

Keyword(s):

Abstract:

External Posting Date: February 4, 2011 [Fulltext] Approved for External Publication

Finding the Optimal Representation for Service Composition Using the Theory
of Regions
Yin Wang, Ahmed Nazeem, Ram Swaminathan

HP Laboratories
HPL-2010-191

Workflow, Service Composition, Automaton, Petri net, Theory of Regions

Service composition has received significant attention in the research community, but the focus has been on
service semantics and composition algorithms, and the problem of representation of the composition
outcome has been largely ignored. Ad hoc workflows are often employed, which typically sacrifice
alternative paths and parallelism for the sake of simple representation. In this paper, we show how theory
of regions, which was originally developed to derive Petri nets from finite state automata, can be applied to
find the optimal representation of composition. To apply the theory, we first propose an automaton-based
composition framework that incorporates most existing composition techniques without changing the
service semantics or its description language. Then based on the special requirements of the composition
representation, we develop our own Petri net synthesis algorithm that combines the benefits of two well
known algorithms from the theory of regions. More specifically, our algorithm converts an automaton to an
unlabeled Petri net, whenever such a conversion exists, and reduces the number of places in the net. We
demonstrate that workflow-based representation can limit the concurrency even for simple input/output
based service composition, while our Petri net-based representation is optimal in terms of flexibility and
parallelism. Our experimental evaluations include a case study on composing Google Checkout Service,
and the study on Oracle BPEL samples, for which our algorithm obtains better concurrent representations
for almost all non-trivial cases.

Internal Posting Date: November 21, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

Finding the Optimal Representation for Service
Composition Using the Theory of Regions

Yin Wang
Hewlett-Packard Labs

1501 Page Mill Rd
Palo Alto, CA, USA

yin.wang@hp.com

Ahmed Nazeem
Georgia Institute of

Technology
Department of ISyE
Atlanta, GA, USA

anazeem@gatech.edu

Ram Swaminathan
Hewlett-Packard Labs

1501 Page Mill Rd
Palo Alto, CA, USA

ram.swaminathan@hp.com

ABSTRACT
Service composition has received significant attention in the re-
search community, but the focus has been on service semantics and
composition algorithms, and the problem of representation of the
composition outcome has been largely ignored. Ad hoc workflows
are often employed, which typically sacrifice alternative paths and
parallelism for the sake of simple representation. In this paper, we
show how theory of regions, which was originally developed to de-
rive Petri nets from finite state automata, can be applied to find
the optimal representation of composition. To apply the theory, we
first propose an automaton-based composition framework that in-
corporates most existing composition techniques without changing
the service semantics or its description language. Then based on
the special requirements of the composition representation, we de-
velop our own Petri net synthesis algorithm that combines the bene-
fits of two well known algorithms from the theory of regions. More
specifically, our algorithm converts an automaton to an unlabeled
Petri net, whenever such a conversion exists, and reduces the num-
ber of places in the net. We demonstrate that workflow-based rep-
resentation can limit the concurrency even for simple input/output
based service composition, while our Petri net-based representation
is optimal in terms of flexibility and parallelism. Our experimental
evaluations include a case study on composing Google Checkout
Service, and the study on Oracle BPEL samples, for which our
algorithm obtains better concurrent representations for almost all
non-trivial cases.

1. INTRODUCTION
In the Service Oriented Architecture (SOA), workflows are widely

used to organize and orchestrate services to achieve business ob-
jectives. A workflow language, e.g., BPEL [3], defines a set of
activities, including service invocation, user interaction, and value
assignment. These activities are arranged by constructs such as se-
quence, AND fork/join, OR fork/join, and loops. Workflows are
often constructed manually, which is a tedious, time-consuming,
and error-prone process. For example, Google estimates up to four
weeks to integrate its checkout service with a merchant order pro-
cessing system, despite its ample documentation and wide adop-
tion. Manually composed workflows are poorly optimized, and
maintaining these workflows is even more difficult.

As services become increasingly abundant, especially due to the
recent boom in cloud services, automated service composition be-
comes the key to scale. To address this challenge, numerous com-
position methods have been proposed in the literature. Automated
service composition relies on service models that describe the se-
mantics of services. Existing service models can be largely divided
into three categories: input/output (I/O) models [33, 34, 21, 23],

precondition/effect (P/E) models [29, 4, 25, 31], and stateful (e.g.,
automaton) models [12, 9, 30, 7, 6, 20, 27, 22]. Different service
models result in different composition algorithms that generate the
composite service to achieve a given goal. Most of the existing
work focus on service models and composition algorithms, and
usually, the output composite service is often represented by some
ad-hoc workflows. These workflows may not present all possible
paths to achieve composition goals, and thus describe little or no
concurrency.

Because of the poor quality of both manually and automatically
composed workflows, in this paper, we restrict our focus to the op-
timal representation for service composition. We propose a generic
automaton-based composition framework that incorporates I/O, P/E
and stateful service models by automatically converting them into
component automata. For the composition, our framework uses
an automaton integration operation, called parallel product. First,
composition goals specified in different service model languages
are translated into our framework as goal states in component au-
tomata, and then, our composition algorithm selects and integrates
relevant components into one composite automaton. This automa-
ton preserves all feasible paths that achieve the goal, but it can
be very large and difficult to understand. Furthermore, automaton
models do not express concurrency explicitly. Therefore, our last
step converts the composite automaton into an unlabeled Petri net
using a synthesis tool we develop based on the theory of regions.

The theory of regions [17, 16, 8], developed in the 90s, is well
known for its ability to derive Petri nets from automata. Comparing
with automata, Petri nets are much more compact and are concur-
rent in nature. Comparing with workflows that use limited con-
structs, Petri nets are more expressive. In the application of service
composition, we show that even with simple I/O models, workflows
do not allow full concurrency in general. We also prove that when
the conversion from an automaton into an unlabeled Petri net ex-
ists, the synthesized net is maximally flexible and maximally con-
current, i.e., it preserves all possible paths and allows all possible
concurrent executions as the composite automaton permits.

Our contribution is on the optimal representation for service com-
position. In particular, we propose an automaton-based composi-
tion framework that incorporates all popular services models to fa-
cilitate the application of Petri net synthesis. Our framework con-
verts different service models into automata preserving the seman-
tics yet allowing maximum flexibility and concurrency. For the
Petri net synthesis, based on the special requirement of the com-
position representation, we develop a customized algorithm using
the theory of regions. In addition to finding the optimal represen-
tation, our algorithm also reduces the number of places and the
number of arcs in the synthesized Petri net. To execute the com-

posed service, we have implemented a Petri net execution engine
in our Web2Exchange framework [35]. We note that while the the-
ory of region has been applied to process mining [13], this is the
first paper to apply this theory to service composition.

