

The Runtime Abort Graph and its Application to Software Transactional
Memory Optimization

Dhruva R. Chakrabarti, Prithviraj Banerjee, Hans-J. Boehm, Pramod G. Joisha, Robert S.
Schreiber

HP Laboratories
HPL-2010-179

Abstract:
Programming with atomic sections is a promising alternative to locks since it raises the
abstraction and removes deadlocks at the programmer level. However, implementations of
atomic sections using software transactional memory (STM) support have significant
bookkeeping overheads. STM programmers therefore need tools that provide insights and means
to improve performance.

This paper attempts to identify the source of an abort at the granularity of a transactional memory
reference. The resulting abort patterns are captured in the form of a runtime abort graph (RAG).
We show how to build this graph efficiently using compiler instrumentation and discuss its
qualitative semantics. We then describe a technique that works on the RAG and automatically
recommends STM policy changes to improve performance. Significant performance
improvements, upto 90% individually, have been obtained. We present detailed experimental
results showing the tradeoffs in building the RAG and its use in reducing aborts and improving
performance.

External Posting Date: February 16, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: November 8, 2010 [Fulltext]

Parts of this work will appear in the International Symposium on Code Generation and Optimization (CGO), 2011. Copyright for
those parts of this work is held by IEEE.

 Copyright 2011 IEEE.

The Runtime Abort Graph and its Application
to Software Transactional Memory Optimization

Dhruva R. Chakrabarti, Prithviraj Banerjee, Hans-J. Boehm, Pramod G. Joisha, Robert S. Schreiber
Hewlett-Packard Laboratories

{dhruva.chakrabarti, prith.banerjee, hans.boehm, pramod.joisha, rob.schreiber}@hp.com

Abstract
Programming with atomic sections is a promising alternative to
locks since it raises the abstraction and removes deadlocks at the
programmer level. However, implementations of atomic sections
using software transactional memory (STM) support have significant
bookkeeping overheads. STM programmers therefore need tools that
provide insights and means to improve performance.

This paper attempts to identify the source of an abort at the gran-
ularity of a transactional memory reference. The resulting abort
patterns are captured in the form of a runtime abort graph (RAG).
We show how to build this graph efficiently using compiler instru-
mentation and discuss its qualitative semantics. We then describe a
technique that works on the RAG and automatically recommends
STM policy changes to improve performance. Significant perfor-
mance improvements, upto 90% individually, have been obtained.
We present detailed experimental results showing the tradeoffs in
building the RAG and its use in reducing aborts and improving per-
formance.

1. Introduction
Transactional memory (TM) has emerged as a promising paradigm
for writing shared memory multithreaded programs. In the last few
years, a number of STMs have come into prominence. Intel re-
leased a prototype compiler-based STM system [9]. A number of
API-based STM libraries, including TL2 [6] and RSTM [11], have
been released. While a lot of work has gone into building efficient
STM support, not much is known about effectively analyzing per-
formance characteristics or using them to produce automated tech-
niques for improving performance of an STM application.

Recently, a few research papers have appeared on this topic. It
is generally agreed that overall abort rate is not helpful in charac-
terizing the complex behavior of realistic TM workloads and that
averaging transactional statistics can be quite deceiving [18]. As a
solution, statistics of STM behavior on an atomic block basis have
been generated [9, 14, 18]. Debugging and profiling techniques
have been reported [20, 21] that identify conflicts from an exe-
cution and correlate them to source constructs. However, none of
these capture aborters and victims at the level of a memory access.1

1 Aborters and victims are discussed more in Section 2.

Parts of this work will appear in the International Symposium on Code Generation and
Optimization (CGO), 2011. Copyright for those parts of this work is held by IEEE.

They capture victims at the memory access granularity but aborters
are only captured at the atomic section granularity. In this paper,
we build upon our prior work [5] and define the semantics of a run-
time abort graph (RAG) for an STM application, show how to build it
efficiently using compiler instrumentation, and then describe auto-
mated techniques that utilize the actionable data obtained from the
RAG and generate optimized, higher-performing STM applications.

The technique we use essentially follows the trajectory of a clas-
sical offline feedback-directed compilation scheme. The applica-
tion is first compiled with instrumentation turned on. When the
instrumented executable is run, an annotated RAG is created. An
offline tool analyzes the abort patterns in the RAG and generates
a modified execution recipe aimed at better runtime performance.
For this paper, the offline tool is designed to emit policy recom-
mendations for conflict detection at the atomic section level. In the
modified execution, some atomic sections are executed using an ea-
ger policy while the rest use a lazy policy. This paper makes two
broad contributions:

• It shows that runtime abort relationships in an STM application
can be captured efficiently at load/store granularity.

• It shows that such abort relationships offer actionable data that
can be utilized by automatic techniques to improve runtime
performance.

Our STM support is based on TL2 [6], an open source block-
ing STM implementation. Shared reads and writes are protected by
read barriers (denoted by TxLoad) and write barriers (denoted by
TxStore) respectively. TL2 allocates a table of locks and assigns a
lock to every shared location. The read barrier ensures that mutually
inconsistent memory locations are never accessed. The write bar-
rier either buffers writes or performs in-place updates after acquir-
ing locks for the shared locations. If a transaction cannot proceed
because of a conflict, it is rolled back and automatically restarted.
Otherwise, a commit is attempted at the end of the transaction.

After outlining some basic assumptions and definitions in Sec-
tion 2, we introduce the RAG and its semantics in Section 3. In Sec-
tion 4, we describe the machinery developed by us for building
the RAG. No changes are required at the programmer level (i.e. the
API), the classical atomic{} construct continues to work. New STM
interfaces and changes to some existing ones called by the com-
piler are required (i.e. the ABI needs extending). These changes
and other details including the events that need instrumentation are
described in this section. We also discuss counter-based sampling
that helps lower the runtime overheads of instrumented code. Sec-
tion 5 introduces the components of our framework, illustrates their
interactions, and shows how the RAG is represented on persistent
store for arbitrary clients to consume. In Section 6, we introduce
HyAcq or hybrid acquire. The RAG drives the transformation in
HyAcq that is designed to generate policy recommendations at the
atomic section level with the aim to reduce aborts and wasted work.

Section 7 discusses the tradeoffs between overheads in building the
RAG and its accuracy and shows that the RAG can be built without
prohibitive overheads. Results on HyAcq show that using hybrid
policies on an atomic section level improves performance. We dis-
cuss related work in Section 8 and conclude in Section 9.

2. Basic Assumptions and Definitions
Atomic Section vs Transaction: This paper assumes that the input
program is multithreaded and uses atomic sections. An atomic sec-
tion is a static notion since it refers to a block of code that must ap-
pear to execute in an indivisible manner. For the purpose of this pa-
per, we designate a transaction to be a dynamic execution instance
of an atomic section. Hence, there may be multiple transactions
corresponding to the same atomic section, executing concurrently
in distinct threads.

Association between Shared Datum and Ownership Record
(orec): Our technqiues are directly applicable to blocking STMs.
We assume an association between shared datum and an ownership
record, which can be thought of as a lock protecting the shared
datum. It does not matter whether an orec is assigned per object
or per memory stripe [6] as long as there is a mapping function
that accepts an address and returns the orec that protects it. Let us
call this mapping the Datum to Ownership Record (DOR) function.
As is consistent with blocking STMs, a single ownership record is
assumed to be associated with any given address throughout the
lifetime of a given execution. TL2 maintains a table of orecs (or the
orec-table) on which the DOR function is applied.

Conflicts, Aborters, and Victims: A conflict occurs when two
concurrently executing transactions reference or appear to refer-
ence2 the same shared memory location and at least one of these
references is a write. In such a scenario, one of these transactions
may be aborted because of the conflicting reference it makes. When
a transaction aborts, it is because execution cannot proceed with a
task initiated by a memory reference. We designate this memory
reference as the victim of that particular abort. For a given abort,
the aborter is the memory reference whose execution prevented the
victim from proceeding. Here is an example: if a memory refer-
ence m1 in transaction t1 acquires an orec o and another memory
reference m2 in transaction t2 tries to acquire the same prec subse-
quently, t2 may abort since it cannot immediately proceed. In this
case, m2 is the victim and m1 is the aborter. Note that this terminol-
ogy has also been used at the granularity of an atomic section [14].
In such a case, the atomic section corresponding to t1 is the aborter
and that corresponding to t2 is the victim.3

False Conflicts and Orec Aliasing: Conflicts can be catego-
rized into true and false. If the two memory references involved
indeed access the same shared location, it is a true conflict. Other-
wise it is a false conflict. In this context, we introduce orec aliasing.
Two memory references (regardless of whether their addresses are
disjoint or not) are said to be orec-aliased if the shared locations
accessed by them map to the same orec. Thus orec aliasing covers
both true and false conflicts.

Transactional Functions and References: A function is trans-
actional if it can be transitively called from an atomic section. A
reference is transactional if it executes under the control of a trans-
actional memory system. A dynamic transactional memory refer-
ence (DR) refers to an execution instance of a transactional load
or a store. On the other hand, a static transactional memory refer-
ence SR is a transactional load or a store in the intermediate repre-
sentation (IR) of a program. Hence, a single SR may correspond to

2 The latter scenario is the result of a false conflict defined later in False
Conflicts and Orec Aliasing.
3 This definition needs to be adapted for implementations such as logTM
which pause instead of aborting.

more than one DR. For the rest of this paper, a read or write mem-
ory reference will be assumed to be transactional unless specified
otherwise.

3. Runtime Abort Graph (RAG)
A RAG is a directed graph. A node corresponds to an SR. An edge
captures an abort relationship and is directed from the aborter to
the victim SR. A node can have the following annotations.

• αo: id of dynamically outermost enclosing atomic section con-
taining the SR4

• SRid: an identifier corresponding to the SR
• L: source code information for the SR
• Srd: average readset size of the outermost enclosing transaction

at the point the corresponding SR is the victim
• Swr: average writeset size of the outermost enclosing transac-

tion at the point the corresponding SR is the victim
• CNa: Total number of aborts suffered by the SR

Every node is keyed with the duple Nk =< αo,SRid > and
the key determines whether a corresponding node exists or a new
one needs to be created. An edge is annotated with CEa, the total
number of times the source node aborts the target node. For a given
node, CNa is computed as the sum of CEa over all incoming
edges. Note that Srd and Swr are ignored if the node is never a
victim.

3.1 Qualitative Semantics of a RAG
A RAG captures the aborts that are encountered during an execu-
tion of a program. The aborter and victim of an abort are identified
and represented.5 The graph is sound but not necessarily complete,
meaning that an edge is never added between two nodes unless and
until the corresponding memory references are involved in an abort
at runtime. All runtime aborts may not be captured leading to its in-
completeness. These properties are discussed more in Section 4.7.

There is a subtle point regarding the information captured by a
RAG. Consider the following example where r1 and r2 are tempo-
raries and x, y, and z are shared data.

Thread 1 Thread 2
atomic { // AS1 atomic { // AS2
1: r1 = z 3: x = 10
// Entire AS2 executes here 4: y = 10
2: r2 = x 5: z = 10
} }

Assume that at runtime, the transactions, corresponding to the
two atomic sections shown above, interleave the way shown. Let’s
also assume that x and y are orec-aliased (as defined in Section 2).
So when the load from x on line 2 is a victim, the store to y on line 4
will be found to be the aborter (as opposed to the store to x on line 3
that also conflicts with the load from x). This is because the last SR
corresponding to a given orec is tracked. But in another execution
using a different DOR function that eliminates the false conflict,
the store to y on line 4 is not the aborter. This example illustrates
that for a given victim, the last aborter is captured exactly as it
happens during that execution but that can lead to masking other
possible aborters.

