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Abstract— Forensic analysis of individual printed items, 

including single characters, enables the addition of some level of 
security to any printed item (label, document, package, etc.). In 
this paper, we present a model-based approach for extracting a 
signature profile around the outer edge of virtually any text 
glyph. We show that for two high-resolution imaging devices (the 
Dyson Relay CMOS Imaging Device, called DrCID, and a high 
speed line-scan camera) this signature encodes that part of the 
glyph boundary that is due to the random fluctuation of the print 
process, enabling significantly higher levels of forensic 
discrimination than previously shown. The model-based 
approach enables a security workflow where the line-scan device 
is integrated into production line inspection with later forensic 
investigation in the field using the DrCID device. We also 
develop a simple shape descriptor to encode the signature profile, 
making it easier to manipulate, test and store. We argue that the 
shape descriptor provides forensic-level authentication of a single 
printed character. 

I. INTRODUCTION 

Counterfeiting, warranty fraud, product tampering, 
smuggling, product diversion and other forms of organized 
deception are driving the need for improved brand protection. 
The potential for security printing and imaging to provide 
forensic level authentication is well recognized and offers the 
potential to form part of the general approach to product and 
document security [1].  

Forensic analysis of printed material including documents, 
packaging and labels, can be classified into two broad 
categories: 1) device forensics/ballistics [2]-[4] where a 
document (or set of documents) is analyzed to see if it was 
printed on a specific device or class of devices; 2) print 
forensics [5], [6] wherein individual printed artifacts are 
uniquely identified. This second class, which is of interest 
here, allows the differentiation of individual instances of the 
same or highly similar documents - including high quality 
copies. In this way, for example, forensic information on an 
individual label can be used to test a high value products 
authenticity. In order to carry out this task in an effective 
manner, a central registry must be built to store the forensic 
information so that it can subsequently be tested in the field 
(see Figure 1 for an overview of a possible workflow). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Diagram of a simplified workflow in which a variable data press is 
used to print labels or packaging that includes both serialization data and 
forensic marks which are stored in a registry at or shortly after printing. An 
inspection device can then be used in the field (at retail or wholesale) to 
compare the printed forensic mark to data stored in the registry to prove 
validity. 

In order to perform a forensic inspection task of printed 
material, it is necessary to recover a description of all or part 
of the document at sufficient resolution to resolve those 
unique properties of the print that are extremely difficult to 
copy. For the majority of printing technologies such unique 
properties result from the unrepeatable statistical properties of 
the print process itself and its interaction with the underlying 
structural properties of the substrate material on which it is 
printed. The workflow is greatly simplified if we select an 
individual (or small number of) forensic mark(s) to identify a 
document. The forensic mark can be any form of glyph, 
character or printed shape of sufficient size to carry 
information to determine if the forensic mark under 
investigation is the exact same unique forensic mark that was 
previously printed. In this way, print is used as a security 
mechanism preventing the counterfeit and copy of documents 
and product packaging. 

It is advantageous to build the registry during the print 
process itself. This can be achieved by including a high-speed, 
high-resolution scanning device in the paper path of the 
printer and to read out images of selected forensic marks as 
they pass beneath it. Unfortunately, it easy to introduce errors 
in the shape of scanned characters either through mechanical 
variation or calibration inaccuracies and in practice these 
geometrical differences between the images tends to dominate 
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the inspection process. This means that it is necessary to 
resolve the line-scan-introduced differences before the print 
differences and similarities of the images of the forensic 
marks can be analyzed. Furthermore, because the spatial-scale 
at which the forensic properties of the printing process are 
manifest is so high—typically less than 10μm—it is necessary 
to resolve these induced geometrical errors to a very high 
degree of accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. (a) DrCID with imaging window on the bottom edge; (b) Our 
experimental inline print and line-scan solution. 

A. Previous Work 

We have previously [7] demonstrated the utility of a low-
cost USB-powered mini-appliance (Figure 2a) capable of 
resolving spatial features of 3.8 microns with 1:1 
magnification. This is accomplished using a single Dyson 
relay lens in series with a mirror and a low cost 3-5 Mpixel 
CMOS image sensor. With a self-contained (white LED) 
illumination source, this Dyson relay CMOS imaging device 
(DrCID) affords the capture of individual typed characters 
with printing “parasitics”—such as the absorbance of ink into 
the fibers of the substrate (e.g. paper, cardstock, etc.) along 
with the droplet “tails” that exhibit micro-random aberrations 
as shown in Figure 4a.  