Since manual composition is the norm today, to demonstrate the
value of our method, we designed two service composition sce-
narios. The first one is for services with detailed but unstructured
descriptions, and here we use Google Checkout Service [1] as a
case study. We show that these service descriptions naturally map
to I/O or P/E service models that capture the semantics. The sec-
ond scenario is based on existing manually composed workflows,
for which we study Oracle online BPEL samples [2]. We follow
the principle of artifact-centric design [11], and construct automata
that represent the life cycles of data objects in these workflows.
After composition and synthesis, the Petri nets constructed by our
algorithms often exhibit better concurrency yet preserve the orig-
inal semantics. We therefore argue that developers should follow
the artifact-centric design and develop these life-cycle automata in-
stead, and let our tool handle the composition task. As we obtain
these life-cycle automata automatically from existing workflows, as
a byproduct, our tool can be used to optimize manually composed
workflows. These two sets of experiments show that our compo-
sition framework is flexible enough to incorporate real world com-
plicated services, and that our synthesis algorithm scales to compo-
sition problems of practical size.

The rest of the paper is organized as follows. Section 2 dis-
cusses the background related to automaton and Petri net synthesis.
Section 3 describes how to model and compose services using au-
tomata. Based on the theory of regions, Section 4 presents our Petri
net synthesis algorithm and its proof of correctness, and Section 5
presents our experimental results for Google checkout and BPEL
workflow samples. Section 6 discusses related work and Section 7
concludes the paper with a summary of the results.

2. BACKGROUND
In this section, we define parallel product and Petri net, and dis-

cuss theory of regions. Due to limited space, we keep the discus-
sion at a high level and focus on the intuition and the relevance to
our method.

2.1 Automaton and Parallel Product
We assume readers are familiar with finite state automaton. An

automaton g is a triple (Sg,Σg,∆g,s0g), where Sg is the (finite) set of
states, Σg is the set of event labels, partial function ∆g : Sg×Σg →
Sg is the transition function, and s0g is the initial state. Assuming
component services are modeled by automata, service composition
is based on the parallel product operation.

DEFINITION 1. The parallel product of automata g and h is an
automaton g||h = (Sg×Sh,Σg∪Σh,∆g||h,(sog,s0h))

∆g||h : (s, t)×α →

(s′, t) if ∆g(s,α) is defined
(s , t ′) if ∆h(t,α) is defined
(s′, t ′) if both are defined
undefined otherwise

where s′ = ∆g(s,α), t ′ = ∆h(t,α) are successor states of s and t,
respectively.

The above definition extends to the parallel product of more than
two automata in a natural way. We drop the subscripts g and h
hereafter when the discussion involves only one automaton.

2.2 Petri net
We present the basic definition of Petri net and related concepts

here; see [28] for an excellent tutorial. Petri nets are bipartite di-
rected graphs with two types of nodes: circles represent places and
solid bars represent transitions. Tokens in places are shown as dots.

DEFINITION 2. A Petri net N =(P,Π,A,M0) is a bipartite graph,
where P is the set of places, Π is the set of transitions, A ⊆ (P×
Π)∪ (Π×P) is the set of arcs, and for each p ∈ P, M0(p) is the
initial number of tokens in place p.

A transition α in a Petri net is enabled if every input place p of
α , i.e., (p,α) ∈ A, has at least one token in it. When an enabled
transition α fires, it removes one token from every input place p of
α , and adds one token to every output place q of α , i.e., (α ,q) ∈ A.
The Petri net in Definition 2 is ordinary. A non-ordinary Petri net
N = (P,Π,A,W,M0) assigns weight to each arc W : A→ N. In this
case, the firing of a transition α will take W (p,α) tokens from each
input place p, and replenish W (α,q) tokens to each output place q.

Let P = {p1, · · · , pn}, the marking (i.e., state) of a Petri net,
which records the number of tokens in each place, is represented as
a column vector M of dimension n×1 with non-negative integer en-
tries, using a fixed order for the set of places: M =

[
M(p1) · · ·M(pn)

]T ,
where T denotes transpose. As defined above, M0(pi) is the initial
marking of pi. A self-loop in a Petri net is a pair p,α such that
(p,α),(α, p) ∈ A. We consider only self-loop-free Petri nets in
this paper, called pure in the literature.

The reachable state space of a Petri net is the set of all markings
reachable by transition firing sequences starting from M0. This
state space may be infinite if one or more places contain an un-
bounded number of tokens. We consider only Petri nets with a
bounded number of tokens in this paper, called bounded Petri net.
Given a Petri net N = (P,Π,A,M0), we can construct a reachabil-
ity graph that is an automaton (S,Σ,∆,s0), where S represents all
reachable markings of N from M0, Σ = Π, and ∆ captures the dy-
namics of N, such that ∆(M1,α) = M2 iff α ∈Π is enabled at mark-
ing M1, and the firing of α at M1 leads to the marking M2.

The Petri net in Definition 2 is unlabled. We can add labeling
function L, s.t. N = (P,Π,A,L,Ψ,M0) where L : Π → Ψ. The dy-
namics of a labeled Petri net is the same as an unlabeled one, but the
reachability graph is slightly modified as Σ = Ψ and ∆(M1,α) = M2
iff β ∈Π changes the marking M1 to M2 and L(β) = α .

2.3 Theory of Regions
The problem of Petri net synthesis is to construct a Petri net

(P,Π,A,M0) whose reachability graph is isomorphic to a given au-
tomaton (S,Σ,∆,s0). In this regard, the theory of regions is the
most extensively studied approach. The core idea of this theory is
the concept called region. A region is a set of states in an automa-
ton where every set of transitions with the same event label must
be one of the following: i) all “enter” the region, ii) all “leave” the
region, and iii) none “enters” or “leaves” the region. Let us con-
sider first the synthesis of unlabeled Petri net, and let Π = Σ. Then
a region maps to a place in the Petri net, where event labels that
enter the region become its input transitions, and event labels that
leave the region become its output transitions. Therefore, a place
p has one token in some marking M if and only if the automaton
state corresponding to M is in the region corresponding to p. Var-
ious algorithms have been proposed to find these regions [17, 16].
Some goes one step further to characterize the conditions needed
to synthesize a Petri net with the minimum number of places [15].
These algorithms synthesize only elementary Petri nets that are un-
labeled and safe, i.e., no more than one token in one place in any

reachable marking. In addition, one can synthesize unlabeled and
bounded (not necessarily safe) Petri nets using a generalized no-
tion of region [8]. While the state set based region maps every
event label to one of the three cases, “enter,” “leave,” and “irrele-
vant,” the generalized region maps a label to an arbitrary integer,
i.e., it is represented as an integer vector over all event labels. Dur-
ing synthesis, the vector region still maps to a place p in the Petri
net, and its vector represents p’s connectivity with all transitions.
Bounded unlabeled Petri net is a superset of elementary net, but its
reachability graphs are still a strict subset of all automaton mod-
els. Therefore, the conversion from an automaton to a bounded
unlabeled Petri net, or an elementary net, may not exist. In this
case, we can either relabel conflicting transitions and synthesize a
labeled Petri net [15] or prune the automaton and still synthesize an
unlabeled Petri net. Relabeling reduces concurrency, even though
the reachability graph remains isomorphic to the given automaton.
Pruning loses both flexibility and concurrency.

