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Privately detecting correlations in distributed time series

Mehmet Sayal ∗ Lisa Singh†

Abstract

In this paper, we consider privacy preservation in the
context of independently owned, distributed time series
data. Specifically, we are interested in discovering cor-
relations even though we cannot share the raw time se-
ries values. We propose developing a generic framework
for identifying similarities or correlations of a particular
behavior or statistic across participants. Our generic
framework makes use of the additive combining prop-
erty of certain statistics. It also allows for sharing of
scaled bin values instead of raw data or statistical val-
ues to improve levels of privacy. We find that while
there is a natural trade off between privacy and accu-
racy, we can maintain reasonable correlation accuracy
for different levels of privacy.

1 Introduction

Time series data is prevalent in many applications in-
cluding, transaction data, stock trend data, and pro-
curement data. In some domains, this information is
sensitive and distributed across independent entities,
e.g. procurement and medical. Researchers have in-
vestigated ways to share noisy versions of these data
[6], as well as Fourier and wavelet transformed versions
of time series and data streams for different data mining
applications [14, 17]. Our problem focuses on using time
series data from independent entities to discover higher
level correlations without sharing the raw time series
data. We must also ensure that the original data can
not be determined from the shared information. At the
same time, we need to preserve enough of the original
data characteristics to identify correlations with other
participants’ time series data.

For example, given store purchase data, multiple
stores may be interested in identifying correlations in
sales across the industry in different regions around the
country. Because each store maintains its data indepen-
dently, the data must be merged to identify correlations
across all independent companies. Sharing the raw time
series data is a concern. Each company only wants the
resulting correlation information provided that the com-
pany data remains private. The correlation information
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gives the participating companies insight into the mar-
ket trend in different regions. Companies can then take
this information and see how their data compares to the
trend in the region.

In this paper, we propose developing a generic
framework for identifying correlations of a particular be-
havior or statistic. We consider different privacy mod-
els and make use of the additive combining property
of certain statistics to find correlations among partic-
ipants. We explore three different privacy levels and
demonstrate how the type and accuracy of the corre-
lations vary based on the level of privacy guaranteed.
We also show that scaled bin values of the raw data are
sufficient for finding pairwise correlations and that they
improve the level of privacy for many statistics.

Our contributions are as follows: 1) we present a
generic framework for identifying behavioral similarities
or correlations in time series data using a number of
different statistics; 2) we present a low overhead method
for aggregating data that obscures raw data values while
maintaining basic scalar information that is important
for correlation analysis; 3) we present a number of
different privacy constraints and show how accuracy is
affected when more constraints are added to the privacy
problem; 4) we conduct an experimental analysis on
both synthetic and real world data to better illustrate
the trade off between accuracy and privacy.

The remainder of the paper is organized as follows.
We begin with some background and problem formula-
tion in section 2. We then describe our approach in sec-
tion 3 and the privacy guarantees in 4. Our experiments
and evaluation are presented in section 5. We then re-
view the related literature in section 6 and present con-
clusion in section 7.

2 Problem formulation and notation

This section presents definitions, terminology, and nota-
tion. Because there are a number of different notations
that have been introduced for distributed time series
data, we begin by presenting the notation we will use
throughout this paper.

2.1 Time series notation Each input time series
contains items e1, e2, . . ., eN . The items represent an
underlying signal E that can be viewed as a vector or



as a one dimensional function E : [1 . . . N ] → R. Here,
each ej equals E[j] and the time series is of length N .

The distributed data can be horizontally or ver-
tically partitioned. This paper focuses on a horizon-
tal partitioning of the data, where each participant
has the same time series variable for a disjoint set of
data.Suppose there are P participants each having a
local time series vector E. We denote the i-th partic-
ipant’s time series as Ei. The combined or aggregate
time series A is the average of all the participants time
series, A =

∑P
i=1

Ei

P .

2.2 Correlations Correlations are useful for showing
a relationship between two or more random variables
or observed data values. Data that are correlated are
not considered statistically independent. There are
several correlation coefficients that measure the amount
of correlation. While any of them can be used, we focus
on the Pearson correlation coefficient. It measures the
linear relationship between data. Given two time series,
Ei and Ej , the Pearson correlation coefficient, ρEi,Ej ,
is calculated by dividing the co-variance of two variables
by their standard deviation: ρEi,Ej = cov(Ei,Ej)

σEiσEj
. In the

case where there are more than two time series, we can
use a covariance matrix (ρ) that is a PxP matrix whose
i, j entry is the correlation coefficient ρEi,Ej .