We have also demonstrated [8] a prototype end-to-end 
solution where printed media is scanned at speed as part of an 
‘inline’ print process. This is achieved with a high speed line-
scan camera mounted above the output tray of an adapted HP 
K5400 office printer (Figure 2b). Currently we use an E2V 
12K element 5μm pixel linear monochrome sensor that 
operates at 27K lines/s (0.14m/s theoretical surface speed) 
also with 1:1 optics. The experimental rig also features a high 
intensity halogen light source to enable exposure times shorter 
than the line period in order to minimize motion blur as the 
paper passes beneath it during the full speed page feed.  

In general, the inline line-scan camera suffers from two 
sources of error: 1) calibration error with respect to the 
physical set up of the camera; 2) paper motion error. 
Calibration error results from a lack in precision in the 
alignment of the line-scan camera with respect to the direction 
of paper motion, and of average distance of the camera from 
the paper. This leads to small skew (sheer) and asymmetric 
magnification errors. Even if a line-scan system is brought 

into accurate calibration, there is no absolute guarantee that 
this can be maintained for all but the most rigid of mechanical 
arrangements. While the motion of the paper as it passes 
beneath the camera is reasonably constant, variations in gear 
timing, paper slip and vibrations can cause periodic small-
scale perturbation in both the lateral and vertical/depth 
motions of the paper.  

Most previous work in this area has been limited to pairs of 
images captured by a single class of imaging device. An early 
example [9] (see also [10]), recovers a print signature from 
low-cost digital optical-microscopes based on the radius 
profiles of binarized circular blobs (of physical diameter 
0.07mm) averaged over up to 72 sectors of the circle 
(measured w.r.t. the centre of gravity of the blob). The blobs 
were located and registered using fiducial marks and 
compared based on a Euclidian distance metric. Previous 
work [7] with DrCID explored the use of any individual 
printable glyph or character as a forensic mark. Similar to [9] 
forensic authentication was based on the analysis of the 
perimeter of thresholded binary image components (in this 
case over 360 1° bins), but with a number of extra profile 
measures in addition to radius. Each pair of profiles was 
aligned to optimize the following normalized similarity metric: 

 
S = 1-(SAD)/((SA1+SA2)/2) 
 

where SAD is the sum of absolute differences and SA1 and 
SA2 are the sum of absolute values of the first and second 
profile measure respectively. 

In [8] we adopted a model-based approach that separated 
the truly random part of the outline of the individual printed 
character, which we termed a signature profile, from the 
shared shape-conveying component. This allowed forensic 
level authentication to be achieved between the very different 
optical devices (DrCID and the line-scan camera) with the 
minimum of engineering effort and cost: we neither needed to 
use accurate calibration nor precise monitoring of the paper 
motion past the line-scan device. However, in this case the 
problem was greatly simplified by using a symmetric “o” 
character as the basis of the experimentation, modeling its 
shape as an ellipse. We adopted a similar approach in [11] to 
recover similar signature profiles with respect to square color 
barcodes. In this case, the orientation information conveyed 
by the non-payload indicia of the barcode allowed the 
signature profile to be extracted in an order fixed by the model 
(which was not the case for the ellipse model used in [8]). 
This allowed the introduction of a simple fixed order shape 
warp descriptor (which is typically less than 100 bits long for 
the examples presented in [11]) that can be extracted from the 
profile and used in batch inspection or other forensic security 
applications. 

B. Contribution 

Here we present for the first time the extraction of a general 
model based signature profile (MBSP) which is able to encode 
the random perturbations associated with virtually any printed 
character or glyph. We present a number of experiments to 
show how the MBSPs can be used for forensic inspection both 



for intra (DrCID to DrCID) and inter device (DrCID to line-
scan) comparisons. This allows almost any printed text glyph 
to be used as a forensic mark for a host of security 
applications. We further generalize the use of the shape warp 
descriptor introduced in [11] and show that a simple warp 
code is able to encode the signature profile in an effective 
manner, making it easier to manipulate, test and store. 

II. METHOD 

In order to generalize the use of models for the extraction 
of signature profiles from any text glyph it is necessary to (1) 
have a source of suitable models, (2) have a robust and 
accurate way to locate models in captured images, and (3) 
define the extraction of the signature profile with respect to 
the model. In this paper we concentrate, mainly, on the third 
aspect of this problem as this is where the novelty of our 
solution lies.  