3. AUTOMATON-BASED SERVICE COM-
POSITION FRAMEWORK

The service composition problem takes as input a set of compo-
nent services with a composition goal, and generates a composite
service, usually represented by a workflow, that achieves the goal.
A component service typically consists of a set of atomic oper-
ations. Automated composition approaches are based on service
models that characterize component services and their operations,
which can be divided into the following three categories: (i) In-
put/Output (I/O): an operation of a service is modeled as a pair
of input and output sets, which are identified by the data schema;
(ii) Precondition/Effect (P/E): an operation of a service is modeled
as a pair of precondition and effect sets, which are logic literals
representing typically the state of the component service; and (iii)
Stateful: a component service is modeled by stateful models, e.g.,
finite state automata, to describe its state, where its operations are
transitions in the automata that change its states. We list the above
three categories in the order of increasing expressive power, as we
will see next that more expressive models can capture the seman-
tics of less expressive models [37]. However, expressive models
are hard to construct and their composition algorithms in general
have higher computation complexity. In practice, there is no widely
adopted standard for the purpose of service composition. Table 1
summarizes the tradeoff.

Next we briefly discuss how to translate different service models
into automata and use parallel product for the composition, the re-
sult of which is consistent with the semantics the underlying service
model encapsulates. Therefore, instead of designing different Petri
net synthesis algorithms for various service models separately, we
can focus on the synthesis problem of automaton models.

3.1 Input/Output Model
In the input/output service model, an operation α of a service is

define by an I/O pair (Iα ,Oα), where Iα and Oα , are the input and
the output data set, respectively. The execution semantics of the I/O
model is such that in order to execute α , Iα must be generated by
services executed preceding α . After its execution, Oα is added to
the set of available data. To compose I/O services using automata,
we construct an automaton for each data type as Figure 1 shows.

An automaton for a data type, say d, has two states representing
the availability of d. The initial state represents the unavailability
of d, where operations that generate d as an output can take place
and move the automaton to the final state representing the availabil-

Figure 1: The automaton for data d in I/O models

I O
α /0 {a,e}
β /0 {b,e}
γ e {c}
δ e {d}
(a) I/O model (b) Automaton

(c) Parallel product of the five automata

Figure 2: Example 1 and its automaton models

ity of d. Operations that require d as input can take place only at
this state. In addition, operations that output d can still occur in the
final state since otherwise they would be prohibited after the paral-
lel product operation. The way we model I/O services by automata
guarantees that an operation generating some data will always pre-
cede any operation that requires the data. Moreover, parallel prod-
uct preserves this ordering precedence. We use the following run-
ning example to illustrate the idea.

Example 1. There are four operations α,β ,γ ,δ , with I/O pairs
described in Fig. 2a. The automata for the five data types a,b,c,d,e
are shown in Fig. 2b (automata for b,c are similar to those for a,
d and therefore omitted). The parallel product of the five automata
is displayed in Fig. 2c, where self-loops are omitted. The parallel
product preserves not only the ordering precedence as defined by
the I/O model, but also all the feasible paths and parallelism, as we
will see later in Section 4.

3.2 Precondition/Effect Model
The precondition/effect(P/E) model describes the semantics of

services using propositional literals. Formally, the P/E model of an
operation α is a triple (Pα ,E+

α ,E−α), where Pα is the set of literals
representing preconditions, E+

α and E−α represent positive and neg-
ative effects, respectively. We separate positive and negative effects
to facilitate the use of set operations.

The execution semantics of the P/E model is defined as follows.
We assume that the current state T is defined as a set of literals
that are true in the state. Literals not in T are assumed to be
false (closed-world assumption). Operation α can take place in
T if Pα ⊆ T , and once α takes place, the next state is defined as
T ∪E+

α −E−α . In other words, to execute an operation α , all literals
in Pα must be true in the current state. After its execution, E+

α is
added to the state, while E−α is removed.

The automaton for P/E service model is similar to the automaton
representing I/O models, as shown in Figure 3. There are still two
states, representing false and true values of literal l, respectively.

Model Features Service Description Standard
Input/Output interface only, service has no semantics input and output data schema WSDL
Precondition/Effect semantics only, service is stateless preconditions and effects, situation calculus OWL-S (draft)
Stateful service has states, most expressive states and transition function

Table 1: Summary of service models for composition

Figure 3: The automaton for literal l in P/E models

Operations that have l in their positive or negative effect set will
move the automaton to the corresponding states. Operations that
require l as a precondition can only take place when l is true.

In practice, enumeration data types, instead of boolean values,
are often used for expressing preconditions and effects. For exam-
ple in Google Checkout Service, if the order status is “chargeable,”
the merchant can issue the “charge” operation and the effect is that
the status becomes “charged.” With an enumeration type, instead
of encoding it into boolean formulae, it is more efficient to use one
automaton for the variable. More specifically, each state (possibly
more than two) in the automaton represents a possible value of the
enumeration type, and transitions may change its value; see Sec-
tion 5 for a real example.

P/E service models in practice often have conditional effects. For
example, a “charge” operation may result in a successful charge or
a declined payment. We capture conditional effects by branches in
the automaton model. More specifically, we split one operation into
one transition that represents its invocation, and a set of successor
transitions that represent different effects.

3.3 Stateful Models
As we mentioned in the beginning of this Section, a service typ-

ically consists of multiple atomic operations. While both I/O and
P/E models describe each operation separately, stateful models con-
sider the service as one system with states, and its operations are
transitions that can change its state. For example, in the credit card
charge example, instead of using precondition “chargeable” and
effect “charged” to describe the operation, we may directly write
down the automaton with states “chargeable,” “charged,” and tran-
sition “charge” in between. Therefore, the stateful service model
shares the same set of transitions with the automata we use for I/O
and P/E services models, and it is merely a different way to capture
the service semantics. This is the basis of our service composition
framework, which allows us to compose services of different mod-
els together and use one algorithm for composition and the optimal
representation.

Recently data-centric, or artifact-centric, business processes have
received increasing attention [11, 19, 10]. The data-centric design
centers around data objects and their life cycles, which are typically
modeled by automata. We follow this design principle and briefly
discuss its role in workflow designs. This method is applied in our
experiments in Subsection 5.2, where we show that even process-
oriented workflows can be recomposed using data-centric design
and achieve better concurrency.

Workflows are high level scripting languages that organize var-
ious operations into structures such as AND, OR, and sequence.
Each workflow defines a set of variables, manipulated by its op-
erations that includes service invocation, user interaction, value
assignment, and utility functions. Following the data-centric de-

sign, we build one automaton for each variable to be used in the
workflow. The automaton includes relevant operations as transi-
tions, and captures the life cycle of the variable. After we obtain
the repository of these variable automata, service composition is
obtained using parallel product and Petri nets (as workflows) are
constructed using net synthesis algorithms. This data-centric de-
sign provides strong composability over process-oriented designs.
Building life cycle automata for each variable is considerably eas-
ier than constructing the monolithic workflow, and also, these au-
tomata can be reused for different workflows. Our net synthesis
algorithm has the added advantage that the optimal representation
can be constructed automatically.

3.4 Service Selection for Composition
Our service composition algorithm takes a composition goal as

the input, selects relevant automaton models from the service repos-
itory, and uses parallel product to build the composite service that
achieves the given goal. This subsection describes this process in
detail.