4 (1) We support closed nesting and track only the outermost atomic section
for profiling purposes. Since any nested atomic section is primarily for
partial rollback, lack of inner atomic section information in the profile data
does not impose any serious drawback. (2) If an SR is contained within more
than one distinct outermost atomic sections, a separate node is added to the
graph for each such instance.
5 Note that the aborter is always a store, the victim may be a store or a load.

Note the following points:

• Difference between a RAG and a complete runtime graph: For
the purpose of this paper, a RAG is summary of a complete
runtime graph. All aborts encountered during execution may
not be captured in a RAG.

• Difference between a RAG and a concurrency graph [19]: A
RAG captures aborts encountered during execution. On the other
hand, a static conflict graph represents all possible conflicts be-
tween static memory references. Because of this critical differ-
ence, optimizations that rely on conflict patterns to generate cor-
rect code (such as lock inference) cannot be applied on a RAG.
However, optimizations that improve performance based on ap-
plication characteristics work quite well on a RAG.

3.2 Thread Independence of a RAG
A RAG does not encode any information about threads. When an
abort relationship is captured, the aborter and victim belong to
different threads. But since a RAG is the result of aggregation of
all abort patterns seen in an execution, a given node in a RAG may
have executed in different threads. No attempt is made to include
any of these thread-related information in a RAG since it is meant to
capture memory references that have contention among themselves
at runtime.

4. Building a RAG
4.1 Unique Identifiers
We require that every atomic section and SR be assigned a program-
wide unique identifier. We now describe how these are assigned and
maintained in the compiler and the STM.

4.1.1 Atomic Section Identifier
A unique id, α, is assigned to every atomic section at runtime. We
introduce a new STM ABI function, RegisterAS, that a compiler
inserts just after the call to start a transaction.6 Figure 1 shows the
intermediate code generated by a compiler and an implementation
of RegisterAS. A global lock protects the global counter that
is used for id assignment. The common case invocation of the
registration function will return quickly without encountering any
synchronization operation. The number of times the critical section
within RegisterAS is executed is bounded by the total number
of threads in the program. The compiler uses a file static (id1 in
Figure 1(b)) to store the assigned id.7

Note that distinct file statics must be used for distinct atomic
sections. The value of α is cached in the transaction metadata
making it available to all subsequent STM interfaces.

4.1.2 SR Identifier and Source Location Information
We use an identifier, β, to distinguish between transactional func-
tions. Its computation is supported by a new STM ABI function,
RegisterFn, that a compiler inserts at the start of every transac-
tional function and any function that has an atomic section within
its body. The implementation of RegisterFn is similar to that of
RegisterAS, the only difference being that a different global lock

6 If there is an atomic section within the lexical scope of a transactional
function, the compiler does not generate a call to RegisterAS. The trans-
action descriptor passed down to this transactional function is used for in-
strumentation purposes and as a parameter in calls made from this transac-
tional function. This method thus automatically discards nested descriptors
and results in tracking the outermost one.
7 According to the upcoming C++0x semantics [3], it should be an atomic
variable with memory order relaxed. Currently it is implemented using the
C keyword volatile.

foo() {
TxStart();
...
TxCommit();

}
(a) Original IR

static volatile uint32_t
id1 = UINT32_MAX;

foo() {
Desc * d = TxStart();
RegisterAS(&id1);
d->id = id1;
// Use d->id
...
TxCommit(d);

}
(b) IR after id

assignment

// global lock
lock_type as_id_lock;
RegisterAS(volatile uint32_t *

as_id) {
if (*as_id == UINT32_MAX) {

lock(&as_id_lock);
if (*as_id == UINT32_MAX) {

increment as_global_id;
*as_id = as_global_id;

}
unlock(&as_id_lock);

}
}
(c) STM Interface implementation

Figure 1. Compiler and STM support code for unique identifica-
tion of atomic sections

is used for assigning function ids. Like in RegisterAS, the num-
ber of times the critical section within RegisterFn is executed is
bounded by the total number of threads in the program.

γ is assigned statically by the compiler in a way that every SR
within the lexical scope of the enclosing function gets a unique
value. Figure 2(a) and (b) show a simple example. Note that trans-
actional references within different functions may have the same
value of γ. The duple SRid =< β, γ > uniquely identifies a trans-
actional reference within an entire application.

We also track some source information, referred to as L =<
λ, ρ, τ >, where λ is the mangled name of the caller function and
ρ and τ are the line number and column number respectively.

4.1.3 Resiliency of Identifiers through Downstream Compiler
Transformations

The compiler lowers an atomic section into STM calls pretty early
in the compilation pipeline. A natural question is whether the iden-
tifiers used in our technique are affected by subsequent compiler
transformations. Towards that end, we investigated the effects of
inlining since it could have a big impact in the presence of file stat-
ics.8 It turns out that no modification to the classical inline trans-
formation is required and that post-inline identifiers capture infor-
mation the way they are intended to.

Consider Figure 2. In pseudo-code format, we show the origi-
nal program (in two different source files s1.c and s2.c), the pre-
inline, and the post-inline code in Figure 2(a), (b), and (c) respec-
tively. Note that standard inter-file inline transformation techniques
without any modification are used. These consist of promoting file
statics to uniquely named globals and expanding a function call
into an inlined instance. Two aspects are worth pointing out: (1) In
post-inline code, multiple calls to RegisterFn may occur within
the same function, as in f1 in s1.c in Figure 2(c). If these calls are
made with the same arguments, as in lines 11 and 15, those other
than the first are guaranteed to return immediately without execut-
ing any critical section. The number of times critical sections are
executed within RegisterFn does not change after inlining. (2)
The original transactional function and its inlined instances use the
same id. An example is id fn1 s2 (Figure 2(c), s1.c, lines 11 and
15, Figure 2(c), s2.c, line 6. This is consistent with the original be-
havior since the corresponding transactional references originated

8 We have not investigated a large class of compiler optimizations for this
purpose — that remains part of future work. However, any transformation
that does not clone identifiers is expected to work properly and indeed, most
transformations fall in this category. Transformations that don’t fall in the
above category appear to have no effect either as exemplified by inlining.

s1.c

1: f1() {
2: atomic {
3: x = ..;
4: f2();
5: f3();
6: f2();
7: w = ..;
8: }
9: }

s2.c

1: f2() {
2: y = ..;
3: }
4:
5: f3() {
6: z = ..;
7: }

(a) User program pseudo-code
s1.c

1: static uint32_t id_fn1 =
2: uint32_max;
3: static uint32_t id_as1 =
4: uint32_max;
5: f1() {
6: RegisterFn(&id_fn1);
7: TxStart();
8: RegisterAS(&id_as1);
9: TxStore(x, .., <id_fn1,0>);

10: f2();
11: f3();
12: f2();
13: TxStore(w, .., <id_fn1,1>);
14: TxCommit();
15: }

s2.c

1: static uint32_t id_fn1 =
2: uint32_max;
3: static uint32_t id_fn2 =
4: uint32_max;
5: f2() {
6: RegisterFn(&id_fn1);
7: TxStore(y, ..,
8: <id_fn1,0>);
9: }

10:
11: f3() {
12: RegisterFn(&id_fn2);
13: TxStore(z, ..,
14: <id_fn2,0>);
15: }

(b) Intermediate compiler generated pseudo-code (pre-inline)
s1.c

1: static uint32_t id_fn1 =
2: uint32_max;
3: static uint32_t id_as1 =
4: uint32_max;
5: f1() {
6: RegisterFn(&id_fn1);
7: TxStart();
8: RegisterAS(&id_as1);
9: TxStore(x, .., <id_fn1,0>);

10: RegisterFn(&id_fn1_s2);
11: TxStore(y, .., <id_fn1_s2,0>);
12: RegisterFn(&id_fn2_s2);
13: TxStore(z, .., <id_fn2_s2,0>);
14: RegisterFn(&id_fn1_s2);
15: TxStore(y, .., <id_fn1_s2,0>);
16: TxStore(w, .., <id_fn1,1>);
17: TxCommit();
18: }

s2.c

1: uint32_t id_fn1_s2 =
2: uint32_max;
3: uint32_t id_fn2_s2 =
4: uint32_max;
5: f2() {
6: RegisterFn(&id_fn1_s2);
7: TxStore(y, ..,
8: <id_fn1_s2,0>);
9: }

10:
11: f3() {
12: RegisterFn(&id_fn2_s2);
13: TxStore(z, ..,
14: <id_fn2_s2,0>);
15: }

(c) Intermediate compiler generated pseudo-code (post-inline)

Figure 2. Automatic Handling of Ids during Inlining

from the same SR and hence it is only natural that they have the
same SRid.

4.2 Global Tables for Tracking Aborters
When an abort occurs, the victim SR is trivially available, being
the currently processed one. However, the aborter SR is not im-
mediately available as that must have been processed earlier by
a different thread. In order to make this connection, we maintain
shared tables (or global tables) that exist throughout the lifetime
of the application. For the purpose of our technique, a global ta-
ble has two characteristics: (1) It is shared among threads allowing
communication of information across them.9 (2) Once created, it
remains persistent for the entire execution including across trans-
actions. Updated information overwrites any previous information
for a given entry.

The first of these, the orec-table, implements the DOR function
mentioned in Section 2 for the core STM. For building the RAG,

9 Currently these are implemented using the C volatile keyword.

we introduce two new global tables: committed table (Ct) and
acquired table (At). Ct maps a runtime address to the atomic
section and the SR that modified it last. At maps a runtime address
to the atomic section and the SR that has acquired the orec for that
address. In our implementation, every word of Ct or At encodes
α using 10 bits, β using 12 bits, and γ using 10 bits. Encoding
all the relevant information within a 32-bit word maintains mutual
consistency (assuming reads and writes of a 32-bit word are atomic)
between α, β, and γ. Using the available bits, we are able to encode
distinct 1K atomic sections, 4K functions, and 1K references within
the lexical scope of a given function.

The orec-table, Ct, and At are tagless hash tables. A tagless 32-
bit word design is simple because reading and writing of individual
values can proceed without locking but some false aliasing issues
may arise. Values in the hash tables are table safe, i.e. references to
them cannot fault. All of these tables are indexed using addresses
of shared memory locations.

4.3 Captured events
In order to modularize building the RAG we identify events within
a transactional execution setting that lead to an aborter-victim rela-
tionship. The motivation is to have these events abstract and general
enough to be usable in virtually any STM regardless of policies and
implementation detail. Note that this is not an exhaustive list of all
possible events but only the most popular ones. Figures 3 and 4
show pseudo-code implementation of the STM ABI functions. The
events and interfaces for the RAG-build are in boldface.

• Locked location (Ell): During execution of a transaction T1, if
a reference r to a location m is attempted and if the correspond-
ing orec lm is already acquired by another transaction T2, the
contention manager may decide to abort T1. In such a case,
the SR corresponding to r would be the victim and the mem-
ory reference that caused the orec-acquire in T2 would be the
aborter. As shown in Figures 3 and 4, Ell can occur during a
transactional load (TxLoad, line 10, through the interface Han-
dleNonOwnedOrec), a transactional store (TxStore, line 12), or
during commit (TxCommit, line 5).

