
toRemove(B,A)

where objects A and B control respectively components A

and B and, dependencies toStart, toCreate and toRemove
capture the dependencies defined in the specification. The
toStart dependency is defined on the initial state of A, where
the attribute create is set to false, and is used to start the
computation of A. The toCreate dependency captures the
state of the dependent (A) as “created” and applies to B. The
toRemove dependency captures the state of the dependent
(B) as “removed” and applies to A. In the create and remove
transitions, the line starting with # defines the invocation of
respectively creating and removing an entity. For presentation
reasons, we omit that line from the definition of objects in
the remaining of this section. Some of the reduction steps of
the program are given below:

∅; P −→[R−Init]

∅; Main: P −→[R−Cloning](3)5

H; Main: toStart(unit, L′); toCreate(L′, L′′);

toRemove(L′′, L′) −→[R−New]

H; Main: (toCreate(L′, L′′); toRemove(L′′, L′)
|L′:object[!L′:created]{create ...; remove ...})

−→[R−New,R−DepO]

H; Main: (L′:object[!L′:created | L′′:removed]{create ...;
remove ...}

|L′′:object[L′:created]{create ...; remove ...})
−→[R−Congr,R−Par(2),R−ObjectT,R−ObjectF]

H; L′:create ...; remove ...; object[!L′:created | L′′:removed]{
create ...; remove ...}

|L′′:object[L′:created]{create ...; remove ...}
−→[R−CPar,R−TranT,R−Par,R−ObjectF]

H; L′ : created true; removed false;
object[!L′:created | L′′:removed]{create ...; remove ...}

|L′′:object[L′:created]{create ...; remove ...}
−→[R−CPar,R−Attribute]

H ′; L′ : removed false; object[!L′:created | L′′:removed]{
create ...; remove ...}

|L′′:object[L′:created]{create ...; remove ...}
−→[R−CPar,R−Attribute,R−Par,R−ObjectT]

where P denotes the program (objects and dependency
instances). The evaluation of the program P starts with an
empty heap. New objects are created in the heap following
rule R-Cloning, defined as follows:

L 7→ [created false, removed false,
create [!created]{created true; removed false},
remove [created&!removed]{removed true;

created false}]

L′ 7→ [created false, removed false, name A,
create [!created]{created true; removed false},
remove [created&!removed]{removed true;

created false}]

L′′ 7→ [created false, removed false, name B,
create [!created]{created true; removed false},
remove [created&!removed]{removed true;

created false}]

In the third step, the behavior of A (referenced by L′)
guarded by dependency toStart is placed in the scope of
Main, disallowing it to run (by rule R-New). After all the
dependency instances have been evaluated, the two behaviors
are spawned to run independently according to the second
congruence rule discussed in Section III-B. Both behaviors
of the two objects are evaluated in parallel, each following
rule R-Par, resulting in the evaluation of L′ transitions as
L′′ global predicate evaluates to false. L′ evaluates the first
transition through rule R-CPar in parallel with the evaluation
of L′′ global predicate through rule R-Par. In the next step
when L′ updates the attribute created, L′′ can not evaluate
its global predicate in parallel since rule R-Par can not take
place as the (second) condition that checks for race conditions

5The number in parenthesis denotes the number of time that rule is applied.

fails. The new heap H ′ reflects the update of L′,

L′ 7→ [created true, removed false, name A,
create [!created]{created true; removed false},
remove [created&!removed]{removed true;

created false}]
The remaining steps follow a similar usage of rules described
above so we leave them to the curious reader.

IV. DINNING PHILOSOPHERS PROBLEM

We investigate deadlock in our calculus through a classic
concurrency problem—Dinning Philosophers [16]. Each of the
five philosophers is eating or thinking, without overlapping
the two activities. In order to eat each philosopher needs two
forks and there are as many forks in the table as the number
of philosophers.

The solution of the problem in our calculus is given in
Figure 12. A deadlock situation can occur when each of the
philosophers picks one of the forks and waits continuously
until one of the neighbours releases a fork. In our solution,
a philosopher is active when both forks are available; that is
the case when the two neighbours are either in the thinking
or hungry states. The Neighbour dependency captures the
condition of using two forks through the and (&) operator.
There are no race conditions when the dependencies are
evaluated on each object as they are evaluated in order and not
simultaneously. Also, no data corruption can occur between
two neighbours, in the scenario when one component evaluates
its global predicate whilst one of its neighbours is updating it.
By our semantics, an object can evaluate its behaviour if none
of the dependent objects that define the global predicate are
updating the attributes that global predicate is using.

