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Abstract 
 

Automatic detection and pose estimation of humans is 

an important task in Human- Computer Interaction (HCI), 

user interaction and event analysis. This paper presents a 

model based approach for detecting and estimating human 

pose by fusing depth and RGB color data from monocular 

view. The proposed system uses Haar cascade based 

detection and template matching to perform tracking of 

the most reliably detectable parts namely, head and torso. 

A stick figure model is used to represent the detected body 

parts. Then, the fitting is performed independently for 

each limb, using the weighted distance transform map. 

The fact that each limb is fitted independently speeds-up 

the fitting process and makes it robust, avoiding the 

combinatorial complexity problems that are common with 

these types of methods. The output is a stick figure model 

consistent with the pose of the person in the given input 

image. The algorithm works in real-time and is fully 

automatic and can detect multiple non-intersecting people. 

 

Keywords: Haar cascade based detection, template 

matching, weighted distance transform and pose 

estimation. 

 

1. Introduction 

 

Motion capture for humans is an active research topic in 

the areas of computer vision and multimedia. It has many 

applications ranging from computer animation and virtual 

reality to human motion analysis and human-computer 

interaction (HCI) [1] [2]. The skeleton fitting process may 

be performed automatically or manually, as well as 

intrusively or non-intrusively. Intrusive manners include, 

for example, imposing optical markers on the subject [3] 

while non-automatic method could involve interacting 

manually to set the joints on the image, such as in [4]. 

These methods are usually expensive, obtrusive, and not 

suitable for surveillance or HCI purposes. Recently, due to 

the advances on imaging hardware and computer vision 

algorithms, markerless motion capture using a camera 

system has attracted the attention of many researchers. 

One of the commercial solutions for markerless motion 

capture currently under development includes Microsoft’s 

Kinect system for console systems. 

Since the application domain is less restrictive with 

only a monocular view, human pose estimation from 

monocular image captures has become an emerging issue 

to be properly addressed. Haritaoglu et al. [8] tries to find 

the pose of a human subject in an automatic and non-

intrusive manner. It uses geometrical features to divide the 

blob and determine the different extremities (head, hands 

and feet). Similarly, Fujiyoshi and Lipton [9] have no 

model but rather determine the extremities of the blob 

with respect to the centroid and assume that these points 

represent the head, hands and feet. Guo et al. [7] attempts 

to find the exact positions of all body joints (like the neck, 

shoulder, elbow, etc.) by minimizing the distance based 

criterion function on the skeletonized foreground object to 

fit the stick model. Neural networks [5] and genetic 

algorithms [6] have also been used to obtain the complete 

position of all of the joints of the person. 

The simplest representation of a human body is the stick 

figure, which consists of line segments linked by joints. 

The motion of joints provides the key to motion estimation 

and recognition of the whole figure. This concept was 

initially considered by Johansson [12], who marked joints 

as moving light displays (MLD). Along this vein, Rashid 

[20] attempted to recover a connected human structure 

with projected MLD by assuming that points belonging to 

the same object have higher correlations in projected 

positions and velocities. 

The organization of the paper is as follows: Section 2 

discusses the proposed approach with subsections giving 
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details about each module used in the system. Section 3 

extends the discussion towards the implementation details 

about the proposed prototype. Finally, Section 4 concludes 

the paper and delineates possible directions for future 

research. 

 

2. Overview of the entire system 

 

In this work, we assume that a depth-camera is static 

and is at human height. It is also assumed that users’ 

interaction spaces are non-intersecting and upper-body and 

face are visible without any occlusion. A block diagram of 

the human detection and pose estimation approach used in 

our work is shown in Fig. 1. The following subsections 

provide details of each module incorporated in the system. 

2.1. Depth camera 

 

We use ZCam from 3DV Systems (shown in Fig. 2(a)) 

in our work. This camera uses active illumination for 

depth sensing – it emits modulated infra-red (IR) light and 

based on the time-of-flight principle, the reflected light is 

used to calculate depth (distance from camera) in a scene. 

This camera provides both RGB (VGA size) image and a 

grayscale depthmap (half-VGA size) image at 30 frames 

per second (fps). 

Figure 1: Flowchart of the proposed system. 

Figure 2: (a) ZCam from 3DV Systems (b) Data output from 

ZCam – primary and secondary infrared images, a depthmap and 

a RGB color image. 

(a) 

(b) 



 

 

Figure 2(b) shows a sample of four images obtained 

from the camera. The top row shows active brightness 

(left) and passive brightness (right) IR images and the 

bottom row shows the depthmap (left) and the RGB (right) 

image respectively. It can be observed in the depthmap, 

the depth values of objects near the camera appear bright 

while those of objects that are farther appear darker. 