• Validation failure during Speculative execution(Evs): When a
location is opened for the first time within a transaction, the
following steps are performed. If the timestamp of the location
being opened is more recent than the timestamp maintained by
the transaction, a round of validation is initiated. Elements of
the readset are validated to make sure they are consistent with
the location being opened. If validation fails, the transaction is
aborted and restarted. In such a case, this event is recorded and
both the location being opened the first time and the location
that failed validation are marked victims. In a typical execution,
the very first validation failure causes the transaction abort. If
the abort is deferred till all elements of the readset are validated,
more victims may be found. Currently, we capture only the first
victim. Evs can happen during a transactional load (TxLoad,
line 12).

• Validation failure during Commit (Evc): A round of validation
is performed during the commit phase and any element that fails
validation is a victim (as shown in TxCommit, line 8). Note
that Evc is different from Evs in that Evc is unconditionally
encountered in many STMs.

• Read Speculation tracking (Ers): This event is responsible for
adding SRid of the read transactional reference to the readset.
This information would be required for RAG-build if the corre-
sponding readset entry were to fail validation later in the trans-
action.

1: intptr t TxLoad(Desc * desc, intptr t * addr, Info * info) {
2: /* lazy mode only, lines 3-7 */
3: if (addr ∈ wrset) {
4: RdWrSetEntry * we = GetEntry(wrset, addr);
5: /* No new event, already captured by previous write */
6: return (*we).value;
7: }
8: intptr t value = *addr;
9: Orec orec = GetOrec(addr);
10: HandleNonOwnedOrec(orec, desc, addr, info);
11: if (orec.ts > desc.ts /* compare timestamps */
12: && !TxValidate(desc)) /* Evs */
13: UpdateRAG&Abort(desc, addr, info, Ct);
14: RdWrSetEntry * re = RdLog(desc, addr);
15: SetRefId(re, info); /* Ers */
16: return value;
17: }

1: TxStore(Desc * desc, intptr t * addr, intptr t value, Info * info) {
2: /* eager mode only, lines 3-14 */
3: Orec orec = GetOrec(addr);
4: HandleNonOwnedOrec(orec, desc, addr, info);
5: if (orec.locked and orec.owner == desc) {
6: RdWrSetEntry * we = GetEntry(wrset, addr);
7: SetRefId(we, info); /* Ews */
8: *addr = value;
9: return;
10: }
11: status = TryLockingOrec(addr);
12: if (status == fail) /* Ell */
13: UpdateRAG&Abort(desc, addr, info, At);
14: else insert mapping (addr, orec) in At /* Eaq */
15: /* lazy mode only, lines 16-21 */
16: if (addr in wrset) {
17: RdWrSetEntry * we = GetEntry(wrset, addr);
18: /* No new event, already captured by previous write */
19: (*we).value = value;
20: return;
21: }
22: RdWrSetEntry * we = WrLog(desc, addr, value);
23: SetRefId(we, info); /* Ews */
24: *addr = value; /* eager mode only */
25: }

1: TxValidate(Desc * desc) {
2: for (every entry in rdset)
3: if (!valid(entry)) /* Evs or Evc */
4: UpdateRAG&Abort(desc, entry.addr, entry.info, Ct);
5: }

Figure 3. Implementation of STM ABI functions

• Write Speculation tracking (Ews): Any change made to the
transactional state of a thread is not exposed to other threads
until the transaction is committed. This event is the write-
counterpart of Ers and is responsible for adding SRid of the
write transactional reference to the writeset.

• Acquire event (Eaq): At the point of an orec-acquire, the corre-
sponding memory address and Nk are added to At.

• Commit event (Ece): The hitherto speculative write reference
information (i.e. the atomic section identifier and that added by
Ews) is committed during this phase.

4.4 Building Nodes and Edges in a RAG
The RAG is built dynamically as the program executes. Nodes and
edges are built through UpdateRAG&Abort in Figure 4. If a trans-
actional reference cannot proceed and has to abort, a correspond-
ing target node is either created or reused if one already exists. The

1: TxCommit(Desc * desc) {
2: /* lazy mode only, lines 3-7*/
3: for (every entry in wrset) {
4: status = TryLockingOrec(entry.addr);
5: if (status == fail) /* Ell */
6: UpdateRAG&Abort(desc, entry.addr, entry.info, At);
7: else insert mapping (entry.addr, orec) in At /* Eaq */
8: TxValidate(desc); /* Evc */
9: Writeback(desc); /* lazy mode only */
10: /* Traverse the undo/redo log and for every entry,
11: commit the corresponding SRid in Ct.
12: Clear the corresponding entry in At. */
13: CommitInfo(); /* Ece */
14: ReleaseOrecs();
15: }

1: HandleNonOwnedOrec(Orec orec, Desc * desc,
2: intptr t * addr, Info * info) {
3: if (orec.locked and orec.owner ! = desc) /* Ell */
4: UpdateRAG&Abort(desc, addr, info, At);
5: }

1: UpdateRAG&Abort(Desc * desc, intptr t * addr,
2: Info * info, Mode mode) {
3: /* Create target RAG-node from info */
4: if (mode == Ct)
5: Query Ct to create source RAG-node
6: else query At to create source RAG-node
7: /* Add or update connecting edge */
8: TxAbort(desc);
9: }

Figure 4. Implementation of STM ABI functions (Contd.)

void RegisterAS(uint32_t *);
void RegisterFn(uint32_t *);
intptr_t TxLoad(Desc *, intptr_t *, Info *);
void TxStore(Desc *, intptr_t *, intptr_t, Info *);

Figure 5. STM ABI Changes

source of the abort is obtained by querying either Ct or At. The
returned key is used to either create a new RAG-node for the source
or an existing node is used if it already exists. Note that a node is
thus created only if the corresponding SR is involved in an abort
(either as a victim or as an aborter).

An edge is added from the source to the target. If both the source
and target nodes already existed and the edge was also present, it is
reused and annotations updated.

4.5 STM ABI Extensions
The changes to the STM ABI are shown in Figure 5. Existing
interfaces, TxLoad and TxStore are extended to accept a pointer to
a structure (referred to as Info in Figure 5) containing SRid and L
for the corresponding SR. The rest are new interfaces. Desc refers
to the transaction descriptor.

Our current technique requires the above ABI changes. How-
ever, it might be valuable to be able to build the RAG without ABI
changes since that would permit transparent replacement of STMs
without any recompilation. The central requirement of our scheme
is that every SR be assigned a program-wide unique identifier. In
the presence of whole program compilation, this can be achieved at
compile-time. Even in the presence of separate compilation mode
(i.e. our current assumption), there may be an efficient implemen-
tation that is able to assign unique identifiers with either compiler
generated mangled names alone or STM support alone. If no inter-

action between the compiler and STM is required, clearly no ABI
changes are required. For example, an STM could hash the pro-
gram counter for an SR to generate its unique id. But since queries
would have to be supported, a hashtable would be required with
support for collision resolution. Since this hashtable would be mu-
table across threads, it would have to be synchronized. Synchroniz-
ing the hashtable may be expensive — it appears that the number of
synchronization operations executed in such an alternative scheme
would be substantially higher than that in the current one. But this
is something we have not explored further and has been left for
future work.

4.6 Mutual Consistency of the Global Tables
When a transaction is committed, the committing thread releases
every ownership record it holds by writing a new version into it
(Figure 4, TxCommit, line 14). Just before this step, the corre-
sponding entries in Ct are updated with the SRid of the references
to be committed (Figure 4, TxCommit, line 13). The information
installed in Ct during TxCommit is queried to get to the aborter in
Figure 3, TxLoad, line 13 and Figure 3, TxValidate, line 4. But the
query of Ct happens only after a new version is seen in the owner-
ship record which must have been written after the corresponding
entry was inserted in Ct. So the Ct-query always sees the updated
value and no explicit synchronization is required to maintain mu-
tual consistency of the orec-table and Ct.

Now consider mutual consistency of the orec-table and At.
Subsequent to an orec-acquire, At is updated with the SRid of
the corresponding reference as shown in Figure 3, TxStore, line
14 and Figure 4, TxCommit, line 7. The information installed in
At is queried to get to the aborter when event Ell is encountered
as shown in Figures 3 and Figure 4. But note that Ell may be
interleaved in between the orec-acquire and the update of At. If that
happens, the aborter information will be wrong leading to a false
positive. The solution is to clear the At-entries corresponding to
the committed addresses (as shown in Figure 4, TxCommit, line 12)
by writing a magic number into them. When an At-query returns
a magic number, this case is just ignored and no update to the RAG
is made. This implies that our technique may fail to capture some
abort patterns leading to false negatives.

4.7 Soundness of RAG Construction
We say that the RAG is sound when an edge is added to the graph
only when the corresponding source and target SR have been in-
volved in an abort relationship at runtime. The RAG can, however,
be incomplete in the sense that some abort relationships are not
captured. In other words, the RAG can have false negatives but not
false positives. This characteristic can be verified by examining the
pseudo-code in Figures 3 and 4. The entry point to adding an edge
is UpdateRAG&Abort in Figure 4. Two modes are possible: one
when Ct is queried, the other when At is queried. We established
in Section 4.6 that neither false positives nor false negatives can
happen in the former case and that only false negatives can happen
in the latter case.

In order to establish soundness, another factor needs to be ex-
amined. The orec and the corresponding SRid are stored separately,
namely in the orec-table and Ct or At respectively. Coupled with
this issue is the fact that the global tables are tagless leading to false
conflicts. In order to make sure that the orec returned by the DOR
function for an address corresponds to the correct SRid from Ct or
At, the same hash function must be used for all the 3 global tables.
A returned SRid is correct for an orec, o1, if it is indeed the one
that was added to Ct or At when o1 was added to the orec-table. In

other words, the same false conflicts, if any, must exist for all the
tables.10

4.8 Counter-based Instrumentation Sampling
Instrumentation adds runtime overhead. We use compiler-inserted
counter-based sampling [2] to reduce this overhead. Essentially,
this requires counting a particular event and executing the instru-
mented code when the counter reaches a threshold as shown below.

--counter;
if (counter <= 0) {

TakeSample(); // i.e. execute instrumented code
counter = N; // reset to initial value

}

Setting N to 1 is equivalent to executing instrumented code every
time an event is encountered. In our framework, we maintain dis-
tinct thread-specific counters for each event itemized in Section 4.3
(with the exception of Ews, Eaq , and Ece). Our scheme avoids
the need for any cross-thread synchronization and samples events
proportionate to their execution frequencies thus maintaining the
desired statistical significance. Ews, Eaq , and Ece are always exe-
cuted ensuring that Ct and At are always updated. This guarantee
is necessary for sound construction of the RAG.

4.8.1 Sampling frequency vs RAG accuracy
Introducing instrumentation sampling begs the question about loss
of accuracy in the collection of events. Clearly, this is a tradeoff
between the runtime overhead of the instrumented code and the fi-
delity of the abort relationships captured in the RAG. In Section 7.3,
we discuss the results we obtained by varying the values of N and
arrive at what appears to be a fairly reasonable default that balances
overhead and accuracy. In practice, we expect N to be a tuning pa-
rameter that may have to be adjusted based on the application.

5. Applications of the RAG
The RAG exposes abort relationships between memory references
and hence can be used by any client that seeks to take advantage of
such information. Since the memory references are correlated with
location information, the RAG can be communicated back to the
programmer as advisory information. For an automatic optimiza-
tion, we believe we need a feedback-driven machinery whereby the
RAG is written out into persistent storage in the first phase and the
second phase utilizes the persistent RAG to generate an optimized
executable. In this paper, we present an automated conflict detec-
tion policy inference technique (details in Section 6) that aims to
improve runtime performance of the application.