2.3 Representative Values We analyze the time
series in equal size chunks or windows. A time series of
length N contains ω windows with n = N ÷ω elements
in each window. The window size n is also the same
for all participants and the time intervals are aligned
across participant sites.1 We denote the k-th window of
participant i as Ei

k and the k-th window of the aggregate
time series as Ak.

For each window, i, we compute a single represen-
tative value, ri. The representative values themselves
create a new time series, R = {r1, . . . , rω} that, in some
privacy schemes we propose, is shared among partici-
pants. This representative time series will be described
more in the next section. Because there is only one rep-
resentative value for each window, in order to compute
correlations, we define a correlation window as the sub-
set of windows considered for identifying a correlation.
The length of the correlation window, lCW , is defined as
lCW = cω, where c is a constant between 0 and 1 that
represents the fraction of the total number of windows,
ω in the time series. In the simplest case, c = 1 and the
correlation window equals ω. In other words, one cor-

1In this paper, we assume that the time series are re-sampled

to a common rate based on arrival rate, etc. The discussion of
that is beyond the scope of this paper.

relation coefficient will be computed for the entire time
series. For this paper, c is pre-specified by the partici-
pants. For ease of exposition, we will focus on the case
where c = 1.

3 Overview of Method

At a high level, the proposed method for privacy pre-
serving correlation identification can be broken down
into four major steps: preprocessing, local representa-
tive value calculation, distribution data schemes, and
correlation identification. In the remainder of this sec-
tion, we describe each of these steps in more detail. The
privacy schemes and breaches will be the focus of the
next section.

3.1 Preprocessing Steps Prior to beginning, one of
the participants is designated as the master location or
the leader. The leader begins by sending the partici-
pants a number of parameters across a secure channel:
date range (d), window size (n), number of participants
(P ), correlation window length (lCW ), privacy scheme
(PS) and any parameters associated with the selected
privacy scheme. 2

The date range identifies the time period of the
analysis. This is used to ensure that the time series
are aligned along the time dimension. The window
size defines the chunk of data processed at once and
also specifies the number of representative values for
the time series. The number of participants is used to
determine parameters for the different privacy schemes.
The correlation window length identifies the period over
which to calculate correlations. Finally, the privacy
scheme identifies the form of the representative time
series R and the procedure to use for communicating R.

3.2 Local Representative Time Series Calcula-
tion There are different values that can be used as rep-
resentative values for a time series. Here, we begin by
describing the different statistics or behaviors that can
be calculated in our framework. We then describe two
method for calculating the representative value for each
window.

3.2.1 Possible Behaviors Using our framework, we
want the ability to correlate a number of different
statistics or behaviors. Users are able to correlate one or
more statistics as long as each statistic can be combined
through addition of the scalar values. In other words,
if we sum all the participant values of a particular
statistic, the result is meaningful. We refer to statistics

2The participants can determine these parameters apriori. In
that case, the leader only activates the process.



that can be combined through addition as having an
additive combining property.

Statistics with this additive combining property
that we consider in this paper are the following:

• Mean: the average value of the window.

• Median: the median of the data values in the
window.

• Min: the minimum value of the window.

• Max: the maximum value of the window.

• Range: the difference between the maximum and
minimum value of the window.

• First: the first value of the window.

• Last: the last value of the window.

• Difference: the difference between the last and first
value of the window.

• AbsoluteDistance: the sum of the absolute differ-
ences between all the adjacent points in a window.
This represents the absolute distance traveled.

• DirectionChanges: the number of direction changes
in the window.

3.2.2 Basic and Scaled Representative Time
Series To generate representative values for windows,
we bin values based on the statistic of interest. In
previous work, a binning approach was used for privacy
of bursts [15]. Here, we consider two forms of binning,
basic and scaled binning.

Basic binning puts raw values within each window
into bins or buckets to obscure the actual data value.
For example, if the behavior of interest is the mean
sales, then the mean value of each window is calculated:

ri =
Pn−1

j=0 en∗i+j

n .
Scaled binning uses a binned distance from the

mean of the time series R generated using basic bin-
ning to generate representative values. To calculate
the scaled bin value, the participant calculates the
representative values for the behavior of interest R,
takes the mean of the representative values µ(R), and
the standard deviation of the representative values,
σ(R). Then for each window, the representative value
is replaced with a scaled bin value rsi based on the
rounded distance between ri, µ(R), and σ(R): rsi =
round( |ri−µ(R)|

d×σ(R) ). In this equation, d is a small constant.
A scaled bin value of 0 means that the representative
value ri for window i is within some constant d standard
deviations away from the mean, positive or negative. A

bin value of 1 means that ri is more than d standard
deviations away from the mean, but less than 2d stan-
dard deviations away. Scaled bin values increase in this
manner. Each scaled bin may represent a fraction of
a standard deviation d = 0.5, one standard deviation,
d = 1 or multiple standard deviations, d = 2. Clearly,
the selected value of d impacts the precision of the re-
sults.