2.2. Foreground Segmentation 

 

We use RGB image and the depthmap as input images 

to the system. A sample input frames are shown in Fig. 3. 

The raw depth map is threshold to remove noise with low 

intensity values. Then, blob analysis is done to remove 

very small blobs. The depthmap is then used for obtaining 

the foreground object in the RGB image. 

2.3. Haar cascade based detection 

 

The object detector described in [10] and [11] is based 

on Haar classifiers. Each classifier uses rectangular areas 

(Haar features) to make the decision if the region of the 

image looks like the object of interest or not. 

    {
                
               

 

Figure 4 shows different types of Haar features used. 

The Haar detector uses a form of AdaBoost but organizes 

it as a rejection cascade of nodes, where each node is a 

multitree AdaBoosted classifier designed to have high 

(say, 99.9%) detection rate (low false negatives) at the 

cost of a low (near 50%) rejection rate (high false 

positives). For each node, a “not in class” result at any 

stage of the cascade terminates the computation, and the 

algorithm then declares that no object exists at that 

location. 

                         

Here, the sign function returns -1 if the number is less than 

0, 0 if the number equals 0, and +1 if the number is 

positive. On the first pass through the dataset, the 

threshold ti of fi is learnt. Boosting then uses the resulting 

errors to calculate the weighted vote wi. Thus, true class 

detection is declared only if the computation makes it 

through the entire cascade (see Fig. 5). 

For upper body detection, the classifier trained for 

upper-body (head + torso) [13] [14] is used. The detected 

Figure 4: Types of Haar-like features used by object detection 

classifier in [11]. 

(a)               (b)               (c) 

Figure 3: (a) Input depthmaps (b) input RGB images (c) Foreground segmented RGB images obtained using (a) and (b). 



 

 

regions are then passed on to frontal face detector 

classifier (see Fig. 6). In case frontal face detection fails to 

detect any faces, profile face detector [15] is used to detect 

faces. If either upper body detector or the profile face 

detector fails to produce any positive results then the 

frame is completely rejected and the next frame is 

analyzed for any possible upper-body detections. If no 

face is detected in the detected upper body region, then it 

is assumed to be false positive and the detection is rejected 

for further analysis. This successive detection logic helps 

in reliably determining the positive detections and pruning 

out the false positive detections. In order to reduce the 

computation time as well as the false positives, Haar 

detection is done on foreground segmented image (see 

Fig. 7). 

2.4. Template matching based tracking 

 

The template-based approach determines the best 

location by matching an actual image patch against an 

input image, by “sliding” the patch over the input search 

image using normalized cross-correlation, defined as: 
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  = grayscaled RGB template image 

    
  = input grayscaled RGB image 

Figure 5: Rejection cascade of the classifier where each node 

represents a multitree boosted classifier [11]. 

(b) 

Figure 7: Haar cascade based detection for upper-body and face. 

Circles circumscribing another circle denote successful face 

(inner circle) and upper body detection (outer circle) whereas 

single circle denotes a successful upper-body (either false 

positive or true positive) detection and unsuccessful face 

detection (either false negative or true negative). (a) Haar 

cascade based detection on original grayscaled RGB image. (b) 

Haar cascade detection on foreground segmented grayscaled 

RGB image. 

(a) 

Figure 6: Haar cascade based detection logic. 



 

 

Since template-based matching requires sampling of a 

large number of points, we can reduce the number of 

sampling points by reducing the resolution of the search 

and template images by the same factor (in our case, down 

sampled by a factor of 2) and performing the operation on 

the resultant downsized images. Advantages of using 

template matching, over Haar cascades, is reduced 

computation time and higher true positives, since Haar 

cascades misses variations in object orientation and pose. 

The template images/ patches are obtained from the 

successful detection in the last frame; either by Haar 

cascade based detection or by template based matching 

(see Fig. 8). Haar cascade based detection is used only 

when there are no templates to do matching or when the 

template matching fails to track the template in the input 

image. Haar cascade based detection is forced after certain 

empirically chosen time-lapse/frames (threshold) to handle 

drifting errors and appearance of new people into the 

scene. Figure 9 shows examples of template matching on 

input images. 

2.5. Stick human body model 

The skeleton model is represented by a vector of 7 body 

parts (bp1 to bp7) as shown in Figure 10. The proportions 

between the different parts are fixed and were determined 

based on NASA Anthropometric Source Book [16] and 

[17] (see fig. 11). Each body part has its own range of 

Figure 8: Template Matching based tracking logic. 