Figure 6 shows how the various components interact. The TM
program is fed to the compiler that produces an instrumented exe-
cutable with the option -stm=profile. The instrumented executable,
which also links in appropriate routines from the STM, is run to
generate a profile database, shown as prof db. The offline analyzer
works on prof db to produce tuning and optimization decisions,
opt info. Both prof db and opt info contain information meaningful
to a programmer. In the second phase, the compiler utilizes opt info
to generate an optimized executable.

The profile database is designed to have a number of fairly gen-
eral parts followed by optimization specific parts. Its current format
is shown below.

/* Part 1: RAG as a list of abort relationships */
src:<α, β, γ> tgt:<α, β, γ> count:<N> tgt t:<ld/str>

10 If we can devise hash functions that ensure the absence of false conflicts
in all of the global tables, then it does not matter — we can then indeed use
different hash functions for different global tables.

-stm=use:opt_info
Compiler

Instrumented

Executable
STM

opt_info

prof_db

Offline Analyzer Optimized

Executable

Application Programmer

TM Program

-stm=profile

Advisory Information

Figure 6. Feedback-driven optimization of a program with atomic
sections whereby the instrumented program is run to generate a
profile database which is subsequently used by a compiler to gen-
erate an optimized executable

/* Part 2: A list of Srd and Swr for references */
<α, β, γ>: <Srd> <Swr>

/* Part 3: A list of source locations for SRs */
<β, γ>: <λ, ρ, τ>

/* Part 4: A list of source locations for atomic sections */
<α: <λ, ρ, τ>

/* Part 5: A list of application specific information */
<α, β, γ>: <Ss

rd> <Ss
wr>

Part 1 captures the core information for the RAG, Part 2 corre-
lates an SR with the corresponding Srd and Swr , Part 3 captures
the location information for every SR, and Part 4 captures the lo-
cation information for every atomic section. Subsequent parts are
application specific. For example, the conflict detection policy in-
ference technique described in Section 6 requires the data in Part 5
— Ss

rd and Ss
wr are speculative readset and writeset sizes and are

described later in Section 6.3.3.

6. Conflict Detection Policy Optimization
This section describes how the RAG can be used to drive conflict
detection policy optimization.

6.1 Eager and Lazy Acquire
During the execution of a transaction, a conflict may be detected
early or late [10]. For every memory address a transaction updates,
it must acquire the corresponding orec. If the acquisition happens
at the first write reference, the policy is called eager. If it occurs
during commit, the policy is called lazy. Using optimistic concur-
rency, a read reference never acquires an orec.11 In the eager mode,
a read barrier succeeds if the corresponding location has not been
modified since transaction-start and no other thread has acquired
the corresponding orec, otherwise it aborts. In the lazy mode, the
read barrier can proceed by validating its readset even if the loca-
tion has been modified after transaction-start.

For a given atomic section, it is hard to tell in advance which
policy would perform better. With eager policy, wasted work is
avoided if the transaction is doomed to fail but on the downside,
the orec is held longer potentially reducing concurrency. On the
other hand, a lazy policy delays orec acquisition thereby producing
a small contention window only at commit time but can result in a
lot of wasted work if the transaction was doomed to fail [15].

11 We assume that reads are invisible [10].

6.2 Mixed Invalidation
Most STMs detect both read-write and write-write conflicts the
eager way (e.g. Intel STM [9]) or the lazy way (e.g. TL2 [6]). Prior
work has tried to take the best of both worlds and has experimented
with mixed invalidation [7, 15] whereby write-write conflicts are
detected eagerly and read-write conflicts are detected lazily.

6.3 Hybrid Acquire (HyAcq)
In prior work, regardless of whether the STM employs eager, lazy, or
mixed invalidation, the same policy is used throughout the applica-
tion (i.e. for all transactional references). Another possible dimen-
sion to the solution could be using different policies for different
atomic sections in order to maximize performance. This is because
not all atomic sections may have the same performance profile and
hence allowing them different policies may reduce the number of
aborts and total wasted work.

To understand the combinations of policies that may work well,
we start from the base STM, which is TL2 in our case. In TL2,
vulnerabilities associated with reading inconsistent memory states
are avoided by having the read barrier ensure that the orec is not
held by another thread and that validation succeeds if the orec has
changed since transaction start. This is the behavior of TL2’s read
barrier for both eager and lazy policies12 and we will denote such
a read by Rd. For a write, the orec is acquired at encounter time in
eager policy and at commit time in lazy policy. Let us denote these
two behaviors by Wre and Wrl respectively.

6.3.1 Correctness Argument
We define HyAcq as a hybrid conflict detection technique whereby a
given atomic section can either use the eager or the lazy policy. This
choice can be made in complete isolation from that of any other
atomic section. To understand why this is correct, we start from
the established correctness guarantee of the base STM [10]. With
HyAcq, we need to ensure that interactions between two different
atomic sections are correct since one of them can be eager and the
other lazy. Any given atomic section is still consistent within itself
since it is wholly either eager or lazy. All transactions, regardless of
policy, map a given address to the same orec table entry. Note also
that the behavior of a read has not changed from the base STM to
HyAcq. So it essentially boils down to whether interactions between
write references are any different. In HyAcq mode, consider two
transactions Tx1 and Tx2. Without loss of generality, as far as Tx1
is considered, orecs may be acquired in Tx2. It does not matter
where in Tx2 orecs are acquired. So it does not matter whether Tx2
is using eager or lazy mode. Thus by treating transactions as black
boxes, the only visible effect outside a transaction is its timing of
orec acquires which does not pose any correctness issues.

6.3.2 Locally Preferred Solutions
We now discuss how we proceed with identifying conflict detection
policies that improve performance. We first find pair-wise solutions
at the reference level and attempt to propagate those decisions to the
atomic section level in a way that is globally optimized across the
application.

The performance penalty incurred by a transactional reference
is determined by the aborts it suffers and the work that is wasted
due to an abort. We model this penalty by defining the cost of
an SR (or the corresponding RAG-node) as Csr=AN×(Srd+Swr),
where AN , Srd, and Swr respectively represent the abort count,
the readset size, and the writeset size of the RAG-node. The cost
of a RAG-edge is computed as Ce=AE×(Srd+Swr), where AE ,
Srd and Swr respectively represent the abort count of the edge, the

12 The original TL2 used lazy policy alone. The adapted TL2 distributed
through STAMP [12] implemented both eager and lazy policies.

C

Tx2
S Wre(x) C

(b) Wre → Rd (a) Wrl → Wrl

Time

Tx1
S Rd(x)

S Rd(x) Wrl(x) C
Tx2

Wrl(x) A

t1 t2 t4 t5 t6 t8 t3 t7

Time

t1 t2 t4 t6 t7 t5 t3

Tx1
S Rd(x) A

Tx1
S Rd(x)

S Rd(x)

t1 t2 t3 t4 t5

Wre(x)

Wrl(x)

t6

A

t7 t8 t9

C

(c) Wre → Wrl

t5 t9 t1 t2 t3 t4 t6 t7 t8

Tx1
Rd(x) Wre(x) C S A

S Wre(x) C Rd(x)
Tx2 Tx2

(d) Wre → Wre

Time Time

Figure 7. Abort Scenarios where the Rd has a fixed policy but the
write could follow eager (Wre) or lazy (Wrl) policy. (a) Wrl -> Wrl
indicates that a lazy write is aborted by another lazy write, (b) Wre
-> Rd indicates that a read is aborted by an eager write, (c) Wre
-> Wrl indicates that a lazy write is aborted by an eager write, and
(d) Wre -> Wre indicates that an eager write is aborted by another
eager write.

readset size, and writeset size of the target RAG-node. The total cost
of the RAG, Ctot is simply the summation of Csr over all nodes.

For a given SR, we use the victim-aborter relationship from
Section 2 to develop intuition about the policy that might minimize
Csr . Figure 7 shows four scenarios that start with a possible policy
combination of the victim and the aborter and recommends a new
combination that should reduce the cost of the victim. Note that
these are local point solutions in the sense that they consider only
the cost of the victim (not the aborter) and that too in complete
independence of the rest of the victims in the application (i.e. purely
local). Later on, Section 6.3.3 explains how to derive a globally
optimized solution.

In each of the scenarios in Figure 7, we show the progression
of two transactions (Tx1 and Tx2) on a time scale. Tx1 is the
victim and Tx2 is the aborter in every scenario. In Figure 7(a), both
transactions use the lazy policy, the transactional write to x in Tx1
happens at t6, the transactional write to the same location in Tx2
happens at t5, and Tx2 commits before Tx1 at t7. Since Tx1 fails
readset validation in the commit phase at t8, it aborts. As shown in
the figure, Tx1 could be a long transaction with a large amount of
wasted work. If its cost C turns out to be large, it may be beneficial
for Tx1 to have its transactional write execute in an eager mode,
so that it acquires ownership of x at t6 allowing it to successfully
commit at t8. Note that this potentially causes Tx2 to fail (because
it continues using the lazy policy) but at this point we are interested
in optimizing the cost of the victim alone.

Consider Figure 7(b) where Tx1 executes a read to location x at
t4 and Tx2 executes an eager write to the same location at t3. Tx1
aborts at t5 since at that point Tx2 has ownership of x. However,
if Tx1 is a relatively short transaction as suggested in the figure,
it may be beneficial to run Tx2 in lazy mode potentially allowing
both transactions to commit successfully.

The scenario shown in Figure 7(c) involves a lazy write in Tx1
and an eager write in Tx2. Since Tx2 acquires ownership of x at t5,
Tx1 detects at t7 (during the commit phase) that the orec is held
and aborts. Just by considering the cost of Tx1 in isolation, it may
be beneficial to run Tx1 in eager mode and Tx2 in lazy mode, likely
allowing Tx1 to commit.

Initial Aborter -> Victim Optimized Aborter -> Victim

1. Wrl -> Rd No change
2. Wrl -> Wrl Wrl -> Wre

3. Wrl -> Wre No change
4. Wre -> Rd Wrl -> Rd

5. Wre -> Wrl Wrl -> Wre

6. Wre -> Wre Wrl -> Wre

Table 1. All possible locally preferred solutions

The last scenario in Figure 7(d) considers eager writes in both
the transactions. Assuming Tx1 is relatively short, has a large
number of aborts, and considering its cost in isolation, it may be
beneficial to run Tx2 in lazy mode, allowing Tx1 to commit.

To identify the possible scenarios, consider the aborter to victim
relationship, captured by PaTa -> PvTv , where Pa and Pv denote
the policies of the aborter and the victim respectively and Ta and
Tv denote the memory reference type (read/write) of the aborter
and the victim respectively. Since we are considering only eager
and lazy policies and a reference could be a read or a write, there
can be 16 scenarios. Since the aborter cannot be a read, we are left
with 8. Since we do not model any difference between an eager
and a lazy read, we are left with just 6 scenarios listed in the first
column of Table 1. The second column lists the optimized policies
of the aborter and the victim considering the latter in isolation and
only when the cost of the latter justifies doing so.

6.3.3 Globally Optimized Policies at the Atomic Section Level
Given a RAG and a table of locally preferred solutions, the problem
is finding the policy for every atomic section that minimizes the
total cost of the RAG. We use a greedy algorithm to solve this
problem. Before we describe our technique, we need to introduce
some useful concepts.