 
 
 
 
 
 
 
 
 

Figure 3. Simplified model for the outline of a Times lowercase ‘a’. This 
model is composed of 100 feature points shown alone in (a) and with 
associated normals in (b). Note that in practice to avoid sampling artifacts 
models are an order of magnitude more dense than shown in this figure with 
typically between 1000 and 2000 feature points. 

A.  Model Based Signature Profiles (MBSP) 

We define our models simply as a set of N uniformly 
spaced points (x, y coordinates) defining the outer edge of a 
character glyph and associated unit normal vectors (u, v). 
Figure 3 shows an illustration of a model of the outer contour 
of a Times lowercase ‘a’. Using a model to extract a signature 
profile has 4 major advantages over the prior art, where 
typically a set of lines radiating from the centre of gravity of a 
forensic mark was used as a basis for characterizing its 
forensic properties [7], [9]. First and foremost, as discussed 
already, the signature profile so extracted comprises only the 
truly random perturbations introduced by the printing process 
rather than the general shape conveying properties of the 
outline. Second, using a model allows forensic comparison 
between very different images as we see in Figure 4 where 
DrCID and line-scan images are compared. Thirdly, non-
convex shapes, such as the outline of the ‘a’ in Figure 3, have 
a uniform description free from multiple crossings, critical 
points and discontinuities that plague the simpler approach. 
And last but not least, provided the model is free from internal 
axes of symmetry (not true of the ‘o’ characters used in [8]) 
the MBSP recovers a description the order of which is fixed 
w.r.t. the model. This makes the matching process more 
simple and robust and facilitates the extraction of generalized 
shape warp codes as discussed in section 2.2. 

Consider the signature profile extraction process shown in 
Figure 4. For each of the DrCID and line-scan images the 
model described as: 
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is matched to the outline of the text glyph subject to a 
homogeneous transformation of the form  
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(where N1 is a vector of N ones) which covers both the 

similarity (rotation and scale) when matching to the DrCID 
image as in Figure 4c and affine (which also includes skew) 
when matching to the line-scan data in Figure 4d.  

In order to extract each signature profiles a normal image is 
constructed. At each model point an interval along the normal 
direction is defined between two control points 
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and 
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where d is a fixed distance corresponding percentage of the 
model size (i.e. mean absolute distance of each model point 
from the centre of gravity of the model). Once N’xy and N”xy 
are transformed into the respective images of Figure 4 with 
appropriate similarity (in 4e) and affine (in 4f) transforms the 
loci of the control points are shown overlaid in red and yellow. 
By uniformly sampling the underlying image between these 
points (using standard bilinear interpolation to achieve sub-
pixel accuracy) the required normal profile images in Figures 
4g and 4h are constructed. 

Many methods can be used to recover the signature profile 
from the profile image, including simple thresholding or 
maximum edge detection. We have found the following 
grayscale edge metric that combines all the data in the profile 
image to work well. For each column in the profile image the 
signature profile is defined as: 
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where eij is an edge strength corresponding to the digital 
derivative of the profile image along the column i and wj is a 



windowing function (in our case a Gaussian with standard 
deviation ¼ the column height centered on the mid point of 
the column). Dividing by a normalizing sum of windowed 
absolute edge strength results in a measure that achieves 
robustness to both scene content and illumination variation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4. Illustrates, for a Times 12 point ‘a’, the extraction and matching of 
MBSPs. Where: (a) is a 900x800 (wide x tall) image captured by DrCID; (b) 
is a 400x400 image of the same character captured as it is printed by the line-
scan camera; (c) and (d) show superimposed transformed model data with 
approximate normal vectors; (e) and (f) show the loci of sampled regions for 
the extracted normal profile images in (g) and (h) respectively. Each column 
of (g) and (h) corresponds to sampling on a vector between the loci along the 
normal vector for each individual (x, y) contour point of the model. Finally (i) 
shows matched MBSPs extracted from (g) and (h) and warped using DTW. 

In [8] we show that it is possible to resolve the small but 
significant residual linear and non-linear errors that are due to 
inaccuracy in the model and the model fitting process as well 
as non-linear variation in the image (particularly for the line-
scan image, but also significant for DrCID). First we 
condition the profile by removing low frequency variations 
(subtracting off a low pass filtered version of the profile; in 
our case a Gaussian with a large standard deviation; e.g. 9.0). 