Figure 10: The stick model used for human upper-body skeleton 

fitting. 

Figure 9: Results for template matching based tracking. 

Templates are grayscaled and down-sampled to half VGA to 

reduce computation time. Similarly input RGB image is also 

grayscaled and down-sampled to half VGA (a) upper-body 

template identified in previous frame (b) face templates 

identified in previous frames (c) input image grayscaled and 

down-sampled with marked rectangular regions denoting 

successful template based tracking. 

(c) 

(a) 

(b) 



 

 

possible motion. Each body part is composed of two 

extremities, representing the coordinates of the body part 

in the image plane: 

                  

where, 

                  

     is the x coordinate of extremity j of body part i and 

      is the y coordinate of extremity j of body part i. 

The head, neck, shoulder (both left and right) joints are 

estimated based on detected upper-body and head region. 

The centroid of the detected head template is taken as head 

point. The shoulder joints are taken as the lower 

extremities of the detected upper body region in input 

image. Based on the anthropometric ratios, the neck point 

is estimated to be at 2/3 of the vertical distance from head 

to shoulder points. Similarly length of upper arms is taken 

as 2/3 of shoulder width and 5/9 of shoulder width in case 

of lower arms. 

 

2.6. Limbs fitting 

In order to estimate the remaining joints (elbow and wrist, 

both left and right) and limb inclinations (upper and lower 

arm, both left and right), linear regression on sampled 

weighted-distance transform map (distance transform 

analysis) is performed (see Fig. 12). Once the elbow joints 

are estimated, weighted-distance transform w.r.t. these 

joints are computed for estimating wrist joints and 2D 

inclinations for lower arms. 

The Distance Transform (DT) maps each image pixel 

into its smallest distance to regions of interest [18].  

 

                |                   |     

    

where:  

D is distance map of depth image (  ) 

O
c 
is complement of foreground object 

Euclidean metric is used for calculating the DT: 

        √        
   (      )

 
 

Figure 13 shows a numerical example of Euclidean 

Distance Transform (EDT) [19]. For each pixel in fig. 

13(a), the corresponding pixel in the DT of fig. 13(b) 

holds the smallest Euclidean distance between this pixel 

Figure 11: Anthropometric ratios of typical human body [17]. 

Figure 13: Numerical example of distance transform. (a) shows 

an input binary image. In (b) the Euclidean distance of each 

pixel to the nearest black pixel is shown. The distance values are 

squared so that only integer values are stored. [21] 

Figure 12: Limbs fitting based on linear regression of sampled 

weighted distance transform map. 



 

 

and all other black pixels. The squared Euclidean distance 

is used for saving storage: since the pixel coordinates are 

integers, the square of the Euclidean distance         is 

also an integer. Figure 14 shows some examples of EDT 

on input images. 

Since limb movements for human body can be out of 

image plane which EDT fails to capture in the depthmap. 

In order to take into account the projected lengths of the 

limbs weighted-distance transform is calculated. The 

distance map of the image is multiplied with variance 

factor representing the variance ratio of the point w.r.t to 

the reference point (parent joint) in the direction 

orthogonal to the image plane. This variance can easily be 

calculated from the input depthmap. 

The weighted –distance transform         for point p 

w.r.t. c in depth image (Id) is defined as: 
 

             (   
|           |

     
)           

where: 

     is DT value at point p in image Id. 

Id is input depth map 

c is the reference point (parent joint) for estimating the 

angles for upper and lower arms. e.g. for estimating the 

inclination of upper left arm, reference point (c) is left 

shoulder joint and similarly for estimating the lower right 

arm, reference point (c) is right elbow joint. Sampling of 

the Weighted-Distance Transform map is done upto length 

l from the reference point (parent joint) c in an angular 

region varying from 0 to 2π, and with a predefined 

sampling angle. Temporal information can be incorporated 

to improve computational efficiency by imposing range 

constraints on the angular region for sampling the map 

(see fig. 15). The length l of arms is estimated based on 

anthropometric ratios as discussed in section 2.5. The step 

size for sampling angle influences the robustness and 

speed of the technique. If it’s too large, a good solution 

could be overlooked. However, the whole process might 

take too long if the step size is chosen small. It then 

becomes possible to sample points along and for each 

candidate solution. In estimation of both upper arms and 

lower arms, a second global maximum is taken as the 

estimated pose of the limb. In case of upper arms, the 

global maxima always denotes the angle from left or right 

shoulder joint towards torso’s center region; since 

weighted-distance transform map value is always maxima 

along this path (see Fig. 14). Similarly for lower arms, a 

global maximum denotes the angle connecting the elbow 

joints to shoulder joints, since due to physical structure of 

human body upper arms are broader in width compared to 

lower arms. Due to these reasons second maxima is 

Figure 15: Sampling of weighted distance transform map for   

left lower arm pose estimation. The green color points have 

already been estimated based on upper body and head region 

detection. The blue colored joints are estimated by sampling 

followed by linear regression. 