To illustrate these binning techniques, we present
an example in Table 1. The first row shows the time
points in the time series. The second row contains 8
elements or data values in the time series. Suppose the
size of each window is 2 (n = 2) and our behavior sta-
tistic is min. The final two rows of the table show the
basic bin representative values and the scaled bin repre-
sentative values with d = 0.5, respectively. Intuitively,
this example demonstrates two points. First, the basic
bin value can be very different from the original values
depending on the behavior captured. Second, it is more
difficult to determine the original time series values if
the scaled bin values are shared instead of basic bin
representative values. We will investigate this further
in the next section.

Table 1: Binning Example: n = 2, µ = 13.25, σ = 1.33

t1 t2 t3 t4 t5 t6 t7 t8
ei 12 11 22 10 15 15 17 18

ri-min 11 10 15 17
rsi-min 1 2 1 2

3.3 Distribution Data Scheme We consider a
number of different ways to distribute or share repre-
sentative time series values - broadcasting, trusted col-
lector and self-eliminating noise. Each of these distri-
bution schemes leads to different privacy concerns that
will be discussed in the next section.

3.3.1 Broadcasting In the broadcast distribution
scheme, the participants communicate by broadcasting
their representative time series R to each other using
standard encryption techniques. We consider both basic
binning and scaled binning representative values. Be-
cause R is broadcast to all the participants, correlations
can be found for any pair or group of participants.

3.3.2 Trusted Collector We consider three differ-
ent trusted collector distribution schemes. In all three
distribution schemes, the participants send their repre-
sentative time series R to a collector. Once again, for
this distribution scheme either binning technique can be



used to generate representative values. The difference
in the schemes is what is returned by the trusted col-
lector. In the first trusted collector distribution scheme,
the trusted collector returns a correlation matrix. In the
second trusted collector distribution scheme, the trusted
collector sends a reordered correlation matrix. In both
of these schemes, each participant is told by the collec-
tor which row contains the participant’s information.

In the final distribution scheme, the trusted collec-
tor creates an average behavior time series, A and re-
turns it to the participants. In this case, pairwise cor-
relations can not be identified by the participants. We
pause to mention that for this final trusted collector dis-
tribution scheme, the collector can be eliminated and a
secure multiparty computation protocol [8] can be fol-
lowed by the participants to compute A. Doing so elimi-
nates the bottleneck associated with having a collector.
However, as the number of participants increases, the
communication overhead and delay increase. In this
paper we will focus on the trusted collector distribution
scheme instead of the secure multiparty computation.

3.3.3 Self Eliminating Noise In this final distrib-
ution scheme, we do not want to share the representa-
tive time series values with the collector, but we still
want to compute aggregate correlations. Instead, we
consider a simple approach that involves insertion of
’self-eliminating’ random noise to generate an average
behavior representative time series for the different par-
ticipants.

This idea is used in [17]. We paraphrase the expla-
nation here. Self-eliminating noise is a vector of values
that cancels out after the elements in one dimension are
summed together. The vector [6,−1,−2,−3] is an ex-
ample of a self-eliminating noise vector since (6 + -1 +
-2 + -3)=0. Self-eliminating noise removes the need to
either aggregate representative time series of different
participants in a round robin fashion or using a trusted
collector.

A noise generator (or generator for short) is a
participant assigned to generate self-eliminating noise.
Each generator j creates a random noise list N i,j for
each participant i. There are G participants that serve
as generators. The protocol requires G ≥ 2. If there
is only one generator, G = 1, then the generator could
intercept any participant’s communication and remove
the added noise to get A.

In order for the noise to be self-eliminating during
aggregation of the representative time series, each gen-
erator must ensure that the sum of values across all gen-
erated, participant noise lists sum to zero at any index

on the list:

∀ j≤G(∀ 1≥k≤log(N)

P∑
i=1

N i,j [k] = 0)

By enforcing this constraint, the noise will cancel out
once the individual representative time series are ag-
gregated. The noise prevents participants from poten-
tially causing a privacy breach while also avoiding more
costly aggregation using a round robin secure summa-
tion scheme.