Then, when comparing profiles rather than simply computing 
a SAD (sum absolute difference) error metric we use a 
modified form of variable penalty Dynamic Time Warping 
(DTW) [12]. That is the timeline of one signature profile is 
warped to reduce the SAD error with respect to the other but 
where the degree of warp incurs a proportionate matching cost 
(see [8] for details). 

Notice, in Figure 4i that, despite the considerable difference 
in the spatial frequency content and the high degree of 
physical distortion (an almost a 50% scaling in the vertical 
direction) between the DrCID and line-scan data, the 
recovered signature profiles are quite similar and are brought 
into close correspondence using the DTW approach. 

B.  Shape Warp Coding (SWC) 

In [11] a shape warp descriptor/code was introduced for the 
limited case of micro-color-tile inspection. It was shown that a 
shape distortion encoding distance (SDED) based on the SWC 
allows batch inspection and validation (i.e. the use of a small 
number of scanned deterrents to determine whether a batch of 
products is genuine or counterfeit). 

Here we use the MBSP as the basis SWC for the general 
case of any irregular text glyph (i.e. one for which the 
matching process recovers a unique model location). We first 
divide the signature profile into N equal length segments. 
Then for each, compute a sum squared error (SSE) of the 
residual (which is akin to a local variance): 
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where pi is the signature profile over the segment j and μj is its 
mean value over the that segment. We then use the mean (or 
median) value of the SSE (or a factor or multiple of it) as an 
atomic unit of encoding (a “digit”), to form an N-position 
string which is the SWC: 
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where║.║is a rounding function. The SDED, for comparing 
the SWCs of any two forensic marks, is thus defined as: 
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where Tmax is an optional threshold to improve robustness. The 
SDED can be considered a form of modified Hamming 
Distance where the expected value of SWC(*) is 1 at each 
digit due to the normalization process described. For example, 
a pair of SWCs (N=50) extracted from DrCID data for the 
same printed ‘a’ and their absolute difference are: 
 

SWC1 = 11011111201101111211211121111110112121121111010111 
SWC2 = 11111111210100101211211121112110111111121111011210 
DIFF   = 00100000011001010000000000001000001010000000001101 

 

for which the SDED is 11 (or 0.22 when normalized by N). 



III. EXPERIMENTS AND RESULTS 

Results are presented for a number of experiments using 
data collected from our prototype integration of an HP Inkjet 
K5400 office printer and line-scan camera. An example line-
scan captured image swath is shown in Figure 5. The 9 
lowercase ‘a’s and ‘s’s in each such image are also captured 
twice using the DrCID device, once approximately vertical 
and for a second time at a considerable angle (about 30° from 
vertical). For comparison, the same data was also printed on a 
HP Photosmart 2610 all-in-one (Inkjet) printer (PS2610 for 
short) and captured twice with DrCID. 

In experiment 1, we compare MBSP to the prior art method 
described in [7] for just the data captured by DrCID (the prior 
art method is not applicable to the distorted line-scan data). 
Specifically, we compare 4 sets of DrCID data with and 
without rotation totaling 72 individual ‘a’ and ‘s’ images that 
are each compared to the 71 other images of the same letter 
(of which just 36 comparisons are valid and 2520 are not). In 
Figure 6, we plot the similarity metric S, from section 1.1, for 
each comparison of each character using each method (using 
best of the metrics generated by the prior art which was max-
radius; see [7] for details). As can be seen, the results are far 
better for MBSP where there is a very clear gap between the 
distributions of valid matches and those for incorrect 
comparisons.  

In Figure 7 we look at the distributions of similarity scores 
for the 2520 false matches for the modeled based approach. 
Concluding that the distributions are reasonably close to (but 
not exactly) Gaussian and assuming the same is approximately 
true for valid matches (where the sample is much smaller) 
then we can use a Z-score approximation (it is an 
approximation as these are sample, rather than population, 
statistics) to measure the separation of the two populations  

 

 FVFV SSZ    

 
that is the absolute difference of the mean similarity scores for 
veridical and false matches divided by the sum of their 
standard deviations.  
 
 
 
 
 
 
 
 
 

Figure 5. Swath of image data captured by line-scan camera. Only the lower 
case ‘a’s and ‘s’s were used in the experiments presented here. 