Let G denote the set of component automata in the service repos-
itory. Since each component automaton in the service repository
represents the life cycle of some data object, the composition task
is naturally specified as pairs of initial and goal states for a sub-
set of component automata, denoted as G′ ⊆ G. Since this subset
must be included in the composition, we start with G′ and expand
the set until all relevant component automata are included. Paral-
lel product synchronizes automata on shared events, therefore all
automata that share events with those in G′ must be included, i.e.,
G′ = G′ ∪{g|g ∈ G \G′,∃h ∈ G′,Σg ∩Σh 6= /0}. We continue ex-
panding G′ until no new automata can be added to G′. This is our
basic service selection procedure. There is an optional pruning step
that can reduce the number of component automata included in ex-
change for less flexible solutions. For example, we can prune dead
states in each component automaton, which are states not reach-
able from the initial state or states that cannot reach the goal state.
This pruning does not reduce alternative paths in the composite to
reach the goal, but the composite may become undefined should
the execution lead to those dead states unexpectedly. In addition,
we can sacrifice alternative paths for a small composite automaton.
For example with a composition task like map navigation, we may
want only a simple solution rather than numerous alternatives.

The computational complexity of the above algorithm depends
on the size of the final composite. The parallel product constructs
the Cartesian product for the state sets of all automata involved
in the operation, which dominates the computation. With many
shared events among components, in practice, the state space is
much smaller than the full Cartesian product. Pruning further re-
duce the number of automata in the final composite.

4. PETRI NET SYNTHESIS
The theory of regions is a well-studied body of work. Section 2.3

briefly discussed the relevant work and the two popular concepts
of regions. Here we provide a unified view of the two types of
regions, which enables us to combine the benefits of the respective
net synthesis algorithms. Due to the need of our specific application
domain, we also discuss the existence of the conversion and the

concurrency of the synthesized Petri net. Since our focus is on
the application of theory of regions, we try to avoid much of the
notation and development, and instead restrict out attention to the
intuition and the practical implication; see [16, 15, 8] for the full
details of the theory.

The rest of the section is organized as follows. Subection 4.1
provides our own interpretation and a unified view of the two types
of regions in the literature. Based on this view, Subection 4.2 com-
bines synthesis algorithms for different region types to obtain both
a broader class of the synthesized Petri net, and the compactness.
Subection 4.3 discusses the properties of the synthesized Petri net.

4.1 Regions
First we give the precise definitions of the two types of regions

in the literature, the one on set based and the other on vector based.

DEFINITION 3. (Set Region) In automaton (S,Σ,∆,s0), a set of
states R⊂ S is a region iff for any pair of equally labeled transitions
∆(s,α) = s′,∆(t,α) = t ′, the following holds:

if s ∈ R and s′ /∈ R then t ∈ R and t ′ /∈ R, and
if s /∈ R and s′ ∈ R then t /∈ R and t ′ ∈ R.

Essentially a region is a set of states where every event in Σ has
one of the three possibilities: “leaves” the region, “enters” the re-
gion, and irrelevant (“inside” the region or “outside” the region or
both). If an event α “leaves” region R, we call R a pre-region
of α . If α “enters” R, we call R a post-region of α . The set of
all pre-regions of α is denoted as ◦α , and α◦ for all post-regions.
Given a set R of regions for automaton (S,Σ,∆,s0), we construct
an unlabeled Petri net (P,Π,A,M0) as follows. First let P = R and
Π = Σ, i.e., add one place per region and one transition per event
label. Then (p,α) ∈ A iff the region of p is a pre-region of α , and
(α, p) ∈ A iff the region of p is a post-region of α . A place has
one initial token in M0 iff its region contains the initial state s0.
The following theorem establishes the relationship between a set
of regions and the constructed Petri net.

THEOREM 1. [16] A set R of set regions map to an elementary
Petri net whose reachability graph is isomorphic to (S,Σ,∆,s0) iff
the following two conditions hold:

∀s, t ∈ S,∃R ∈R such that s ∈ R, t /∈ R ors /∈ R, t ∈ R (1)
∀s ∈ S,α ∈ Σ,∆(s,α) undefined→∃R ∈R,R ∈◦α,s /∈ R (2)

Equation (1) is the state separation condition, which guarantees
that different states in the automaton map to different markings in
the Petri net. This is achieved by finding a region that includes
one state but not the other. Therefore its corresponding place will
have one token in one state (marking) and zero token in the other.
The state separation is unnecessary for our problem domain and
therefore we do not include it in our algorithm.1 Equation (2) is the
event separation condition, which guarantees that an event α not
defined at a state s will be prohibited by some place in the marking
that corresponds to s. This is achieved by a pre-region of α that
does not include s. This region (place) is connected to α but it
does not have any token in the marking that corresponds to s, and
therefore α is prohibited at s.

Although the event separation condition is simple and intuitive,
its implementation is not very practical because Equation 2 requires
1Technically speaking, without (1), the reachability graph is bisimilar to
the given automaton. Bisimulation is an equivalence relationship that is
weaker than isomorphism [26]. Here we consider only automata without
any bisimilar states, for which (1) is not necessary [15]. In practice, we have
not seen any automaton in our service composition tasks that has bisimilar
states.

one region for each undefined pair (s,α). Sparsely connected au-
tomata would actually have more places in the converted Petri net.
There is an alternative event separation condition that enables effi-
cient place reduction techniques [15]:

∀α ∈ Σ, ◦α 6= /0 and
⋂

R∈◦α
R = pre-states of α (3)

where pre-states of α are states for which α is defined.
Equation (3) is equivalent to (2). However, we can now reduce

the number of places by first finding all pre-regions of an event, and
then selecting the minimum combination of regions that still satis-
fies Equation (3). The final result is still not the minimum-size Petri
net though, since it is possible to combine pre-regions of different
events and further reduce the number of places. However, the min-
imization is not a good optimization goal here because combining
pre-regions of different events can destroy the nice structures in the
Petri net and make it unnecessarily complex; see Fig.8 in [15]. A
more serious problem with the overall approach is that it is lim-
ited to elementary Petri net only. The conversion to such a net
may not exist even for the simplest I/O model-based composition.
For example, the parallel product automata in Figure 2c cannot be
converted into an elementary net. The event separation condition
does not hold for the starting state and event γ (or δ). The solu-
tion within the set region framework is to split event labels where
the event separation condition is violated, and convert the automata
into a labeled Petri net. Event splitting reduces the concurrency
in the converted Petri net. In the extreme case, if we give every
transition in the automaton a different label, the Petri net generated
would be totally sequential, as the automaton model is. Figure 4a
shows the labeled Petri net generated by the popular synthesis tool
Petrify, using the algorithm in [15]. Events α and β are split and
therefore cannot take place in parallel after the conversion.

DEFINITION 4. (vector region) A vector region of an automa-
ton (S,Σ,∆,s0) is a mapping V : Σ→ Z.