Node Criticality: A RAG node is considered critical if its cost
exceeds a certain threshold T . Our technique works by primarily
optimizing the critical nodes through identifying policies that min-
imize their cost.

RAG-edge adjustment factor, F : F denotes the number that is
used to multiply the abort count of a RAG-edge when the policy
of either the aborter or the victim is changed. The abort counts
obtained from prof db introduced in Section 5 are for scenarios
where all references follow the same policy. In order to estimate
whether a different policy for a certain node reduces the cost of the
RAG, we need to have estimates for a RAG where some nodes could
be eager and some nodes could be lazy. Since such experimental
data is not available from a given profile run using the base STM, we
heuristically come up with adjustment factors guided by the locally
preferred solutions. The values of F used in our experiments are
shown in Table 2 in Section 7.

Speculative rdset and wrset sizes: The rdset and wrset
sizes are used in estimating wasted work when an abort happens.
Similar to abort counts, our technique needs new rdset and wrset
sizes for a RAG-node when policy changes are effected. However,
in contrast with abort counts, it is possible to obtain sufficiently
accurate estimates of rdset and wrset sizes for a different policy
from a single profile run. Let us extend the notations for the readset
and writeset sizes by using Se

rd and Se
wr for eager policy and Sl

rd

and Sl
wr for lazy policy. Consider the following cases:

• A read reference is the target of a RAG-edge that has its abort
count adjusted: In this case, Se

rd = Sl
rd and Se

wr = Sl
wr since

the behavior of a read does not change across policies.
• A write reference is transitioned from eager to lazy acquire: The

required Sl
rd and Sl

wr are obtained by augmenting the profiling

1: Optimize() {
2: T = ComputeCriticality();
3: Q = BuildPriorityQueue(T);
4: while (!Q.empty()) {
5: Vertex tgt = Q.top();
6: Q.pop();
7: if (!isValid(tgt)) continue;
8: vector edge vec = GetSortedCandidates(tgt);
9: Policies new policies = Analyze(edge vec); /* category 1 */
10: Vertices adj nodes = AnalyzeAdjNodes(new policies); /* category 2 */
11: total cost change = ComputeCostChange(new policies, adj nodes);
12: if (total cost change < 0) {
13: foreach node v in new policies and adj nodes {
14: update policy in RAG if v.kind == category 1;
15: if (abort count has not changed) continue;
16: update abort count and criticality in RAG;
17: if (IsProcessed(v)) continue; /* don’t add to Q */
18: if(v != tgt && ComputeNewCost(v) > T) Q.push(v);
19: }
20: }
21: IsProcessed[tgt] = true;
22: }
23: }

(a) Main Driver Routine
1: Analyze(vector edge vec) {
2: Policies policies; /* initialize */
3: for every edge in edge vec {
4: PointSoln ps = hasPointSoln(edge);
5: if (ps && !policies.find(edge.source) && IsASMutable(edge.source) &&
6: !policies.find(edge.target) && IsASMutable(edge.target)) {
7: policies.insert(ps, edge.source); MutateAS(edge.source, policies);
8: policies.insert(ps, edge.target); MutateAS(edge.target, policies);
9: }
10: }
11: return policies;
12: }

(b) Speculative Build of New Policies
1: ComputeCostChange(Policies new policies, adj nodes) {
2: old cost = new cost = 0;
3: for every node v in new policies and adj nodes {
4: if (v.kind == category 1) {
5: np = GetNewPolicy(v, new policies);
6: op = GetPolicyFromRAG(v);
7: }
8: else np = op = GetPolicyFromRAG(v);
9: for every in edge(v) {
10: Lookup F from table;
11: new abort count = old abort count ×F ;
12: old cost += old abort count × (S<op>

rd + S<op>
wr);

13: new cost += new abort count × (S<np>
rd + S<np>

wr);
14: }
15: }
16: return new cost - old cost;
17: }

(c) Cost Change Computation

Figure 8. Global Optimization of Policies
support to collect the readset and writeset sizes at commit time
(in addition to collecting them at encounter time aborts).

• A write reference is transitioned from lazy to eager acquire:
The required Se

rd and Se
wr are obtained by augmenting the

profiling support to collect the readset and writeset sizes at write
encounter times (even though the lazy transactions do not abort
at encounter times).

Modification of the profiling phase as described above results in
Part 5 mentioned in Section 5 and ensures that every SR will have
corresponding values of Se

rd, Se
wr, S

l
rd, and Sl

wr .
Key Data Structures: In addition to the RAG, a key data struc-

ture used during global optimization is a priority queue, called Q.
The critical references are maintained in Q, allowing them to be
examined in the order of decreasing cost.

The Algorithm: Figure 8 shows the main driver routine and
a couple of helper functions used for choosing policies of atomic
sections. The central idea is to examine the critical transactional
references for policy changes in decreasing order of their cost
function. If a locally preferred solution for a transactional reference

is found, the potential change in cost for applying that policy to all
transactional references within that atomic section is computed. If
found beneficial, the resulting policy changes are committed to the
RAG.

The driver routine starts off by computing the critical thresh-
old and building Q based on this threshold. The while loop in line
4 examines the nodes in Q giving priority to a higher Csr . Every
time a vertex is popped off Q, a round of processing is initiated.
Given a candidate node, all edges incident on it are obtained in a
sorted order with descending Ce (Figure 8(a), line 8). They are then
examined in this sorted order in the routine Analyze when search-
ing for beneficial policies. If a locally preferred solution is found,
two conditions need to be satisfied (for both the source and target
nodes of the examined edge) before proceeding (Figure 8(b), lines
5-6). The first check (let us call it C1) returns true if a new policy
has not already been assigned to the node during this round — an
earlier policy assignment during this round is given higher priority
since it is associated with a higher Csr . The second check (let us
call it condition C2) bridges the gap between policy assignment at
the reference and the atomic section level. Note that eventual pol-
icy change happens at the atomic section level, not at the SR level.
The call to IsASMutable (i.e. C2) for a given node returns true if
either of the following holds for every node in the corresponding
atomic section: (1) C1 is true (2) There is no conflict between the
policies determined by a previous round and this round. MutateAS
caches the new policies of all the nodes in the corresponding atomic
section so that they can be committed to the RAG later on (if so de-
termined).

The nodes that are potentially affected in a given round can be
of two types, referred to as categories 1 and 2 in Figure 8(a). The
first category contains nodes that have a change in policy in a given
round and the second contains nodes that do not have a change in
policy in that round but are adjacent to at least one node in category
1. The cost can change for each of the nodes in either category and
the change in Ctot is computed as in Figure 8(c).

If the change in cost shows that the new policy assignment is
beneficial, the following steps are performed: (i) The new poli-
cies of category 1 nodes and the updated abort counts and other
attributes of nodes in both categories are reflected in the RAG. (ii) If
a node in either category has not already been processed and has an
updated cost higher than the critical threshold, it is pushed into the
priority queue. This step has an important effect on how the entries
in Q are processed. Note that as a round completes, some entries
in Q might have an updated abort count and other attributes. How-
ever, there is no efficient way to update these entries in Q. Instead
the corresponding changes are made in the RAG. Every time an en-
try is obtained from Q, it is validated against the authoritative entry
in the RAG (Figure 8(a), line 7).

The following characteristics of the algorithm are worth noting:

• Multiple entries corresponding to the same node may be present
in Q but Figure 8(a), line 7 ensures that the only valid one is
ever processed, others are ignored.

• A processed node is never added to Q ensuring that there can
be a maximum of n rounds (where n is the number of nodes in
the RAG) thus guaranteeing termination.

• There are O(n) nodes in Q at the start of the algorithm. At the
end of a round, O(n) nodes can be added to Q. Since there can
be a maximum of n rounds, the maximum number of nodes in
Q at any point of time is O(n2).

• A critical node that has its cost updated to a value lower than
T does not get removed from Q but will be ignored because of
the validity check on Figure 8(a), line 7.

• Ctot is non-increasing by construction of the algorithm.

6.4 Feeding Optimization Decisions back to the Compiler
Section 4 describes the identifiers and the technique we use for
assigning them. Since the values assigned depend on the order in
which atomic sections and functions get executed, these identifiers
may be different from one run to another causing a matching prob-
lem. Hence, if we want to use profile data from across runs (such
as in merging profile data obtained from different runs), a match-
ing process is required. Given two profile databases, the matching
process is necessary to identify all the information corresponding
to the same SR though such information may be tagged with differ-
ent identifiers in two different executions. The current solution is to
use the source position to perform the matching. The assumption is
that no two atomic sections have the same source position — hence
any two atomic sections, that are obtained from different runs, with
the same source position are one and the same.

Another issue related to the above matching problem occurs
when feeding back the results of HyAcq to the second compilation
phase (see Section 5). Notice that the only information required
is the policy that is to be followed for a given atomic section.
Currently, this handshake is implemented by having the offline
analyzer create a file containing the policy of an atomic section, the
latter identified with its source position. Thus, the format is simply

<source position of atomic section> <policy>
...

For example, the file contents for genome may look like

line 290 lazy
line 369 lazy
line 395 eager
line 408 lazy
line 476 lazy

When -stm=use:opt info is used (as shown in Figure 6), the
compiler reads the above file and, while lowering an atomic section
into an intermediate representation, follows the policy indicated if
its source position matches a provided entry (otherwise the default
is used).

7. Experimental Results
We implemented the STM extensions on top of TL2 [6] and evalu-
ated our techniques on the STAMP [12] benchmark suite (v 0.9.10).
The applications span a variety of fields including machine learn-
ing, security, and data mining. This suite contains 8 benchmarks but
one of them (bayes) fails on 64-bit machines.13 Hence we report our
results on the other 7 benchmarks. Unless otherwise mentioned, we
used the larger (non-simulator) input and the high contention pa-
rameters (whenever available). We performed all our experiments
on a shared memory machine (running Red Hat Enterprise Linux)
with 4 quad-core sockets and 32 GB of memory. Each socket has
an Intel(R) quad-core Xeon(R) E7330 CPU running at 2.4GHz and
with 6MB of shared L2. Any result reported is an average of 4 runs
with the same input parameters.

7.1 Experimental Methodology
As described in Section 5, profile data obtained by running an in-
strumented executable is used by an offline analyzer and the results
of the analysis are fed to the second compile. We first show the
overheads involved in building the RAG and discuss cost vs accuracy
overheads when using instrumentation sampling.14 Subsequently,

13 This is a known bug and apparently has been fixed in the latest release
but it still continues to fail on our systems.
14 This set of results has been obtained using the lazy policy throughout a
given application.

Current State New State F
Wrl -> Wrl Wrl -> Wre
Wre -> Wrl Wrl -> Wre 0.50
Wre -> Wre Wrl -> Wre
Wrl -> Wrl Wre -> Wre
Wre -> Wrl Wre -> Wre 0.75
Wre -> Wrl Wrl -> Wrl
Wrl -> Rd Wre -> Rd
Wre -> Rd Wrl -> Rd 1.00

Table 2. Heuristically determined values of F . The transitions not
shown here use the value 2.0.

we describe the policy configurations recommended by the offline
analysis tool and examine the performance changes obtained by re-
running the applications using the new policies.

For the results discussed in this paper, we always start from
either application-wide eager or lazy policy. However, there is
nothing inherent in our technique that precludes us from starting
with a hybrid policy configuration.

Our experiments are evaluated on 1, 2, 4, 8, and 16 processors.
We discuss the effects of training15 the application on various
processor and input configurations. The offline analysis time is at
most a couple of seconds given any benchmark we tested.