N i,j is distributed to each participant as a pre-
processing step. Once participant i receives the random
number list from the generators, the participant adds
the next random number from each list to the next rep-
resentative value. To ensure that the data from par-
ticipants with unusually large deviations is adequately
hidden, a maximum and minimum data value thresh-
old can be enforced. Participants with values outside
of those thresholds would replace the actual data value
with the corresponding threshold value. The idea of
thresholding is similar to the idea of transform thresh-
olding presented in [17].

After the noise has been added for all the elements
in Ri

k, participant i can send the ’noisy’ representative
vector R∗i

k to the collector. An example of this is
illustrated in Table 2. In this example, there are 2
noise generators and six participants. Each participant
receives a list of random numbers. Each participant
will take the first number from the list and add it to his
first representative value. Then he will add the second
number to the second representative value and so on.
Once the representative values are aggregated by the
collector, the added noise cancels out and the actual
aggregate representative time series is obtained by the
leader.

Table 2: Ri,j for P = 6 and G = 2

P Generator 1 Generator 2
1 0 -7 2 -1 -8 4
2 6 4 8 -2 -1 -4
3 -3 7 3 -1 5 6
4 2 -4 -1 2 -3 3
5 -5 4 -6 7 -2 1
6 -2 -4 -6 5 9 2

sum 0 0 0 0 0 0

Because the collector is not one of the noise gener-
ators, the collector does not see the actual representa-
tive time series of the participants during aggregation.
For additional privacy, each generator can use different



means and variances for data generated for each partic-
ipant as long as it is self-eliminating across all partici-
pants.

3.4 Correlation Identification We are interested
in finding two types of correlations - one that corre-
lates the behavior of an individual’s time series, Ei, to
another individual’s time series, Ej and one that cor-
relates a behavior of an individual’s time series, Ei, to
a time series that represents the average behavior of all
the time series , A. Notice that in this formulation, each
participant has a single time series. We can easily gen-
eralize this so that each participant has multiple time
series. For ease of exposition, we focus on a single time
series for each participant for the majority of the paper
and discuss the multiple time series case at the end of
the next section.

4 Privacy Analysis

We discuss the amount of privacy preserved for the dif-
ferent distribution schemes. What is the likelihood of
determining the original time series when different rep-
resentative values are shared or from the correlation re-
sults themselves. We also consider the privacy impli-
cations of sharing multiple behaviors for the same time
series data, e.g. computing both the mean and absolute-
Distance.

4.1 Privacy breaches We consider two different
types of privacy breaches, an absolute breach and a
moderate breach.

DEFINITION 1. An absolute breach occurs if for any
participant Pi, the local time series Ei can be deter-
mined by an adversary. A moderate breach occurs if for
any participant Pi, the mean and variance of the repre-
sentative values in time series Ri can be determined by
an adversary.

An absolute breach means that the adversary can
determine a participant’s exact time series. Sometimes
getting close is also a problem. Therefore, we choose to
define the moderate breach as one where the adversary
knows the mean and variance of the representative
time series. With that information the adversary can
approximate the time series well and in the worst case,
this approximation of the original time series is as good
or better than R. The adversaries are presumed to
be naive non-participants or semi-honest participants,
i.e. do not exhibit malicious behavior, but will cheat if
sufficient information is available to them.

Since the original time series Ei is never shared
among participants, we need to understand what the
adversary can do if he/she determines the representative

time series, Ri. What is the probability that an
absolute breach will occur when the adversary knows
Ri? Depending on the distribution scheme, determining
Ri may be straightforward. We defer discussing the
privacy associated with different distribution schemes
until the next subsection. For now, we assume the worst
case, that the adversary can accurately determine Ri.

To determine the amount of noise introduced by
using a representative value, we measure the discrep-
ancy between the original time series, E, and the per-
turbed time series E∗, generated using R, as the nor-

malized Euclidean distance, D(E,E∗) =
√

E2−(E∗)2

N .
The amount of error introduced depends on five fac-
tors, the binning strategy used, the statistical behavior
being measured, the window length n, and the variance
between the representative value ri, and the actual val-
ues in window i. We claim that the worst privacy case
scenario is when the basic binning strategy is used, the
window length is small, the variance is low and the sta-
tistical behavior of interest can bound the window val-
ues. We intuitively explain this claim.

Privacy Statement 1: Since basic binning has repre-
sentative values that are of the same general magnitude
as the original time series values and the magnitude in-
formation is lost when scaled binning representative val-
ues are used, the likelihood of a breach is higher when
the basic binning strategy is used.

Privacy Statement 2: When the variance is low,
the representative values are a good approximation of
the actual values in each window.