A set R of vector regions of (S,Σ,∆,s0) maps to a non-ordinary
Petri net (P,Π,A,W,M0) as follows. Again, we first let P = R
and Π = Σ. Each vector region V ∈R represents the connectivity
of its corresponding place, say p, with the transitions in the Petri
net, i.e., (α, p) ∈ A and W (α, p) = V (α) if V (α) is positive, or
(p,α) ∈ A and W (p,α) = −V (α) if V (α) is negative, otherwise
there is no arc between p and α if V (α) = 0. With the above Petri
net construction, we observe that if we follow a path u of transition
firing sequence, the token change in a region (place) V would be the
weighted sum of the integer vector of V , where the weight of event
label α is the number of occurrences of α in u. With this important
observation, we can find a set of regions to achieve the synthesis
goal through linear programming. More specifically, first we want
to guarantee that if we follow different paths to reach a state in the
automaton, each region would have exactly the same number of to-
kens. We achieve this by finding all undirected elementary cycles
in the automaton, and formulate them as equality constraints in the
linear programming formula. The constraint states that each cy-
cle evaluates to zero in the weighted sum of a vector region, i.e.,
going through a cycle does not change the number of tokens in a
place. In addition, we need to guarantee that each place has non-
negative number of tokens in every reachable state. Therefore we
add an inequality constraint to the linear programming, stating that
the weighted some of a path to a state is nonnegative. With this
linear programming formulation, we present a different characteri-
zation of the state separation and event separation conditions below
using vector regions. For the sake of simplicity we denote the num-
ber of tokens in a vector region V in state s as Vs.

THEOREM 2. [8] A set R or vector regions maps to a bounded
Petri net whose reachability graph is isomorphic to (S,Σ,∆,s0) iff
the following two conditions hold:

∀s, t ∈ S,∃V ∈R such that Vs 6= Vt (4)
∀s,α,∆(s,α) undefined→∃V ∈R,Vs +V (α) < 0 (5)

The state separation condition in (4) ensures that for each pair of
states, there is at least one place such that its number of tokens in
the two corresponding markings would be different, i.e., different
states cannot map to the same marking. Again this condition is un-
necessary for our problem domain. The event separation condition
in (5) states that for every undefined state event pair (s,α), there is
a place in the Petri net with insufficient number of tokens to disable
α at the marking corresponding to s.

Vector region and its linear programming method can convert au-
tomata into unbounded Petri nets, which is a superset of elementary
Petri nets. However, it suffers from the same problem with the con-
ditions in (1-2) that the number of places generated can be large.
The place reduction technique corresponding to (3) does not apply
to vector regions. Moreover, the vector obtained from the linear
programming method may have too many non-zero entries, which
map to numerous arcs connected to the place, and thus complicate
the Petri net representation. We believe the best solution is to start
with the set region algorithm that is based on condition (3) and re-
sort to vector region and the linear programming method when the
automaton cannot be converted into a Petri net. Before delving into
the details of our algorithm, we present a unified view of the two
types of regions to conclude this subsection.

The notion of vector region is a generalization of the notion of
set region. One can convert a set region R to a vector region V
as follows, V (α) = 1 if R is a post-region of α , V (α) = −1 if
R is a pre-region of α , otherwise V (α) = 0. Therefore, the Petri
net generated by the translated vector regions is the same as the
Petri net generated by the set regions directly. Moreover, from the
unified view of set regions and vector regions, we have a simple
event separation condition.

THEOREM 3. An automaton g = (S,Σ,∆,s0) is isomorphic to
the reachability graph of some unlabeled and bounded Petri net if
for each pair of s,α , if ∆(s,α) is undefined, there exists a set or a
vector region that satisfies (2) or (5), respectively.

PROOF. (sketch) We prove the result by constructing an unla-
beled Petri net N = (P,Π,A,W,M0) from the regions obtained for
all pairs of s,α where ∆(s,α) is undefined. Let Π = Σ, we map
each set or vector region to a place in the Petri net according to the
methods described in this subsection. Then we show that the reach-
ability graph of N is isomorphic to g. More specifically, if ∆(s,α)
is not defined, the corresponding region will map to a place that
disables α at the marking corresponding to s. Otherwise if ∆(s,α)
is defined, no place prevents the transition from firing.

4.2 Our Synthesis Algorithm
Theorem 3 is the basis for our synthesis algorithm that combines

both set regions and vector regions. Furthermore, we can apply
the optimization techniques based to condition (3) to reduce the
number of set regions. Algorithm 1 displays this procedure. It
utilizes the same framework as the algorithm in Figure 10 of [15].
The framework first finds all pre-regions of an event, and checks
whether condition (3) is satisfied. If not it splits the event and tries
to resolve the conflict. The procedure iterates until (3) is satisfied
for all the events. Our new contribution is at lines 6-8, where for
each violation of the event separation condition, we first check if

Algorithm 1 Petri net synthesis algorithm
Input: Automaton g = (S,Σ,∆,s0)
Output: Petri net N = (P,Π,A,M0), where Π = Σ, and the reach-

ability graph is isomorphic to g.
1: for all α ∈ Σ do
2: R = all minimal pre-regions of α
3: E =

⋂
R∈R R−{pre-states of α}

4: if E 6= /0 then
5: for all s ∈ E do
6: solve event seperation linear programming(s,α)
7: if feasible solution found then
8: add the solution vector region to R
9: else

10: split event(α) and start all over
11: end if
12: end for
13: end if
14: end for
15: remove redundant regions and map to Petri net N

there is a vector region that can satisfy the condition. The check is
performed by the linear programming formulation described in [8].

The correctness of Algorithm 1 relies on and Theorem 3.4 in [15]
and Theorem 3 in the previous subsection. Here we provide a
sketch. Assume R is the set of pre-regions of α obtained at line
2, and V is the set of vector regions of α obtained at lines 5-12.
For any state s where α is not defined, if s /∈ E, there must exist
a set region R ∈ R such that s /∈ R. Since R is a pre-region of α ,
event separation for (s,α) is achieved by R. If s ∈ E, there will
be a vector region synthesized for (s,α) in V . Therefore the event
separation condition is satisfied for all pairs of s,α where ∆(s,α)
is undefined. The theorem is true as a result of Theorem 3.

We apply Algorithm 1 to Example 1, and Figure 4b shows the
synthesized Petri net. It allows fully concurrent execution. If we
use only set regions, event splitting is necessary and the concur-
rency is reduced; see Figure 4a as an example outcome. It is in-
teresting to note that if we use only structures AND, OR for this
example, the result will not be fully concurrent as Figure 4b is. For
example, a typical solution puts α and β in an AND structure, and
γ and δ in another AND structure that succeeds the first AND. In
this case γ and δ have to wait until both α and β finish, a significant
performance penalty especially if one of α and β is much slower
than the other. This example shows that if we use typical work-
flow representation for the composition result, we cannot get full
concurrency even for the simplest I/O service model.

For the event splitting at line 10 and the redundant region re-
moval at line 15, we followed the same strategy in [15]. The linear
programming formulation at line 6 is slightly different from the one
described in [8]. Instead of a dummy objective function, we added
an optimization goal that is to minimize the connection of region
V with transitions in the Petri net, i.e., minimizing the number of
non-zero mappings in V . This way, the Petri net obtained has fewer
arcs and is much simpler. In many cases, our Petri net synthesized
is essentially a workflow net that can be converted into workflow
languages like BPEL straightforwardly. However, with the new ob-
jective function, the formulation becomes an integer programming
problem rather than linear programming. In practice, the examples
we have are small enough so we can afford the extra computation
complexity. In addition to the integer programming step, line 2
needs exponential computation time in the worst case as the num-
ber of pre-regions can be exponential in the number of states. In

β

β γ δ α

α

(a) Petrify [14]

β

γ δ

α

(b) Algorithm 1

Figure 4: Petri nets synthesized for Example 1

practice, however, the number of pre-regions is usually very small.
This observation is shared in [15] as well.