For the MBSP data in Figure 6 this results in Z-scores of 
18.1 and 13.7 respectively for the ‘a’ and ‘s’ data 
corresponding to infinitely small probabilities of false 
authentication (compared to Z-scores of 3.2 and 2.8 by the 

previous method [7] – in fairness that method reported much 
better results when the forensic mark was not rotated). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Results of experiment 1. Similarity data S for prior art method [7] 
top and MBSP at the bottom for ‘a’s on the left and ‘s’s on the right. Valid 
matches are red circles and false matches blue stars. Note that as the range of 
similarity is small for the prior art (0.955 to 1) compared to the MBSP (-0.2 to 
0.8) as for the former it also encodes the shape of the text glyph rather than 
just the perturbations. 

 
 
 
 
 
 
 
 

Figure 7. Histograms and Gaussian distributions for the false matches of 
experiment 1 for the MBSP method; ‘a’s on the left and ‘s’s on the right. 
Skewness and Kurtosis are close to Gaussian (0, 3) but given the large sample 
size they do show statistically significant deviations except for the Kurtosis of 
the ‘s’ data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Left images show ‘a’ and ‘s’ outline models recovered from the 12 
point Times Roman Font. Right images show the result of a combination 
process in which 36 outlines recovered by DrCID are combined by first 
selecting a seed and then transforming (using a similarity transform) each of 
the other outlines to the seed.  Model points are selected uniformly in the seed 
and updated to the mean of the closest points in the transformed outlines. This 
then forms the seed for an iterative refinement process. 



In experiment 2 we compare two different sources of model 
data (see Figure 8). One is based on the Truetype font and the 
other is built by combining DrCID images of all 36 instances 
of each character used in the previous experiment. The latter 
uses a form of Least Squares Congealing [13] operating on 
binary edge data rather than image intensities. Figure 9 plots 
statistics for veridical and false matches for intra-device 
(DrCID to DrCID with rotation) and inter-device (DrCID to 
line-scan camera). In each case, the built model performs 
significantly better than that derived directly from the font. 
This is due to the vagaries in the printing process that result in 
numerous changes to the font outline in the print driver, 
firmware and hardware. Interestingly, the comparison with the 
PS2610 printer also shows an improvement for the built 
model even though the same model, built using DrCID data 
from the K5400 prints, was used (Figure 9, right). 

In experiment 3, we performed of a series of SWC 
experiments computing SDED measures between the valid 
and false matches for the rotated DrCID data as the number of 
segments N and atomic unit of coding were varied. Figure 10 
shows results for the default atomic unit set to mean SSE 
(which was found to be optimal) for a range of SWC length N 
between 50 and 400 samples with best forensic security at 200 
samples where the probability of false validation is less than 
10-9. 

 

 

 

 

 

 

 
 

Figure 9. Results of experiment 2. Valid and false mean similarity scores 
(standard deviations shown as error bars) for font model (red dots) and built 
model (green solid) for near identical ‘a’ and ‘s’ data. Each of 3 experimental 
conditions (inter: between DrCID and line-scan; and 2 intra: DrCID alone for 
K5400 and PS2610 print data) show improvement in mean similarity score 
for valid matches for built model over font model. Improvements for PS2610 
are due to the larger print perturbations for that device compared to the K5400. 

IV. DISCUSSION & CONCLUSIONS 

We have shown, for the first time, a general method for 
using a model to extract a print signature from the outer 
boundary of a text glyph. It has been shown that this approach 
provides levels of forensic security that far exceed those of the 
prior art. Even for the difficult case where a forensic mark is 
scanned at print time using a line-scan camera, sufficient 
discrimination is achieved (Z-scores of 5.5 and 6.2 for ‘a’s 
and ‘s’s corresponding to probabilities of a false validation of 
less than 2.3x10-8 and 10-9 respectively) despite the 
considerable degradation of the inline device. We have also 
demonstrated the utility of shape warp coding that is 

supported by the model based approach. This provides 
degraded but still excellent levels of security in a compact and 
tractable fashion Such intermediate levels of verification are 
useful because, they support a tiered approach where the 
ability/need to fully forensically verify the validity of a 
forensic mark is reserved for a privileged user and/or device 
with access to a less public database. They also have the 
potential to be robust to damage without modification – a 
possibility which will be the focus of future research. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Results of experiment 3. Valid and false mean SDED values 
(standard deviations shown as error bars) for ‘a’s (red dots) and ‘s’s (green 
lines) for range of sample sizes N. As SDED is a difference score false 
matches have higher values than valid ones. 
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