While this is the case, the adversary does not know
that the variance is low based on the representative val-
ues themselves if only a single behavior is being shared.
Therefore, even though using the representative value to
approximate all the values in a window will lead to a low
discrepancy, potentially an absolute breach, D(E,E∗),
the adversary cannot be certain this is the case. If the
variance is high, then using the representative value to
approximate all the values in a window will lead to a
high discrepancy. In this case, the probability of an ab-
solute breach occurring is similar to randomly guessing
each value in the window.

Privacy Statement 3: While a single statistical
measure can bound the values in the window, the
measure does not provide insight into the order of the
elements in the window or the actual values of all the
elements.

The different statistical measures also lead to dif-
ferent levels of privacy. If the first or last value of a
window is the representative value ri for window i, one
value of the window is known, but all the other values
in the window are not bounded by the representative
value. The median or mean give more insight into the



values of the elements and will tend to be a better ap-
proximation of each individual behavior in the window.
The minimum or maximum values of the window can
be used to bound the range of possible values in the
window from a single direction. In all these cases, even
though the statistical behavior can bound window val-
ues, it does not tell the adversary the value of all the
elements in the window or the order of all the elements
in the window.

Privacy Statement 4: Increasing the size of the
window, n, generally, reduces the ability of the adver-
sary in determine the original time series values, thereby
improving the amount of privacy.

When the window length n is small, more represen-
tative values are being used to approximate the time
series. As n increases, ri represents a larger number of
events. If the magnitude of the events is not constant,
then the error between the actual data values and the
representative data value will increase as n increases.

To better quantify these ideas, we define a generic
probability for determining the values in a window i
to be P (wi) =

∑n
j=1 P (ej |ri), where P (ej |ri) is the

probability that ej can be determined given that ri

is known. When the behavior does not bound the
window, then ej and ri are independent and P (ej |ri) =
P (ej). If n is large, the behavior is unbounded, and
the variance is high, P (wi) is no better than a random
guess, P (wi) = n× 1

x , where x represents the size of the
domain of E.

Privacy Statement 5: Using scaled binning reduces
the probability of determining actual data values to that
of a random guess for adversaries.

We now consider the additional of privacy intro-
duced using scaled binning. First, we notice that the
range of the scaled bin values is between 0 and some
small constant. This is the case irrespective of the range
of the original data, positive or negative. Intuitively, we
have flattened the data and for added privacy, can take
the absolute value. The adversary will not be able to
reconstruct the original time series with the scaled bin
values because the scaled bins do not give enough in-
sight about the magnitudes of the elements in the orig-
inal time series. In the worst case, if the adversary de-
termines the representative value, he/she will know the
distance to the mean of R. However, he will not know
the value of µ(R) or σ(R). Also, he will be uncertain
about the values that are above the mean versus those
that are below the mean if they are bucketed together.
Therefore, the adversary’s prediction of E is no better
than a random guess.

We now consider whether the result returned to
participants can help determine E. Does the correlation
matrix provides insight into the actual data values

Figure 1: Participant time series having the same R
time series

if that is what is shared among participants. Let’s
consider to two extreme cases, (1) two participants are
extremely correlated and (2) the two participants are
not correlated at all.

For case 1, these two participants can determine
the shape or envelope of the other’s time series. If
R is known, then the correlation matrix does not
provide any additional insight from R for an absolute
breach to occur. While correlated data could imply
similar time series values, Figure 1 shows an example
where that is not the case. The figure shows two
participant time series, one red and one blue, oscillate
in opposite direction within the same time range The
x axis represents time and the y axis represents the
magnitude of the time series. The representative time
series R1 and R2 for both these participants are the
same and the correlation is 1. In this example, let
us suppose the window size covers a single cycle. We
show the values for all the different behaviors for a
single window in Table 3 3. Theoretically, this may
imply that if one of the participant’s is an adversary
and the two time series are completely correlated, the
adversary may consider plugging in his/her own data
distribution to approximate the other participant’s time
series. However, if the adversary does this, the final
signal would approximate the other participant’s time
series accurately. Therefore, an adversary cannot gain
insight based on having the correlation matrix.

For case 2, where the two participants are not
correlated at all, if the adversary is a participant, the
adversary assumes that his/her data distribution is
different from his/her data distribution. However, many

3While the example is symmetric for ease of exposition, non-
symmetric examples can also be generated



Table 3: Single window r for Figure 1 data

Statistic r1
i r2

i

Mean 0 0
Variance 3.73 3.73
Median 0 0

Min -3 -3
Max 3 3
First 0 0
Last 0 0

Range 6 6
Difference 0 0

AbsoluteDistance 12 12
DirectionChanges 3 3

other distributions exist, making this close to a random
guess.