Our solution is distributed; i.e., every philosopher checks the
state of his neighbours through evaluation of the dependencies
assigned to him. There is no central entity as in the Waiter
solution where the Waiter has a global view of the forks
available during the dinner and manages the requests from
Philosophers to avoid deadlocks. Our solution is similar to the
Monitor one in that, an object that cannot get the second fork
must put down the first fork before they try again. Each object
can access the global state through a lock on a procedure,
our evaluation of dependencies. However, our solution reduces
concurrency in this system, compared to the monitor solution
as a philosopher can not change the state, that is independent
from the state of the neighbours, from thinking to hungry if
one its neighbours is changing its state.

V. RELATED WORK

SmartFrog The idea of dependency modeling in
CLOUDSCAPE originates from previous works by the authors
on management of federated systems [13] in SmartFrog (SF).
The initial work provides simply a general idea on how to use
dependency modeling to manage highly distributed, federated
entities as an alternative to workflow approaches.

SF [7] is a language used mostly for modeling the de-
ployment of components on multiple hosts. In addition, it
provides a Java library used to read and write the attributes

dependency Neighbour{&(on.state = THINKING
|on.state=HUNGRY)}

dependency Own{| on.state=THINKING}

let Philosopher = clone(Object) ← {
state THINKING;
eat [state = HUNGRY]{state EATING}
think [state = EATING]{state THINKING}
hungry [stateTHINKING]{state HUNGRY }
}

in
let phil1, phil2, phil3, phil4, phil5 = clone(Philosopher)
in{

Neighbour(phil2, phil1);
Neighbour(phil5, phil1);
Own(phil1, phil1);
Neighbour(phil1, phil2);
Neighbour(phil3, phil2);
Own(phil2, phil2);
Neighbour(phil2, phil3);
Neighbour(phil4, phil3);
Own(phil3, phil3);
Neighbour(phil3, phil4);
Neighbour(phil5, phil4);
Own(phil4, phil4);
Neighbour(phil4, phil5);
Neighbour(phil1, phil5);
Own(phil5, phil5);
}

Fig. 12. Our solution of the Dinning Philosophers problem

of SF objects from components code. SF memory model
of objects is designed following the blackboard metaphor
[10] — a shared space in which a problem is decomposed
and incrementally solved. An immediate advantage of the
blackboard approach is extendibility, new components can be
added into a system without changing the data flow of the
system. While the blackboard metaphor consists also of an
arbiter that decides which object to run in the case when
more than one object is active, CLOUDSCAPE semantics is
not defined over a centralised running entity that controls the
objects but rather every object is a running entity that runs
independently and communicates with other objects through
dependencies.

Despite its maturity, SF does not support coordination and
control of components in a distributed application and so,
leaving unsolved the two questions of this paper. However,
SF offers a nice platform to implement and further develop
CLOUDSCAPE.

Workflow approach. The current state-of-the-art in tools
for service automation and lifecycle management (for the
Cloud) include HP Server Automation and Operations Orches-
tration [5], ControlTier [4] and Capistrano [2], which provide
dashboard-driven workflow-based management of services,
and node configuration management tools like Chef [3], and
Puppet [6]. The use of workflow to manage service deploy-
ments in the cloud however has a number of shortcomings.
It is inherently not scalable, hard to maintain, and does
not promote reuse. Instead of managing scripts for every

eventually in managing service artifacts, we push the control
logic down to the management components themselves. In
this way, CLOUDSCAPE addresses the issue of coordination
between tasks, following the distributed approach to design
more robust and scalable management systems. In addition,
CLOUDSCAPE is based on the object programming idiom to
better structure and extend a system.

Other languages. Other frameworks have been developed
to model distributed computation in the cloud, namely Hadoop
[1], MapReduce [11], Dryad [14] and Skywriting [15]. An
aspect that makes these frameworks successful to exploit the
hardware on data centers when compared to mainstream pro-
gramming languages is the high-level API on sockets, remote
procedures calls, data movement, machine failure, creation of
new tasks, evaluation of data dependencies and iteration. In
contrast to CLOUDSCAPE, these frameworks do not address
the issue of coordination between tasks in a distributed appli-
cation. Also, the languages of these frameworks describe the
control of a system on a central unit, following the workflow
approach, avoiding CLOUDSCAPE distributed approach.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a language to express the dependencies
between the lifecycle states of components in a distributed
application, and so automatically coordinate and control the
components to provide reliability of service when the appli-
cation is run on the cloud. The three main constructs of the
language, namely object, transition and dependency, offer a
design on how to build management systems for distributed
application. Our language supports the design of coordinating
and controlling applications that increase their computing
power by adding new components at run-time to provide
scalability. Restoring the computation of component due to
failure through language design further increases productivity
in developing systems for the cloud. A simple, minimal syntax
models the three main idioms of the language. The operational
semantics rigorously designs the behaviour of objects as au-
tonomous transitions —labeled object— composed in parallel.
CLOUDSCAPE provides a semantics that does not allow objects
depending on the state of another object to run in parallel while
the latter is updating it. We presented a series of examples
illustrating the practical utility and effectiveness of this system.