4.3 Properties
Existing work on the theory of regions focus on the correctness

of the synthesis and concurrency properties of the synthesized Petri
net have not been discussed. As we have shown that event splitting
can reduce concurrency, in this subsection, we want to precisely de-
fine concurrency and give conditions on when the synthesized Petri
net is maximally concurrent. First we define exactly how we com-
pare the concurrency of two Petri nets whose reachability graphs
are isomorphic. Then we show that if a Petri net is unlabeled, it is
maximally concurrent.

The isomorphism of reachability graphs define naturally an equiv-
alence relationship among all labeled and unlabeled Petri nets. We
denote the class of Petri nets whose reachability graphs are isomor-
phic to automaton g as Ig. The Petri nets in Ig, however, may exhibit
different concurrent behavior. More specifically, at a marking M in
the reachability graph, even though every Petri net has the same set
of transitions enabled, due to isomorphism, the subsets of transi-
tions that can execute concurrently can be different. Therefore we
introduce the notation M[N⇒ Λ for that all transitions in Λ can fire
concurrently at M in Petri net N. Now we compare the concurrency
of two Petri nets as follows. Given two Petri nets N1,N2 ∈ Ig, N1 is
no less concurrent than N2 if for any reachable marking M in Ig, and

any subset of transitions Λ, M[N2⇒ Λ→M[N1⇒ Λ. A Petri net N ∈ Ig
is maximally concurrent if ∀N′ ∈ Ig, N is no less concurrent than
N′. Note that maximally concurrent Petri nets may have different
representations as the set of places can be different.

We claim that if Algorithm 1 synthesizes an unlabeled Petri net
then it is maximally concurrent. To prove this result, we need the
following lemma.

LEMMA 1. Consider a marking M and set Λ such that M[N⇒Λ,
then starting from M, the transitions in Λ can be executed in all
possible permutation orders in N.

PROOF. Since all transitions in Λ can fire concurrently at M, the
input places of these transitions must all have sufficient tokens in
M, i.e., no less than the summation of the tokens needed by each
transition. Different firing sequences drain exactly the same num-
ber of tokens in these places, and therefore must be enabled.

THEOREM 4. For any N ∈ Ig, if N is unlabeled and self-loop
free, N is maximally concurrent.

PROOF. Proof by contradiction. Assume that N is not maxi-
mally concurrent. Let N′ ∈ Ig be a more concurrent Petri net.

Therefore, there exists a set Λ and a marking M such that M[N ′⇒ Λ
but M[N; Λ. That is, there exists a transition α ∈ Λ that can not fire
concurrently with the rest of transitions in Λ at M in N. Therefore

there must exist one or more places in N that connect to p and to
some other transitions in Λ, with insufficient tokens at M in N. For
simplicity, let us consider one such place only, say p. Place p con-
nects to Γ ⊆ Λ,α ∈ Γ, such that Γ cannot fire concurrently at M.
Note that p is not an output place for any transition in Γ due to our
self-loop free assumption. By Lemma 1, we can pick any permu-
tation sequence of transitions in Γ and fire them one by one in N′.
Due to isomorphism, the same firing sequence must be possible in
N as well. However, as p does not gain any token throughout the
firing sequence, p will prevent some transition in Γ at a certain step,
which is a contradiction.

THEOREM 5. With I/O service models, the composite automa-
ton of any composition task can be converted to an unlabeled Petri
net with isomorphic reachability graph.

This theorem can be proved by the construction of an unlabeled
Petri net for a given I/O model in a similar way as Figure 4b shows.
This result proves that Algorithm 1 always synthesizes a maximally
concurrent Petri net for I/O model-based compositions.

5. EXPERIMENTS
Currently there are very few services with well defined seman-

tics available for the purpose of composition. The only excep-
tion is services with WSDL specifications, which can be viewed
as I/O model. However, because of the limited semantics of the
I/O model, most WSDL services are data look up services [5], for
which the composition is trivial. Semantic-rich services, however,
are usually described by plain text.

To evaluate the full capability of our composition framework
and the synthesis algorithm, we designed two service composition
scenarios. First, through the case study of Google checkout ser-
vice, we show that the text documents for these semantic-rich ser-
vices closely resemble I/O and P/E service models, which are easily
translated into automaton for automated composition. The second
scenario is for manually composed workflows, for which we exper-
imented with Oracle online BPEL samples [2]. We built a BPEL
parser to automatically extract automata that represent life cycles of
data objects in these workflows, and we show that the composition
obtained exhibit better parallelism for almost all non-trivial work-
flows. For this reason, we argue that workflow developers should
follow the data-centric design principle [11], and define life cycles
of data objects rather than the workflow itself.

5.1 Case Study: Google Checkout
Google Checkout is an online payment processing service that

helps merchants manage their order payments. It has around 20
APIs that communicate to the merchant through HTTP PUT and
GET commands. The parameters of each API can be sent through
name value pair in the HTTP request, or in a separate XML mes-
sage. These APIs are designed with extreme flexibility such that
merchants of various size and complexity can use the service. The
simplest case could be a lump sum payment for each order. The
complicated case involves per item order processing that handles
operations such as credit authorization, declined payment, partial
charge, back order, shipping, return, and refund. Exactly because
of the flexibility, there is a steep learning curve on using these APIs.
Google estimates up to four weeks to integrate its checkout service
with the merchant’s shopping portal [1]. Different order processing
systems result in different integration, and the checkout service it-
self is evolving. This makes the whole system extremely complex
and hard to maintain. Our goal is to model the checkout service
in our composition framework, such that merchants only need to

Financial State Valid Actions Description
REVIEWING None Google is reviewing the order
CHARGE- authorize-order, The order is ready to be
ABLE cancel-order, charged

charge-and-ship
CHARGING None May result in CHARGED or

PAYMENT DECLINED state
CHARGED refund-order The order has been charged

Table 2: Financial order states table (partial) from [1]

specify their specific order processing systems, and our composi-
tion engine handles the integration.

Google checkout APIs are described by reference documents in
plain text. However, we show that these documents closely resem-
ble the I/O and P/E service models, and the translation is straight-
forward. We believe the translation can be automated if there are
proper structure and syntax added to the documents. Many APIs
provide simple stateless calculation, which can be captured by I/O
service models. For example, shipping cost and tax calculations
are stateless APIs where the input is the shopping cart and the out-
put is the cost for shipping and tax, respectively. These I/O mod-
els can be constructed automatically through the analysis of XML
schema. Order processing and financial command APIs are the core
of the checkout service. Simple I/O models cannot capture their
semantics. Table 2 is a part of the financial status summary table
taken from the API reference online, with simplified descriptions.
It shows financial states side by side with the list of commands
available in a state. Precondition/effect models capture these enu-
meration data type well, as discussed in Section 3.2. The automaton
translated from the P/E model is displayed in Figure 5.

For the purpose of composition, we constructed a basic merchant
order handling process as follows. After charging the order, the
merchant checks inventory to see if the items are available, if not, it
may cancel or mark the order as back ordered. Otherwise the order
will be shipped. After shipping, upon receiving the order return
notification, the merchant will refund the customer and cancel the
order. Figure 6 shows the automaton that models the process. In
addition, we have a few WSDL-based data lookup services that
calculate taxes, shipping cost and coupons, to be integrated together
with the merchant and the checkout services. These services are
captured by I/O models, and subsequently translated into automata
model.