Section 6.3.3 mentioned that we use heuristically determined
values for F . Table 2 shows the mapping from state transitions
(for an edge in the RAG) to values used in our experiments. A state
transition happens when given an edge in the RAG, either the source
or the target or both have a change in policies.

7.2 Establishing Baselines
Since instrumentation has its overheads, we would like to compare
our scheme with some baselines that have negligible or very low
overhead. It is sufficient to measure the possible perturbation of
the original behavior of the application and in this case, the total
execution time and the number of aborts are good indicators. Let
us establish the level 1 baseline (or L1) that measures just these
two attributes and is known to have negligible overhead. However,
L1 does not provide any fine grained information that would be
required to evaluate the accuracy of schemes that collect a lot more
application characteristics (such as the RAG). So we establish the
level 2 baseline (or L2) where a limited amount of fine grained
information is collected but with minimum overheads. L2 collects
total runtimes, total number of aborts, and abort counts for every
reference that aborts at least once. Table 3 tries to show that L2
indeed has minimum overhead. For this purpose, we respectively
define |Td| and |Ad| as the absolute deviation of total runtimes and
total abort counts of L2 with respect to L1 in percentage. As Table 3
shows for 1, 2, 4, 8, and 16 processor counts, both these metrics are
only a few percentages across the applications and hence L2 can
be assumed to be a reliable baseline with which more elaborate
techniques like building the RAG can be compared.

7.3 Evaluating RAG Building Overheads vs Accuracy
The overheads of building the RAG, evaluated by comparing |Td|
and |Ad| with respect to L1, should not be prohibitive (let us call
it requirement 1). But the RAG’s accuracy needs to be evaluated as
well. In other words, we need to ensure that the abort characteristics
it captures belong to the uninstrumented application. Towards that
goal, we constrain the RAG-build to collect a superset of the data
that L2 collects. Next, we would like to verify whether there is
a high degree of correlation in the data common to L2 and the
RAG-build (let us call it requirement 2). If both requirements 1 and

15 The input used to generate the RAG is called the training input.

Bmarks 1p 2p 4p 8p 16p Avg
|Td| |Td| |Ad| |Td| |Ad| |Td| |Ad| |Td| |Ad| |Td| |Ad|

genome 4.8 9.6 14.8 6.5 5.7 1.8 0.4 4.2 5.6 5.4 6.6
kmeans 5.2 10.3 7.5 8.2 1.9 7.8 2.3 6.5 2.6 7.6 3.6
intruder 3.4 3.3 6.6 3.5 5.2 3.5 2.9 1.2 3.2 3.0 4.5
labarinth 0 0.3 2.5 0.1 6.4 0.5 8.9 12.6 10.5 2.7 7.1
vacation 4.4 4.9 15.4 2.4 9.8 4.7 10.9 5.6 10.8 4.4 11.7
ssca2 1.6 3.5 3.0 2.9 2.9 0.1 3.6 0.5 6.5 1.7 4.0
yada 1.9 1.7 3.7 4.6 5.2 1.4 4.2 2.4 6.0 2.4 4.8
Avg 3.0 4.8 7.6 4.0 5.3 2.8 4.7 4.7 6.5 3.9 6.0

Table 3. Comparison of Baselines: Td and Ad respectively measure L2’s absolute additional cost in total runtimes and total aborts in
percentage compared to L1.

L2 rag-1 rag-5 rag-10 rag-20 rag-50
Bmarks |Td| |Ad| |Td| |Ad| |Td| |Ad| |Td| |Ad| |Td| |Ad| |Td| |Ad|
genome 5.4 6.6 22.7 16.7 20.8 15.0 28.8 14.3 13.7 13.7 11.4 12.2
kmeans 7.6 3.6 14.4 29.5 28.7 5.0 35.1 5.4 25.3 4.5 11.7 5.4
intruder 3.0 4.5 17.5 9.6 10.9 12.2 12.1 8.2 13.4 7.9 10.3 7.3
labyrinth 2.7 7.1 7.1 3.3 3.8 5.2 3.9 7.6 8.4 8.6 10.3 19.8
vacation 4.4 11.7 37.5 39.3 6.4 31.3 6.2 27.1 7.2 25.0 6.0 21.5
ssca2 1.7 4.0 16.5 5.6 8.4 4.9 8.7 5.6 8.5 2.9 8.6 6.4
yada 2.4 4.8 25.2 43.6 17.9 33.6 17.2 25.9 9.7 10.5 22.1 26.2
Avg 3.9 6.0 20.1 21.1 13.8 15.3 16.0 13.4 12.3 10.4 11.5 14.1

Table 4. Comparing the perturbation of various configurations: Td and Ad respectively measure the absolute additional cost in total runtimes
and total aborts in percentage, compared to L1. The configurations denoted by rag-N differ with respect to the sampling parameter N
introduced in Section 4.8.

2 hold, we can say with reasonable certainty that the RAG-build
closely matches the runtime characteristics of the uninstrumented
application.

Table 4 shows |Td| and |Ad| (with respect to L1), averaged over
1, 2, 4, 8, and 16 processor counts, for various RAG-build configu-
rations and also for L2 for ready reference. rag-N denotes build-
ing the RAG with counter-based instrumentation sampling turned
on with the sampling parameter N as discussed in Section 4.8. The
larger the value of N, the fewer the number of events captured. The
Avg row shows the average of the runtime perturbation for a given
RAG-build configuration over all applications. When all events are
captured (i.e. rag-1), the average runtime and abort overheads are
20.1% and 21.1% respectively. The overheads are reduced some-
what when fewer events are captured as evidenced by the average
perturbation of rag-5, rag-10, rag-20, and rag-50. We feel that an
overhead of less than 20% is not unreasonable and that require-
ment 1 appears to be satisfied. The Avg row indicates that the over-
heads drop significantly going from rag-1 to rag-5 but beyond N=5,
any such drop tapers off. Hence, it appears that from an overhead
standpoint, any value of N equal to or above 5 is appropriate to use.
However, using N=5 still leads to capturing a lot of events and that
may experience large overheads in general — so in the following
results, we ignore rag-5. We ignore rag-50 as well since there is
negligible overhead reduction beyond N=20 and there is the risk of
losing important events.

Table 5 tries to address requirement 2 by examining the accu-
racy of abort information for 4-processor runs.16 We always tabu-
late results for rag-1 for accuracy measurement purposes since this
configuration captures all events. Additionally, results for rag-10
and rag-20 are presented, others are ignored for reasons mentioned
above. Let us define an important reference as one that has at least

16 Results for other processor configurations are similar and not shown here.

rag-1 rag-10 rag-20
Bmarks Nc |Ac| Nc |Ac| Nc |Ac|
genome 0 11 0 7 0 5
kmeans 0 10 0 11 0 13
intruder 0 10 0 9 0 9
labyrinth 0 4 0 6 0 2
vacation 1 29 1 16 0 16
ssca2 0 16 1 12 1 10
yada 1 26 0 6 0 1
Avg 0 15 0 10 0 7

Table 5. Comparing Accuracy of Abort Information of various
RAG-build configurations with respect to baseline L2 (on 4 proces-
sors)

c% of all aborts.17 We define Ni as the number of important refer-
ences that are different between L2 and a given rag-N run. We de-
fine Ai as the absolute deviation in aborts, between L2 and a rag-N
run, computed in percentage over the top 10 important references.
As shown in Table 5, there is very little difference when it comes
to the important references — practically all of them are captured
by all the three configurations. Additionally, the deviation in the
abort count is small for any given configuration. Thus, requirement
2 appears to be satisfied.

Notice that Ai reduces as fewer events are captured indicating
that the relatively higher instrumentation overhead of rag-1 does
affect the abort patterns. As mentioned in Section 4.8, the sampling
parameter N should be tunable but with a default value. From our
results, it appears that a value between 10 and 20 would be an
appropriate default.

Ultimately, a RAG’s usefulness should be measured by the
amount of optimization it can drive. In this regard, we show some

17 We use c=5 for the results in Table 5.

Stats Benchmarks
genome kmeans intruder vacation yada

V 14 6 37 52 306
rag-1 E 13 6 88 186 173

H 3 5 14 17 13
V 8 6 25 34 204

rag-10 E 8 6 45 81 87
H 5 5 16 13 14
V 4 6 23 30 171

rag-20 E 4 6 37 68 66
H 3 5 14 14 13

Table 6. RAG statistics for different build configurations on 4 pro-
cessors. V, E, and H denote respectively the number of vertices in
the RAG, the number of edges in the RAG, and the initial size of the
priority queue maintained by the offline analysis tool.

Start Profile Benchmarks
Policy Parameter genome intruder vacation yada

N1P4 G1 I1 V1 Y1
N10P4 G1 Eager V1 Y1

Lazy N20P4 Lazy I1 Lazy Y1
N1P8 G1 I1 V1 Y1
N10P8 G1 I1 V1 Y1
N20P8 Lazy I1 Lazy Y1
N1P4 G2 I2 Eager Y2
N10P4 G2 I3 Eager Y3

Eager N20P4 G2 I2 Eager Y3
N1P8 G3 I2 Eager Y2
N10P8 G3 I3 Eager Y3
N20P8 G2 I2 Eager Y3

Table 7. Recommended HyAcq Configurations. With an initial
state either lazy or eager throughout and with different profiling pa-
rameters, the configurations obtained are shown. The profile param-
eter is NnPp where n=sampling parameter and p=processor count
used to generate the RAG.

statistics of the RAG and the priority queue maintained by the of-
fline analysis tool for various build configurations. The goal is to
understand the kind of loss of information as fewer events are cap-
tured. In Table 6, V, E, and H denote respectively the number of
vertices in the RAG, the number of edges in the RAG, and the initial
size of the priority queue maintained by the offline analysis tool.
The results presented are for 4-processor executions. labyrinth
and ssca2 have very few aborts, of the order of a few hundreds,
and our technique does practically nothing on them. Hence, these
two benchmarks are excluded from further discussion of results.
Even though V and E change from one configuration to another, H
pretty much stays the same. Note that H refers to the number of
critical references in the priority queue and serves as the driver of
the HyAcq optimization. Thus, Table 6 indicates that the important
characteristics are maintained even as fewer events are captured
with instrumentation sampling.

7.4 Impact of HyAcq
Before we examine the performance impact of HyAcq, we need to
identify the policy recommendations it generates. As noted before,
we are considering builds of the RAG with sampling parameter val-
ues of 1, 10, and 20. This sampling parameter determines the rate
at which events are captured. However, there is another parameter
that impacts the RAG-build, the number of processors on which the
instrumented executable is run to obtain the RAG. Consider that an
application may experience different kinds of contention depending
on the number of processors and this difference in runtime behavior
may lead to a different RAG. Hence, we define a profile parameter

as the combination of two factors: the sampling parameter and the
processor count. This is denoted by NnPp in Table 7 where n is
the sampling parameter and p is the processor count used to gener-
ate the RAG. For example, N1P4 indicates a RAG-build configuration
where all events are captured and the RAG is built using data from a
4-processor run. We also consider another dimension of the prob-
lem: the initial policy of the application used to build the RAG and
the same policy that is optimized by using the RAG. As shown in
Table 7, we always start from either application-wide eager or lazy
policy. However, there is nothing inherent in our technique that pre-
cludes us from starting with a hybrid policy configuration. Note that
kmeans has been excluded from Table 7 since the recommendation
for all configurations is to use the eager policy throughout.