The next step in developing this work is the implementation
of the model as a library of SmartFrog. We believe
that a library that supports the syntax and semantics
of CLOUDSCAPE would increase productivity in the
implementation of management systems. From a theoretical
perspective, there are several ways to extend the current
system. A static type system would allow to statically capture
ill-behaved programs and so, guarantee that well-typed
programs do not go wrong at run-time. An interesting
aspect to further develop is the parallel composition of
objects with respect to possible deadlocks, race conditions
and starvation when the transition of a component state is
defined over more than one attribute. More dynamic concepts

such as leaving of components within a session are of interest.

Acknowledgments We thank Brian Monahan for comments
on a previous version of this paper.

REFERENCES

[1] “Apache Hadoop,” available at http://hadoop.apache.org.
[2] “Capistrano,” available at http://www.capify.org/index.php/Capistrano.
[3] “Chef,” available at http://www.opscode.com.
[4] “ControlTier,” available at http://controltier.org/wiki/Main Page.
[5] “HP Server Automation,” available at https://www.hp.com.
[6] “Puppet,” available at http://www.puppetlabs.com.
[7] “SmartFrog,” available at http://www.smartfrog.org.
[8] “The JavaTM Tutorials: Writing the server side of a socket,”

available at http://java.sun.com/docs/books/tutorial/networking/sockets/
clientServer.html.

[9] M. Abadi and L. Cardelli, A Theory of Objects. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1996.

[10] D. D. Corkill, “Collaborating and Multi-Agent Systems & the Future,”
in International Lisp Conference, 2003.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI, 2004.

[12] K. Fisher, F. Honsell, and J. C. Mitchell, “A lambda calculus of objects
and method specialization,” Nordic J. of Computing, vol. 1, no. 1, pp.
3–37, 1994.

[13] P. Goldsack, P. Murray, M. Newman, and B. Cox, “The Design of a
Next Generation Orchestration Engine,” in TechCon, 2007.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
EuroSys ’07, 2007, pp. 59–72.

[15] D. G. Murray and S. Hand, “Scripting the cloud with Skywriting,” in
HotCloud, 2010.

[16] A. Silberschatz and J. L. Peterson, Operating Systems Concepts.
Addison-Wesley, 1988.

[17] V. Subramarian, Programming Groovy: Dynamic Productivity for the
Java Developer. Pragmatic Bookshelf, 2008.

APPENDIX

This section gives the full definition of the Java Client and Server classes, following the code of the tutorial [8].

import java.io.*;
import java.net.*;

public class Client {
Socket echoSocket = null;
PrintWriter out = null;
BufferedReader in = null;

public Client(String address, int port) throws IOException {

try {
echoSocket = new Socket(address, port);
out = new PrintWriter(echoSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

echoSocket.getInputStream()));
} catch (UnknownHostException e) {

System.err.println("Don’t know about host: "+address+".");
System.exit(1);

} catch (IOException e) {
System.err.println("Couldn’t get I/O for "

+ "the connection to: "+address+".");
System.exit(1);

}
}
public void interact(){

BufferedReader stdIn = new BufferedReader(
new InputStreamReader(System.in));

String userInput;

while ((userInput = stdIn.readLine()) != null) {
out.println(userInput);
System.out.println("echo: " + in.readLine());

}
}
public void close(){

out.close();
in.close();
stdIn.close();
echoSocket.close();

}
}

public class Server {
ServerSocket serverSocket = null;
Socket clientSocket = null;
PrintWriter out = null;
BufferedReader in = null;

public Server(int port) throws IOException {
try {

serverSocket = new ServerSocket(port);
} catch (IOException e) {

System.err.println("Could not listen on port: " +port+".");

System.exit(1);
}

}
public void accept(){

try {
clientSocket = serverSocket.accept();

} catch (IOException e) {
System.err.println("Accept failed.");
System.exit(1);

}
}
public void interact(){

out = new PrintWriter(clientSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

clientSocket.getInputStream()));
String inputLine, outputLine;
KnockKnockProtocol kkp = new KnockKnockProtocol();

outputLine = kkp.processInput(null);
out.println(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processInput(inputLine);
out.println(outputLine);
if (outputLine.equals("Bye."))

break;
}

}
public void close(){

out.close();
in.close();
clientSocket.close();
serverSocket.close();

}
}

The KnockKnockProtocol class implements the jokes sent to the client. The definition of it can be found in the tutorial [8].
Figure 13 gives the context of expressions that define a local transition.

E ::= f clone(L) 7← {k g};g′
| N(L′, L′′); e
| local [P]{e}; e′
| f e; e′

Fig. 13. Evaluation Context