In the service composition phase, our service selection algorithm
picked twelve Google checkout APIs that are necessary for the
completion of the aforementioned basic merchant process. There
are a total of 20 component automata used for the parallel product
integration. The composite automaton has 98 states, 134 transi-
tions and 31 event labels. It turns out that this automaton cannot
be converted into an unlabeled Petri net for maximum concurrency.
Algorithm 1 had to split events and iterate. The final result contains
43 transitions rather than the original 31 events. The overall com-
putation takes a few seconds. In comparison, Petrify, the set region
based tool, generates a Petri net with 49 transitions, which is less
concurrent. This case study shows that our composition framework
incorporates real services well, and that our Petri net synthesis al-
gorithm adds the benefit of better concurrent representation.

5.2 Oracle BPEL Workflow Samples
Section 3.3 discussed the principles of data-centric design, and

how we recompose process-oriented workflows based on the de-
sign. Here we apply the technique to real BPEL workflows and
discuss implementation details and BPEL specific issues.

Init Reviewing

Charged

Payment_Declined

Chargable Cancelled

Refunded

Cancelled_by_Google

Place order

charge success

auth fail

auth success

refund order

customer changes credit card

cancel

charge fail

cancel

cancel

cancel

Figure 5: The automaton for Google financial status variable

Charge Check Inventory

ShipCancel

Cancel

Cancel Refund Order return

Ship

Backorder

Figure 6: The automaton for merchant order processing

Our model extraction method has to ensure that after recompo-
sition, the composite service produces the same result. We follow
two rules for this purpose. First, each read in the workflow must
see the same write. This analogous to the concept of view serial-
izability in the database literature [32]. Second, invocations of an
external service, called partner links in BPEL specification, must
follow the same order. The second rule is conservative especially if
the external service is stateless, in which case the invocation order
does not matter. However, we require this rule as we assume no
knowledge about external services.

Based on the above two rules, we extract models for both vari-
ables and partner links in a BPEL program. The transitions of these
automata are activities used in the program. There are around 20
activities defined in BPEL specification [3], including basic ac-
tivities such as receive, reply, invoke, and assign, and
structured activities such as sequence, flow, and switch. In
addition, some examples include Oracle’s BPEL extensions. Ba-
sic activities access variables either explicitly through an attribute,
e.g., variable="replyInput," or through functions in an
expression, e.g., bpws:getVariableData(’input’,...).
These activities also specify whether the access is a read or write.
Structured activities define the ordering relationship of basic activ-
ities. With this understanding, the modeling is straightforward in
most cases. For example in a sequence structure, if a read follows a
write, or a write follows a read, we need to put the two activities in
a sequence in the automaton model for the accessed variable, oth-
erwise the read could see a different write. If multiple reads occur
consecutively, we include all possible interleavings of these reads
in the automaton. Less obvious is when multiple writes occur con-
secutively, and in this case, we still include all possible interleav-
ings in the automaton. Because these writes are in fact modifying
different segments of complex data types, which can proceed in
parallel.

We implemented a model extraction tool for BPEL by parsing
the XML file. We applied the tool to 194 BPEL samples down-
loaded from Oracle BPEL designer website [2].2 These samples
are divided into categories including “demos”, “references,” “tu-

2We collected these distinct samples from various links on Oracle website
over the past two years. As the Oracle BPEL designer software and its
supplementary online contents are constantly changing, one may find only
a subset of these samples online to repeat our experiments.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Number of activites

S
iz

e
of

 p
ar

al
le

l p
ro

du
ct

 a
ut

om
at

on

Figure 7: Automaton size of 192 Oracle BPEL examples

torials,” and “utils.” Our model extraction tool successfully parsed
192 of them. One example caused a SAXParseException in
the XML parser, and another contains a link structure that we do
not handle yet. Most of these samples are very small, with no more
than 10 activities, and even less variables. After extracting life-
cycle automata for variables and partner links, the parallel product
of these automata contains less than 100 states, except one exam-
ple with a state size of 1,186. It is an XPath example in the “refer-
ence” category, which contains value assignments to many different
variables that can be parallelized. All possible interleavings of the
parallel access caused the state explosion. We remove the outlier
and draw the scatter plot in Figure 7.

Our Petri net synthesis algorithm successfully converted all 192
composite automata to Petri nets using only set regions. The lin-
ear programming function for vector regions was never invoked.
Due to the small size of these examples, the calculation takes less
than a second in each case. To compare our results with the orig-
inal workflow, we manually examined all 31 examples in the “de-
mos” category, which contains some of the largest examples in our
collection. There are 18 cases where our Petri nets are more con-
current, and the rest 13 is exactly the same. These 13 cases are
mostly trivial examples with less than 10 states in the composite
automaton, organized as a sequence. For the 18 cases that get bet-
ter concurrency, the most common source of optimization is value
assignments to different variables or different portions of the same
variable that can take place in parallel. Another common pattern
is a generic reply message that does not depend on any computa-
tion, and therefore can be sent early. There are a few cases where
different service invocations can happen simultaneously. Interest-
ingly, we discovered a case where we believe that the programmer
forgot to put an output variable in a service invocation to store the
result. Therefore, the service invocation becomes independent with
the subsequent activities, and our synthesis tool fully exploited the
optimization opportunity.

For the purpose of illustration, we picked one example, called
“CheckoutFlow,” in the “demos” category. The code snippet is dis-
played in Figure 8. The whole workflow contains one big sequence
structure with 14 activities in total. The figure shows the middle
part with 6 activities. The first three activities, invoke, assign,
and reply, must take place in order because the output of the pre-
vious activity is the input of the next. The next activity, receive,
has to follow reply as well since they both invoke the same part-
ner link client. The next activity, the second invoke, only
depends on the first invoke as they use the same partner link.

<sequence name="main">
...
<invoke partnerLink="CRMService" ... inputVariable=

"crmRequest" outputVariable="crmAddressResponse"/>

<assign><copy>
<from variable="crmAddressResponse" part="payload"/>
<to variable="replyInput" part="payload"/>

</copy></assign>

<reply partnerLink="client" ... variable="replyInput"/>
<receive partnerLink="client" ... variable="continue"/>

<invoke partnerLink="CRMService" ... inputVariable=
"crmRequest" outputVariable="crmCreditCardResponse"/>

<assign><copy>
<from variable="continue" part="payload"/>
<to variable="input" part="payload"/>

</copy><copy>
<from variable="crmCreditCardResponse" part="..."/>
<to variable="replyContinue" part="payload"/>

</copy></assign>
...
</sequence>

Figure 8: Code snippet of one Oracle BPEL example

Invoke

Assign Reply

Invoke

Assign

Receive

Figure 9: Petri net (partial) of the Oracle BPEL example

Therefore it can take place in parallel with the preceding four ac-
tivities. The last assign activity must wait for all the preceding
activities to finish, as it has two input variables that depend on both
branches. All these ordering constraints are enforced by the paral-
lel product of component automata that models these variables and
the partner links, in a similar fashion as Example 1 demonstrates.
Figure 9 shows the part of the final synthesis result that corresponds
to this code snippet.