Figure 14: EDT on foreground segmented depthmap normalized 

to 0 -256 range for visualization (a) foreground segmented 

depthmap (b) distance transform map 

(a) (b) 



 

 

universally chosen to represent the estimated limb’s 

inclination. 

The sampling rate is an adjustable parameter that also 

influences the robustness and speed of the method. Indeed, 

the more points there are along a line to validate a 

solution, the more robust the system is if a part of a limb 

has been poorly extracted. However, the fitting process 

becomes more time-consuming. A local method such as 

the one presented here also increases the robustness of the 

whole system in the following way. If some region of the 

blob has been poorly extracted, it is likely that only this 

part will be poorly fitted, while the other limbs will be 

successfully fitted if the upper body detection is 

successful. In the case of a global method, a small error 

can lead to the failure of the whole fitting module. 

However, because of the local fitting method, even if one 

part is missed, the overall fitting is often acceptable. 

3. Experimental results 

 

We have developed a working prototype of our human 

detection and pose estimation logic. The prototype was 

implemented using C/C++ and OpenCV library, on a 

windows platform. The prototype works in real-time using 

live feeds from 3DV camera mounted on top of a personal 

computer. We have tested the above prototype for single 

as well as multiple (upto 3) non-intersecting people with 

appearance and disappearance of people at random and for 

various different upper body poses. The input RGB stream 

is of 640x480 resolution at 30fps (VGA) and the depth 

stream is of 320x240 resolution at 30fps (half-VGA). For 

foreground segmentation, blob with size less than 400 

pixels (empirically chosen) are considered as non-humans. 

Haar cascade based detection is done on full-VGA size 

grayscaled RGB image to increase true positive detections. 

Template matching based tracking is done on half-VGA 

size grayscaled RGB image to reduce computation time. 

Threshold used for enforcing Haar cascade based 

detection is empirically chosen as 15 frames. Since 

foreground segmentation is the most critical step in pose 

estimation, poor foreground segmentation can sometimes 

lead to incorrect pose estimation. Figure 16 shows a few 

examples of our analysis done on input frames of humans 

interacting in various poses. Table 1 gives the time taken 

(on a machine with Intel Core 2 Extreme processor, 3 GHz 

& 3GB RAM) for various processes in the prototype. The 

average running time of the entire process is less than the 

total time used for detection (~68 ms/frame) since Haar 

cascade based detection is enforced only once in every 15 

frames while for the rest of the frames, template matching 

based tracking (~ 8ms/frame) is used. 

4. Conclusion 

In this paper, we have presented a viable vision-based 

human pose estimation technique using RGB and depth 

streams from a monocular view. An articulated graphical 

human model is created for pose estimation of upper-body 

parts for HCI applications. Our technique uses a balance 

of Haar cascade based detection and template matching 

based tracking. Haar based detection handles appearance 

of humans and drifting errors in tracking, while template 

matching based tracking is able to handle variations in 

object pose and makes the approach computationally light. 

Our approach uses anthropometric statistics to estimate the 

pose and also guides the estimation process of the model. 

The limbs of the model are fitted individually by 

generating all possible positions and selecting the best 

position. This technique is performed progressively, one 

limb at a time, instead of globally. This way, the process is 

faster and robust. We have demonstrated the technique for 

various real world input data. Some improvements are 

possible in this framework. Incorporating skin detection 

and edge detection would reduce false positive 

configurations for lower arms. Occlusion handling and 

comparative studies with published work form nice scope 

of work in the future. 

Table 1: Computational time for various modules in our system. 

Modules 
Time/frame 

(in ms) 

Haar cascade based upper-body & face 
detection 

~ 57 ms/frame 

Skeleton fitting ~ 11 ms/frame 

Total time using detection ~ 68ms/frame 

Template matching based tracking ~ 3 ms/frame 

Skeleton fitting ~ 5 ms/frame 

Total time using tracking ~ 8 ms/frame 

Average Running Time* 
~14 ms/frame 

 
* Threshold = 15frames/sec 
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