Let us also consider the case when the correlation
window is less than the size of the time series. Then for
each correlation window, a correlation matrix is created.
If the order of the individuals in each matrix is the same,
then a participant Pk can see that his values are always
correlated to a particular individual in the correlation
matrices (even if he is uncertain about which particular
participant it is). To remove this additional insight, we
reordering successive matrices, thereby obscuring this
information.

Another shared result is the aggregate time series,
A. If the adversary knows that all the participants
have the same distribution, then the privacy defaults
to that of basic binning. Otherwise, the likelihood of
determining individual time series is less than the cases
described above.

The final shared result we consider is when multiple
behaviors are shared.

Privacy Statement 6: For basic binning, an absolute
breach is possible when all the representative time series
are shared.

Proof Sketch: Suppose the adversary knows the
mean, median, min, max, range, first, last, difference,
absoluteDistance and directionChanges. Right away,
the adversary knows the first, last and middle values
of the bin. Then, using the absoluteDistance, min, max
and directionChanges, it is possible to determine the
other values in the window. A straightforward example
assumes that the window has a single value v for each
element. Then the mean = median = min = max =
first = last = v, while the absoluteDistance = range
= difference = directionChanges = 0. The adversary
knows all the values and the order of the values, an
absolute breach has occurred.

Privacy Statement 7: With scaled binning, the ad-
versary cannot be certain about the original magnitude
of the data. Therefore, even though the shape of the
time series can be approximated, the actual values can-
not be determined - a breach does not occur.

4.2 Privacy of distribution schemes In the previ-
ous subsection, we assumed that the adversary was able
to determine the representative time series Ri for all the
participants, Pi. In this subsection we consider how dif-
ficult it is to determine R using the different distribution
schemes.

By definition, when broadcasting is used and basic
binning is used, a moderate breach occurs. The repre-
sentative times series are broadcasted to all the partici-
pants. If the adversary is one of the participants, he/she
has all the representative time series. If the distribution
scheme is broadcasting, but scaled binning is used for
representative values, a moderate breach does not occur
since, as described in the previous subsection, the do-
main and magnitude of events cannot be approximated
better than a random guess. In fact, irrespective of
distribution scheme, if scaled binning is used, the prob-
ability of determining the basic binning representative
values does not increase.

In the other two distribution schemes, the repre-
sentative values are not shared. The only information
shared is the correlation matrix or the aggregate rep-
resentative time series, A. As explained in the previ-
ous subsection, the correlation matrix and the aggregate
time series do not improve the likelihood of determin-
ing the original participant time series. In the trusted
collector scheme, the collector does have all the repre-
sentative time series. In the worst case, this can lead to
a moderate breach if the collector is an adversary. In
the distribution scheme involving self eliminating noise,
noisy representative time series values are shared, ob-
scuring basic bin values. Therefore, a moderate breach
does not occur for basic or scaled binning.

5 Experiments

In this section, we attempt to quantify the amount of
utility and the accuracy of the calculated correlations
under different privacy schemes. How quickly does the
correlation accuracy decrease when we change the pri-
vacy related parameters? He we focus on correlation ac-
curacy when varying window size, time series variance,
behavior of interest, binning strategy, and bin scale size.

The data sets we consider include stock ticker, net-
work packet, sensor, random walk, and synthetic time
series, e.g. periodic, random, monotonic, etc. The ma-
jority of the non-synthetic data sets were obtained from
the UCR time series data repository [11]. Information



about the other data sets, including the synthetic ones
can be found at (reference removed for double-blind).
Again, while none of these data sets actually requires
privacy, we consider these data sets because they serve
as a representative set of time series data that has vary-
ing energy and noise characteristics.

5.1 Pairwise correlation detection accuracy for
basic binning We now analyze correlation accuracy
for pairwise correlations. A pairwise correlation is the
Pearson correlation of time series data between two
participants. Unless otherwise specified, the bin scale
size, d = 0.5. Figure 2(a) compares the correlation error
for different statistical behaviors and window sizes using
basic binning. This is an average result across all the
different data sets. As expected, as the window size
increases, the error increases.

Figure 2(b) compares the correlation error for differ-
ent statistical behaviors and different number of partici-
pants using basic binning. While the error does increase
as the number of participants increases to a point, for
some measure it decreases as the number of participants
increase. We surmise that this results because of the
variation in the participant data. Once the number of
participants is greater than 5, the variation in the data
between some of the participants decreases in our data
sets.