It turns out that for a given application, a small set of optimized
configurations were recommended (the specifics of every new con-
figuration appear after this paragraph). For example, for genome,
the recommended configurations are G1, lazy throughout, G2, and
G3. The results are similar for other benchmarks. A small set of rec-
ommended configurations indicates a degree of convergence. How-
ever, note that the offline analysis tool does not aim to achieve con-
vergence, its only driver is improved performance. For example, if
we start with lazy policy and a certain atomic section does not im-
pact performance, our technique would leave it untouched. On the
other hand, if we start with eager policy, the same atomic section
might be left untouched again. Thus we may not have convergence
between results starting with eager and lazy policies. Here are the
details of the new configurations where an atomic section is de-
noted by its corresponding identifier, i.e. α. Note that genome has
5 atomic sections, intruder 3, vacation 3, and yada 6.

genome:
0: sequencer.c, line 290
1: sequencer.c, line 369
2: sequencer.c, line 395
3: sequencer.c, line 408
4: sequencer.c, line 476
G1 = [Lazy: 0-1, 3-4 Eager: 2]
G2 = [Lazy: 0, 2 Eager: 1, 3-4]
G3 = [Lazy: 0 Eager: 1-4]

intruder:
0: intruder.c, line 199
1: intruder.c, line 210
2: intruder.c, line 226
I1 = [Lazy: 2 Eager: 0-1]
I2 = [Lazy: 0 Eager: 1-2]
I3 = [Lazy: 1 Eager: 0, 2]

vacation:
0: client.c, line 196
1: client.c, line 247
2: client.c, line 267
V1 = [Lazy: 1-2 Eager: 0]

yada:
0: yada.c, line 207
0: yada.c, line 215
0: yada.c, line 228
0: yada.c, line 233
0: yada.c, line 246
0: yada.c, line 254
Y1 = [Lazy: 1, 3-5 Eager: 0, 2]
Y2 = [Lazy: 2 Eager: 0-1, 3-5]
Y3 = [Lazy: 2, 4 Eager: 0-1, 3, 5]

Tables 8, 9, and 10 show the performance characteristics of the
initial configurations, eager and lazy. These will serve as baselines
when we present numbers for the recommended configurations.
The presented runtimes are in seconds, the aborts are in thousands,

Eager Lazy
Bmark 1p 2p 4p 8p 16p 1p 2p 4p 8p 16p
genome 25.4 15.5 12.9 22.0 31.9 27.0 16.5 9.3 5.3 3.6
intruder 66.7 43.8 28.1 22.0 19.1 74.4 48.4 31.2 24.2 39.0
vacation 75.4 45.6 24.1 14.4 10.8 108.8 59.2 33.1 17.8 10.6
yada 24.6 22.1 16.3 15.3 13.8 39.1 29.3 19.3 14.0 11.5

Table 8. Absolute Runtimes (in seconds) on 1, 2, 4, 8, and 16 processors

Eager Lazy
Bmark 2p 4p 8p 16p 2p 4p 8p 16p
genome 4.7 90.9 330.9 701.9 5.6 11.9 27.1 56.8
intruder 948.0 3884.1 12889.3 14568.3 1257.0 4568.1 13183.1 15073.5
vacation 5.9 15.1 33.9 82.1 5.4 16.3 36.8 73.5
yada 3356.8 7214.3 12293.4 15207.5 1497.3 2373.8 3009.9 2800.0

Table 9. Absolute Aborts (in thousands) on 2, 4, 8, and 16 processors

Eager Lazy
Bmark 2p 4p 8p 16p 2p 4p 8p 16p
genome 10 29 100 638 10 26 62 126
intruder 81 280 867 1154 140 529 1464 1687
vacation 0.7 2 5 12 0.9 3 7 14
yada 50 92 133 163 60 113 153 187

Table 10. Absolute Total Measured Cost in millions on 2, 4, 8, and
16 processors

and the total cost Ctot is in millions. The cost is computed from the
aborts and the readset/writeset sizes by running the applications
in eager and lazy modes. Table 8 shows that excepting genome
in eager mode and intruder in lazy mode, there is a reduction in
execution times as the number of processors is increased to 16.
As shown in Table 9, given either eager or lazy configuration, the
number of aborts goes up with the number of processors indicating
an increase in contention. The number of aborts may not always
correlate with the execution time since the former may not be
indicative of the performance bottlenecks. In addition to the aborts,
wasted work needs to be accounted for as well. For example,
though the execution times for yada in eager mode are better than
those in lazy mode for 2 and 4 processor configurations and worse
for 8 and 16 processor configurations, the number of aborts presents
a different picture. However, the total cost Ctot shown in Table 10 is
more consistent with the execution time. Specifically, for yada, the
values of Ctot track the execution times better than aborts (though
it fails to capture the cross-over at 8-processor count). This trend
justifies our decision to use the cost as the driver of HyAcq.

Table 11 shows performance numbers for the optimized config-
urations in terms of ratios. In addition to the execution time, we
also show data on how the number of aborts and the cost of the
atomic sections change with the optimized configurations. Let us
denote an optimized configuration by O and the corresponding to-
tal execution time by TO , the total number of aborts by AO , and the
total cost of the atomic sections (as defined in Section 6.3.2) by CO .
Let TI , AI , and CI be the total execution time, the total number
of aborts, and the total cost of the atomic sections respectively for
the corresponding initial state. The initial states are available from
Table 7. For example, the initial state for configuration G1 is lazy
and hence for G1’s results in Table 11, TI , AI , and CI respectively
refer to the total execution time, the total number of aborts, and the
total cost of the atomic sections when genome is run in lazy mode.
We can now define the notations used in Table 11. For a given con-

figuration O, Tr = TO
TI

, Ar = AO
AI

, and Cr = CO
CI

. In Table 11, a
number lower than 1 indicates improvement.

Consider Tr in Table 11. For genome, most configurations show
improvements, the largest one being 90% for G2 and G3 on 16
processors. For intruder, some configurations show a 10% benefit
while some show a 10% slowdown, though there is an overall
improvement. In vacation, there can be a 20% improvement and
there is no slowdown. yada is very interesting in that some of
the 2 and 4 processor configurations have slowdowns but the same
configurations achieve a speedup on 8 and 16 processors.

Now consider Ar in Table 11. Note that there may not always be
a correlation between Tr and Ar . For example, though vacation
runtimes always improve, some configurations show an increased
number of aborts. This is because HyAcq optimizes the total cost
which takes into account both the number of aborts and the total
wasted work. In some cases, the aborts may increase but the total
costs decrease (such as in vacation). For genome, the maximum
reduction in aborts is 90%, for intruder 30%, and for yada 80%.
For vacation, the abort count increased in some cases, by upto
40%. For yada, some HyAcq configurations generated higher aborts
and slower runtimes, but very interestingly the same executable
achieves lower aborts and better runtimes at 8 and 16 processor
counts.

Consider Cr in Table 11. Note that HyAcq attempts to reduce C
using an estimation technique and the data in Table 11 illustrates
how successful the estimation technique is. In almost all cases, Tr

is consistent with Cr meaning that an increase in one is not accom-
panied with a decrease in another.18 This shows that using Ctot to
model the total execution time is reasonable. A very related ques-
tion is whether HyAcq is able to accurately reduce Ctot. As Table 11
shows, Ctot does not increase in general, the major outliers being
I3, Y2, and Y3. It appears that there are at least a couple of reasons
for a possible increase in Ctot. The first relates to the use of heuristi-
cally determined values shown in Table 2 — more experimentation
and insight are necessary to come up with more accurate values.
The second is the way we use the RAG — HyAcq implicitly assumes
that no new abort edges are introduced by change of policies. This
is not always true. We found that in yada, new abort relationships
get introduced by the recommended policy changes but HyAcq has
no way to account for the costs on those new RAG-edges.

18 The only exception is yada on 8 and 16 processors.

Bmark 1p 2p 4p 8p 16p Avg
Confs. Tr Tr Ar Cr Tr Ar Cr Tr Ar Cr Tr Ar Cr Tr Ar Cr

G1 0.9 0.9 1.1 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.8 0.8 0.9 0.9 0.9
G2 1.0 1.1 1.0 1.1 0.6 0.1 0.9 0.2 0.1 0.6 0.1 0.1 0.2 0.6 0.3 0.7
G3 1.0 0.9 1.0 1.0 0.6 0.1 0.8 0.2 0.1 0.5 0.1 0.1 0.2 0.6 0.3 0.6
I1 0.9 0.9 0.7 0.6 0.9 0.8 0.5 0.9 0.9 0.6 0.5 0.9 0.6 0.8 0.8 0.6
I2 1.0 1.0 0.9 1.0 0.9 0.9 1.0 0.9 0.9 1.0 1.0 1.0 1.1 0.9 0.9 1.0
I3 1.1 1.1 1.4 1.7 1.1 1.2 1.9 1.1 1.2 1.7 1.0 0.9 1.0 1.1 1.2 1.6
V1 0.7 0.8 1.4 0.9 0.8 1.2 0.7 0.8 1.1 0.9 1.0 1.1 0.9 0.8 1.2 0.8
Y1 0.6 1.0 2.2 0.8 1.0 2.9 0.8 1.0 4.0 0.9 1.2 5.2 0.9 0.9 3.6 0.9
Y2 1.6 1.3 0.4 1.2 1.2 0.3 1.3 0.9 0.3 1.2 0.9 0.2 1.2 1.2 0.3 1.2
Y3 1.6 1.3 0.4 1.2 1.2 0.3 1.3 0.9 0.3 1.2 0.8 0.2 1.1 1.2 0.3 1.2

Table 11. Evaluation of total execution times, total number of aborts, and total application cost for the new configurations obtained with
HyAcq: Tr = TO

TI
, Ar = AO

AI
, and Cr = CO

CI
, where TO , AO , and CO are the execution time, the number of aborts, and the application

cost respectively for the corresponding configuration. TI , AI , and CI are the execution time, the number of aborts, and the application cost
respectively for the corresponding initial state. The initial states are available from Table 7. Note that the absolute reference numbers for
the eager and the lazy configuration are reported in Table 8. Notice too that the cost is computed by instrumenting a given configuration,
extracting the corresponding RAG, and computing its cost as described in Section 6.3.2.

7.5 Discussion of Results
Overall, HyAcq produces significant performance improvements.
From Table 11, individual performance improvements of upto 90%
were seen. Using the execution times for all recommended policy
configurations on 1, 2, 4, 8, and 16 processor counts, the average
improvement is 9% overall.

An interesting question is whether HyAcq is able to beat both
eager and lazy schemes. Note that this aspect has not been factored
into our analysis technique since our optimization technique builds
on the profile results obtained from only one run (currently either
eager or lazy throughout). However, by examining the execution
times obtained from our experiments, there are a few such cases.
G1, G2, and G3 improve over lazy (and lazy is better than eager for
genome) on 4, 8, and 16 processor runs by around 8% on average.
I1 and I2 beat eager (and eager is better than lazy for intruder) on
4, 8, and 16 core runs by a small margin (3% on average). Needless
to say, the benefit from HyAcq is an artifact of the transactional
application. In the case of STAMP benchmarks, either eager or
lazy appears to lead to the best results (or very close). Finding
applications and patterns where a hybrid configuration consistently
produces better results remains a part of future work.