There are additional optimization opportunities in Fig. 8, which
our implementation does not include currently. For example, as
mentioned earlier in this subsection, we enforce the same invoca-
tion ordering for any external service. Here in this example, ob-
viously the two invoke activities can be parallelized as both re-
quests are read only. In addition, the last assignment activity in-
cludes two copy operations that operate on different variables. As
we do not modify activities, parallelism inside activities is not ex-
ploited.

6. RELATED WORK
Existing service composition methods are based on I/O models,

P/E models, and stateful models. The detailed comparison of these
models can be found in our study [37]. The semantics of I/O and
P/E models are relatively consistent in the literature. A few ex-
ceptions include the I/O model where the output is consumed by
an operation rather than copied for repeated use [34], and another
approach that mixes the I/O and P/E models [24]. There is much
more variation in the use of stateful models. Parallel product for
service composition has been discussed in the literature [30], and
there are other composition techniques using asynchronous mes-
sages [12] and action delegation [9]. In all these cases, the compo-
sition outcome is still an automaton and therefore the net synthe-
sis technique we develop can be applicable. Composition methods

using stateful models other than automaton include Petri nets [7]
and workflows [6]. There is also a dependency graph model based
composition [18], which can be viewed as a simplified automaton
model.

In the workflow domain, Petri nets are widely used to model and
analyze workflows [36]. Net synthesis techniques have been ap-
plied to process mining to construct workflows from event logs [13],
but not for service composition. Finally, we note that Process Al-
gebra has been widely used to model and analyze concurrent sys-
tems [26]. The core notion, bi-simulation equivalence, is stronger
than language equivalence and it captures the behavior of concur-
rent systems. However, the notion does not capture the concurrency
equivalence as we showed that two Petri nets may not be equally
concurrent even if their reachability graphs are isomorphic, where
isomorphism is even stronger than bi-simulation.

7. CONCLUSIONS
In this paper, we studied the representation problem for service

composition and showed how theory of regions, can be applied to
find the optimal representation of composition. To apply the theory,
we first proposed an automaton-based composition framework that
incorporates most existing composition techniques without chang-
ing the service semantics or its description language. Then based
on the special requirements of the composition representation, we
developed our own Petri net synthesis algorithm that combines the
benefits of two well known algorithms from the theory of regions.
We demonstrated that workflow-based representation can limit the
concurrency even for simple input/output based service composi-
tion, and we proved that our Petri net-based representation is opti-
mal in terms of flexibility and parallelism. Our experimental eval-
uations, which include a case study on Google Checkout Service,
and the study on Oracle BPEL samples, demonstrates that our algo-
rithm obtains better concurrent representations for almost all non-
trivial cases.

8. REFERENCES
[1] Google checkout service. http://code.google.com/apis/

checkout/developer/index.html.
[2] Oracle online BPEL samples.

http://soasamples.samplecode.oracle.com/.
[3] WS-BPEL 2.0, OASIS standard. http://docs.oasis-open.

org/wsbpel/2.0/wsbpel-v2.0.html.
[4] V. Agarwal and et al. A service creation environment based on end to

end composition of Web services. In WWW, pages 128–137, 2005.
[5] E. Al-Masri and Q. H. Mahmoud. Investigating Web services on the

world wide web. In WWW, pages 795–804, 2008.
[6] P. Albert and et al. A constrained object model for configuration

based workflow composition. In BPM Workshops, pages 102–115,
2005.

[7] P. Álvarez and et al. Approaching Web service coordination and
composition by means of Petri nets: The case of the nets-within-nets
paradigm. In ICSOC, pages 185–197, 2005.

[8] E. Badouel and P. Darondeau. Theory of regions. In Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the volumes are based
on the Advanced Course on Petri Nets, pages 529–586, London, UK,
1998. Springer-Verlag.

[9] D. Berardi and et al. Automatic composition of e-services that export
their behavior. In ICSOC, pages 43–58, 2003.

[10] P. Bertoli and et al. Control flow requirements for automated service
composition. In ICWS, pages 17–24, 2009.

[11] K. Bhattacharya and et al. Towards formal analysis of artifact-centric
business process models. In BPM, pages 288–304, 2007.

[12] T. Bultan and et al. Conversation specification: a new approach to
design and analysis of e-service composition. In WWW, pages
403–410, 2003.

[13] J. Carmona and et al. A region-based algorithm for discovering petri
nets from event logs. In BPM, pages 358–373, 2008.

[14] J. Cortadella and et al. Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers. IEICE
Transactions on Information and Systems, 80:315–325, 1997.

[15] J. Cortadella and et al. Deriving petri nets from finite transition
systems. IEEE Trans. Comput., 47(8):859–882, 1998.

[16] J. Desel and W. Reisig. The synthesis problem of petri nets. Acta Inf.,
33(4):297–315, 1996.

[17] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. Acta
Informatica, 27:315–368, 1990.

[18] R. Eshuis and et al. Structured service composition. In BPM, pages
97–112, 2006.

[19] C. Fritz and et al. Automatic construction of simple artifact-based
business processes. In ICDT, pages 225–238, 2009.

[20] G. D. Giacomo and et al. Automatic workflows composition of
mobile services. In ICWS, pages 823–830, 2007.

[21] Z. Gu and et al. Automatic service composition based on enhanced
service dependency graph. In ICWS, pages 246–253, 2008.

[22] R. R. Hassen and et al. Protocol-based Web service composition. In
ICSOC, pages 38–53, 2008.

[23] R. Hewett and et al. Scalable optimized composition of Web services
with complexity analysis. In ICWS, pages 389–396, 2009.

[24] S. Kona and et al. Generalized semantics-based service composition.
In ICWS, pages 219–227, 2008.

[25] H. Meyer and M. Weske. Automated service composition using
heuristic search. In BPM, pages 81–96, 2006.

[26] R. Milner. Communication and concurrency. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK, 1995.

[27] S. Mitra and et al. Automated choreographer synthesis for Web
services composition using I/O automata. In ICWS, pages 364–371,
2007.

[28] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, Apr. 1989.

[29] S. Narayanan and S. A. McIlraith. Simulation, verification and
automated composition of web services. In WWW, pages 77–88,
2002.

[30] M. Pistore and et al. Automated synthesis of composite BPEL4WS
Web services. In ICWS, pages 293–301, 2005.

[31] A. Ragone and et al. Fully automated Web services orchestration in a
resource retrieval scenario. In ICWS, pages 427–434, 2005.

[32] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill, Inc., New York, NY, USA, 2007.

[33] A. Riabov and et al. Wishful search: interactive composition of data
mashups. In WWW, pages 775–784, 2008.

[34] Z. Shen and J. Su. On completeness of Web service compositions. In
ICWS, pages 800–807, 2007.

[35] V. Srinivasmurthy and et al. Web2exchange: A model-based service
transformation and integration environment. pages 324 –331, Sept.
2009.

[36] W. M. P. van der Aalst. The application of Petri nets to workflow
management. The Journal of Circuits, Systems and Computers,
8(1):21–66, 1998.

[37] Y. Wang and et al. A language-based framework for analyzing
service representation models and service composition approaches.
In IEEE International Conference on e-Business Engineering, 2010.