Figure 2(c) shows the error for the different statis-
tical behaviors for 3 participants, 5 data sets, and a
window size of 16 elements. Due to space limitations,
we cannot show the time series for each of these data
sets. Instead, we highlight a few interesting findings.
First, the ticker data has no noticeable error across any
statistical behavior. The ticker data set is a relatively
flat time series for most participants with little vari-
ance. Therefore, the representative values are very ac-
curate approximations of the original signals. Second,
in general, the error is relatively low. There are a few
exceptions. For example, the absolute distance of the
random walk data did particularly badly. We believe
this results because of the high variability of random
walk data. Notice, however, that while some behaviors
did particularly poorly, others had negligible error.

5.2 Pairwise correlation detection accuracy for
scaled binning We now consider the scaled binning
error rates for correlation. Figure 3(a) compares the
correlation error for different statistical behaviors and
window sizes using scaled binning. As expected, the
error rate increases as the window size increases for the
different statistical behaviors. Figure 3(b) compares the
correlation error for different statistical behaviors and
different number of participants using scaled binning.

(a) Correlation Accuracy Across Window Sizes

(b) Correlation Accuracy Across Number of Participants

(c) Correlation Accuracy Across Data Sets

Figure 2: Pairwise Correlation Accuracy for Basic
Binning Method



This graph behaves similar to the basic case. One
should notice that the magnitude of the error is very
similar, and in some cases lower. Finally, Figure 3(c)
shows the error for the different statistical behaviors
for 3 participants, 5 data sets, and a window size of
16 elements using scaled binning. While the general
results are similar to the basic binning, the error rate
for some behaviors of the random walk data are less
than the basic binning case. In other words, there are
times when the error rate is less. In fact, if we just
take the average error across all the data sets, across all
the window sizes, across all the number of participants,
and across all the behaviors, the basic binning pairwise
correlation error is 0.1899 and the error for the scaled
binning pairwise correlation is 0.1872. The correlation
accuracy using scaled binning is as good as basic binning
with a higher privacy guarantee.

5.3 Aggregate correlation accuracy With the ag-
gregated representative values, A, we find more of a dif-
ference between the basic binning and scaled binning
correlation error. Figures 4(a) and 4(b) show the cor-
relation error for the basic and scaled versions, respec-
tively. In both cases, the error increases as the window
size increases. However, for basic binning, there is more
variation in the error depending on the behavior of inter-
est, with some behaviors having much lower correlation
error than others. For scaled binning, the slope of the
error is smaller as the window size increases and error
is more similar across the behaviors.

Figures 5(a) and 5(b) compare the aggregate corre-
lation error for different statistical behaviors and differ-
ent number of participants for both binning strategies.
For basic binning, the shape of the error is similar to the
pairwise case for many of the behaviors, peaking at five.
For the scaled binning case, the error increases as the
number of participants increases. However, the slope
of the error does decrease as the number of participants
increases. In general, the error is lower for basic binning
than for scaled binning for these two charts.

Finally, we do a comparison of the aggregate corre-
lation for different data sets. Figures 6(a) and 6(b) show
the correlation error for the basic and scaled versions,
respectively. Here, we focus on the case with three par-
ticipants and a window size of 16. When comparing the
two figures, both do well on ticker data, both do poorly
on the synthetic data, and the rest are mixed, depend-
ing on the behavior. Once again, we take the average
error across all the data sets, across all the window sizes,
across all the number of participants, and across all the
behaviors. We find that the basic binning aggregate
correlation error is 0.2467 and the error for the scaled
binning aggregate correlation is 0.4596. Here, there is

(a) Correlation Accuracy Across Window Sizes

(b) Correlation Accuracy Across Number of Participants

(c) Correlation Accuracy Across Data Sets

Figure 3: Pairwise Correlation Accuracy for Scaled
Binning Method



a clear difference between the correlation accuracy of
basic binning and scaled binning.

5.4 Bin scale size In the previous experiments, the
bin scale size d was constant (d = 0.5). Here we vary
d to understand if the correlation accuracy changes
as d increases for basic and scaled binning. Figure 7
plots the pairwise and aggregate correlation error as
d increases for the basic and scaled binning methods.
For the pairwise case, the error basically the same
for both basic binning and scaled binning. Also as d
increases, the error remains fairly constant. The error
for the aggregate case was also fairly constant across
both binning methods. However, in this case, the basic
binning error was consistently less than scaled binning.