The Average-column in Table 11 indicates that given an applica-
tion and any recommended configuration, the chance of achieving
higher performance over the initial configuration is quite high.19

Though HyAcq appears to produce performance improvements on
average, some individual slowdowns are seen for some configura-
tions. Additionally, given that a RAG is built at runtime and may
not capture all possible abort relationships (especially with inputs
having completely different concurrency patterns), we think that
profile-driven optimization for STM, as described by us, is prob-
ably not yet mature enough to universally guarantee performance
improvements. Indeed, its results should be considered a set of tem-
plates that the programmer can try out and derive insights from.

7.6 Effect of Training Input on HyAcq
With any profile-driven scheme, a natural question arises about
the relationship between training and reference inputs. For our
purpose, the training input is the one using which the RAG is built.

19 7 out of 10 configurations produce runtime improvements averaged over
all processor runs. Notice that this number is skewed by the results of yada.
Notice further that the recommended configurations for yada show better
scalability and the average may be different for yada if tested on more
number of processors.

The reference input is the one on which final runtime performance
is measured. For results presented in Section 7.4, the training and
the reference set are the same. To understand how a difference
between the training and the reference inputs might affect our
technique, we considered two of the STAMP benchmarks from
Section 7.4 (vacation and yada), ones that have alternative inputs
specified as part of the distribution. We performed two classes of
experiments:

1. For a given benchmark, we use the first input set in the training
run and the second in the reference run and vice-versa.

2. For a given benchmark, we aggregate the effects of all the inputs
in the RAG during the training run and use each input one by
one during the reference run.

For vacation, a low contention input and a high contention
input are available. For the first class of experiment, the resulting
policy configurations are exactly the same. In Section 7.4, we
report results with the high contention input. It turns out that the
performance trends for the low contention input are pretty much
identical to the high contention input.20 We looked at the RAG
and HyAcq statistics and there were expectedly less aborts seen
in the low contention case but it appears that all the important
ones were found in both. For the second class of experiments, we
considered the 3 different ttimeu inputs in yada and again the
policy recommendations and the performance trends were similar.
It is worth mentioning in this context that our technique is able to
handle multiple training inputs. A simple aggregation of the RAG is
done in such a case where common nodes, edges, and annotations
are merged and new ones added to the new RAG. We applied this
aggregation for both vacation and yada and the results did not
change. While it is hard to generalize based on a few benchmarks,
it is quite likely that our experience with training inputs holds for
a large number of programs. This is because the contention points
in a program tend to be the same — the contention may be low or
high depending on the input but the relative contention very often
stays the same.

8. Related Work
The multi-faceted nature of transactional memory research has
probably been best summarized in the Transactional Memory

20 In fact, V1 (generated with lazy as the initial policy) performs better than
the eager configuration in the low contention case by around 10-15%.

book [10]. Another rich source of information is the Transactional
Memory Bibliography [17]. While initial work focussed on HTM
and STM implementations [10], API and ABI proposals have re-
cently been published [9]. Though a lot of progress has been made
in STM research, there is concern that the overheads may over-
shadow its promise [4]. But it has also been pointed out that cer-
tain optimizations such as redundant barrier removal will play a
big role in getting the overheads to a reasonable level. However, at
this point, there aren’t any well-defined tools to point out these opti-
mization opportunities. As STM implementations mature, we need
good debugging and performance analysis tools that complete the
entire ecosystem. The goal is two-fold: understanding the charac-
teristics of the application itself to make the best use of the under-
lying TM model and having enough information about the STM so
as to choose the best design points.

8.1 STM Profiling
It has been noted that overall abort rate is not helpful in character-
izing the complex behavior of realistic TM workloads and that av-
eraging transactional statistics could be quite deceiving [18]. As a
solution, abort rates per atomic block were implemented and used
to pinpoint the specific atomic block that adversely affected scal-
ability of the application. Similar support has been implemented
in the Intel STM prototype [9]. Statistics of STM behavior on an
atomic block basis were used to examine the conflict relationships
between atomic blocks [14]. Another related work is tm db [8], a
library that provides programmers with generic transactional de-
bugging features.

The profiling technique that is most closely related to ours is
conflict point discovery [20]. The conflict point discovery is a
debugger feature that provides information about the victims of
aborts. Notably missing is information about the aborters. This
technique thus provides data similar to what L2 would provide in
our framework. Similar to our observations, the authors [20] note
that there is a probe effect of collecting this kind of information
but that they are low and do not introduce any new high level con-
tention. The basic conflict point discovery has been extended [21]
to support more extensive contextual information about conflicts
and account for all conflicting memory accesses within aborted
transactions (instead of just the first). A major difference between
the results of extended conflict point discovery and the RAG is that
the the former captures the aborter at the atomic section granular-
ity while the latter is able to capture the aborter at the reference
granularity. Notice that collecting information at finer granularity
involves careful orchestration of cross-thread interactions to mini-
mize overheads but it leads to more useful information. Note also
that our framework has the capability to expose some source loca-
tion information in the form of the outermost atomic section and the
transactional reference, both for the victim and the aborter. How-
ever, exporting the RAG to the user in the most meaningful way has
not been the focus of our work. The extended conflict point dis-
covery technique attempts to collect as many potential conflicts as
possible at runtime by not aborting the transaction at the first con-
flict but continuing till the end of the transaction. While this idea
does lead to more conflict identification in a single run, it does have
consistency issues after the first abort point and may not be feasible
in an unmanaged environment. It is also likely that for our purpose
of building the RAG, such information could easily pessimize the
RAG to such an extent that automatic analysis might not be effec-
tive any more. However, this is something we have not explored
and may provide complementary opportunities. Our work builds
on the basic relationship between aborters and victims but develops
it fully and shows substantial performance improvements with an
automated optimization technique. To the best of our knowledge,
this is the only work that attempts to develop a framework to auto-

matically assign the most beneficial conflict detection policy at the
transaction level.

8.2 Performance Analysis of General Multithreaded
Applications

Thread Profiler [1] helps analysis of general lock-based programs
by providing performance metrics and associating them with syn-
chronization objects. The work on analysis of lock contention [16]
is even more powerful by assigning blame for idleness to lock hold-
ers in a contextual manner. At a high level, the central idea of identi-
fying lock contention and blaming lock holders for spinning threads
is related to our work of associating aborters with victims of aborts,
though in a very different STM setting.

8.3 Supporting Multiple Policies at the Transaction Level
The unified STM algorithm [13] supports four execution modes
(optimistic, pessimistic, obstinate, and serial) and allows the run-
time to choose dynamically between the pessimistic and the opti-
mistic mode on a per-transaction basis. However, we are not aware
of an automatic performance-driven analysis to drive this choice.
While the pessimistic and optimistic mode combination is different
from that of eager and lazy acquire hybridization, the RAG and the
general nature of our analysis can be complementary to the unified
STM framework.

9. Conclusions
We described an instrumentation technique to build the runtime
abort graph (RAG) for an STM, capturing both victims and aborters at
the memory reference granularity. We showed that the the runtime
cost of building the RAG is low and that the information captured
closely tracks the characteristics of the uninstrumented program.
The RAG has been incorporated in a profile driven optimization
framework that tries to choose the most beneficial conflict detection
policy on an atomic section basis. Experimental results for policy
hybridization showed some significant performance improvements
over existing techniques.

However, given that the RAG denotes the abort pattern in a given
execution, more accurate modeling is required to represent unseen
patterns that may occur in another configuration obtained through
HyAcq or otherwise. Additionally, for future work, we would like to
explore other applications of the runtime abort graph. For instance,
utilizing the RAG for online optimizations is a promising approach
but one where additional issues such as phase identification and
balancing overheads vs optimization gains have to be addressed.

References
[1] Intel VTune Performance Analyzer with Intel Thread Profiler.

http://software.intel.com/en-us/intel-vtune/.

[2] M. Arnold and B. G. Ryder. A Framework for Reducing the Cost of
Instrumented Code. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 168–
179, 2001.

[3] C++ Standards Committee, Pete Becker, ed. Program-
ming Languages - C++ (final committee draft). C++
standards committee paper WG21/N3092=J16/10-0082,
http://www.open-std.org/JTC1/SC22/WG21/docs/pa-
pers/2010/n3092.pdf, March 2010.

[4] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software Transactional Memory: Why is it only a
research toy? Communications of the ACM, 51(11):40–46, Nov. 2008.

[5] D. R. Chakrabarti. New Abstractions for Effective Performance Anal-
ysis of STM Programs. In Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages
333–334, 2010.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In Pro-
ceedings of the 20th International Symposium on Distributed Comput-
ing, pages 194–208, Sept. 2006.

[7] A. Dragojević, R. Guerraoui, and M. Kapałka. Stretching transactional
memory. In PLDI ’09: Proc. 2009 ACM SIGPLAN conference on
Programming language design and implementation, pages 155–165,
jun 2009.

[8] M. Herlihy and Y. Lev. tm db: A Generic Debugging Library for
Transactional Programs. In Proceedings of the Parallel Architectures
and Compilation Techniques, Sept. 2009.

[9] Intel C++ STM Compiler, Prototype Edition 3.0. Intel Corp., Dec
2008. At http://whatif.intel.com.

[10] J. Larus and R. Rajwar. Transactional Memory. Morgan and Claypool
Publishers, 2007. ISBN 1–59829–124–6.

[11] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. S. III, and M. L. Scott. Lowering the Overhead of Nonblocking
Software Transactional Memory . In Proceedings of the 1st ACM
SIGPLAN Workshop on Languages, Compilers and Hardware Support
for Transactional Computing, pages 1–11, June 2006.

[12] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford Transactional Applications for Multi-Processing. In Proceedings
of the IEEE International Symposium on Workload Characterization,
Oct. 2008.

[13] Y. Ni, A. Welc, Ali-Reza-Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier,
S. Preis, B. Saha, A. Tal, and X. Tian. Design and Implementation of
Transactional Constructs for C/C++. In Proceedings of the ACM SIG-
PLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2008.

[14] N. Sonmez, A. Cristal, O. S. Unsal, T. Harris, and M. Valero. Profil-
ing Transactional Memory applications on an atomic block basis: A
Haskell case study . In Second Workshop on Programmability Issues
for Multi-Core Computers, Jan. 2009.

[15] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Con-
flict detection and validation strategies for softwaretransactional mem-
ory. In Proceedings of the Twentieth International Symposium on Dis-
tributed Computing, Sep 2006.

[16] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing
Lock Contention in Multithreaded Applications. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 269–279, 2010.

[17] Transactional Memory Bibliography. Univer-
sity of Wisconsin at Madison, 2009. At
http://www.cs.wisc.edu/trans-memory/biblio.

[18] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-
H. S. Lee. Kicking the Tires of Software Transactional Memory: Why
the Going Gets Tough. In Proceedings of the 20th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 265–274, June
2008.

[19] Y. Zhang, V. C. Sreedhar, W. Zhu, V. Sarkar, and G. R. Gao. Op-
timized Lock Assignment and Allocation: A Method for Exploiting
Concurrency among Critical Sections. CAPSL Technical Memo Re-
vised 65, University of Delaware, Mar. 2007.

[20] F. Zyulkyarov, T. Harris, O. S. Unsal, A. Cristal, and M. Valero. De-
bugging Programs that use Atomic Blocks and Transactional Memory.
In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 57–66, 2010.

[21] F. Zyulkyarov, S. Stipic, T. Harris, O. S. Unsal, A. Cristal, I. Hur, and
M. Valero. Discovering and Understanding Performance Bottlenecks
in Transactional Applications. In Proceedings of the Parallel Archi-
tectures and Compilation Techniques, 2010.