5.5 Discussion and Analysis When analyzing all
these results, there are some interesting findings we
want to highlight. First, for pairwise correlation, the
correlation error for both the basic binning and scaled
binning methods was essentially the same. This sug-
gests that we should generally use scaled binning for
pairwise correlations because the original signal can-
not be reconstructed using the scaled bins and there
is no penalty in terms of correlation accuracy. Also, it
is sometimes useful to share many different behaviors.
Because the accuracy is very similar across the differ-
ent behaviors, when using scaled binning participants
can share as many behaviors as they want without ad-
ditional privacy concerns.

Another interesting result is that there is a differ-
ence in error between basic binning and scaled binning
in the aggregate correlation results. The correlation er-
ror is significantly higher for the scaled binning method.
In this case, there is a clear privacy/accuracy trade off.

Finally, as expected, as bin sizes increased, error
rates increased for all the behaviors, particularly for
data sets with a lot of variability. Therefore, while
increasing the width of the window improves privacy,
the correlation accuracy does decrease - again, a pri-
vacy/accuracy trade off.

6 Related Literature

A number of works related to privacy and time series
data have been proposed [6, 14, 15, 17]. Li et al in-
vestigate privacy preservation in the context of stream-
ing data [6]. They also investigate ways to maintaining
the correlation and autocorrelation statistics of the data
stream while hiding the raw data stream. They accom-
plish this by inserting random perturbations that mirror
certain statistics of each window of data. Our approach
is very different since we do not add random noise to
the data.

Papadimitrious et al investigate approaches for
compressing time series data using Fourier transforms
and wavelets transforms [14]. The focus of that paper is
on reconstruction of the original time series, not correla-
tions. Singh and Sayal also consider Fourier transforms
and wavelet transforms for time series data [17]. They
focus on finding bursts in the data using compressed
representations of the original time series. Sayal and
Singh propose a method for finding bursts using bins
[15]. However, they do not consider correlations in that
work.

Much tangential work in the area of privacy pre-
serving data mining also exists. The work cited here is
a representative sample of topics and is not meant to be
an exhaustive list. Some work has investigated privacy
preservation within the context of traditional data min-
ing problems, e.g. classification [2] [20], association rule
mining [5] [9], clustering [12] [19], and regression analy-
sis [10, 7]. For a survey of current approaches and tools
for privacy preservation in data mining, we refer you to
[3] [21]. Some privacy preservation work exists on hori-
zontally partitioned data sets [9] [13]. However, none of
it is applied to the problem of correlation identification.

Finally, a great deal of work in the area of statistical
databases focuses on providing statistics about data
without compromising individual data values. There
have been a number of data perturbation strategies used
including swapping values [4], adding noise [18], and
data partitioning [16]. While all these ideas are relevant
to correlation identification, they differ because these
works attempt to minimize the total error of the query
result while blocking inference channels to sensitive
data. In our case, we are only concerned with the error
associated with correlations in the time series. Instead,
we want to introduce as much bias or error as possible
to improve the level of privacy without decreasing the
accuracy of the correlation detection procedure. For a
more detailed analysis of statistical databases, we refer
you to [1].

7 Conclusions

In this paper we describe a new method for identify-
ing correlated statistics across independent participant
sites. We show the trade off between the accuracy of the
correlations and the privacy scheme used and propose
a scaled binning method that maintains a high level of
correlation accuracy and privacy. Our experiments on
different time series data sets demonstrate the effective-
ness of this technique. Future work includes investi-
gating correlations for behavioral statistics that do not
have the additive combining property and considering
other interesting properties to measure.



(a) Basic Binning (b) Scaled Binning

Figure 4: Aggregate Correlation Accuracy Across Window Sizes

(a) Basic Binning (b) Scaled Binning

Figure 5: Aggregate Correlation Accuracy Across Number of Participants

(a) Basic Binning (b) Scaled Binning

Figure 6: Aggregate Correlation Accuracy Across Data Sets
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[16] J. Schlörer. Information loss in statistical databases.
Computer Journal, 26(3):218–223, 1983.

[17] L. Singh and M. Sayal. Privately detecting bursts
in streaming, distributed time series data. Data and
Knowledge Engineering, 68(6):509 – 530, 2009.

[18] J. F. Traub, Y. Yemini, and H. Wozniakowski. The
statistical security of a statistical database. ACM
Trans. Database Syst., 9(4):672–679, 1984.

[19] J. Vaidya and C. Clifton. Privacy-preserving k-means
clustering over vertically partitioned data. In Proceed-
ings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 206–215,
New York, NY, USA, 2003. ACM Press.

[20] J. Vaidya and C. Clifton. Privacy preserving naive
bayes classifier for vertically partitioned data. In SIAM
International Conference on Data Mining, 2004.

[21] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis. State-of-the-art in
privacy preserving data mining. SIGMOD Record,
33(1), 2004.


