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Abstract—In this paper we propose a framework of topic
modeling ensembles, a novel solution to combine the models
learned by topic modeling over each partition of the whole A ‘bf
corpus. It has the potentials for applications such as distbuted -, !
topic modeling for large corpora, and incremental topic mod
eling for rapidly growing corpora. Since only the base moded, B39 » N AU ,,bp N
not the original documents, are required in the ensemble, &l * v -
these applications can be performed in a privacy preserving 1 :
manner. We explore the theoretical foundation of the proposd ! N
framework, give its geometric interpretation, and implement it Vg ‘ bf
for both PLSA and LDA. The evaluation of the implementa-
tions over the synthetic and real-life data sets shows thathe
proposed framework is much more efficient than modeling the @ (®)

original corpus directly while achieves comparable effe¢teness Figure 1. (a)Clustering ensembles [2]. (b)Topic modelingezbles
in terms of perplexity and classification accuracy.

Keywords-Topic model, Ensemble
the entire corpus, including the old and new data, for model
|. INTRODUCTION update. However, it is really time-consuming to perform
Recent years have witnessed an increasing interest dopic modeling from the scratch, and also achieving the old
ensemble learning in the area of data mining and machindata consume lots of storage.
learning. The idea of ensemble is to combine the base e Privacy concern: When the data for processing are
models from multiple local data nodes to achieve the similadistributed separately over multiple organizations, wey ma
(or even better) effectiveness with the model learned froniace privacy concern. Namely, the participating orgaazest
the whole data. Ensemble learning was firstly introduced tovould not like to reveal their original data to public.
supervised methods, i.ensembles of classifief$]. Then, Motivated by these challenges we propose a novel en-
unsupervised ensemble learning techniques [2], [3] wersemble framework, so-callddpic modeling ensembleés
proposed aslustering ensembleas shown in Figure 1(a). It shown in Figure 1(b), it integrates multiple base topic nisde
reconciles multiple clustering resultsp) - - - A\(")) of a data (71 - - - 7.), learned from the disjoint sub-corpor¥{- - - X.),
set into a single consolidated clustering resal, without  into a single ensemble topic modet)( This framework
accessing the original data. llluminated by the success dfielps to address the challenges above. More specificatly, tw
ensemble learning for classification and clustering, irs thi of the application scenarios for topic modeling ensembles
paper we explore how to apply ensemble to topic modelingare
As a generalization of clustering, topic modeling, such e Distributed topic modeling: Based on topic modeling
as PLSA [4] and LDA [5], [6], has been successfully usedensembles, we could learn base topics models from each
for analyzing sparse vectors of count data, such as bag afata node and then combine these base topic models for
words for documents, bag of features for images, or baghe entire data set. Different from previous distributegico
of activities for human daily routines. It provides a com- modeling techniques, we do not need any communication
pact and interpretable statistical summary for the originaduring the learning of base models.
corpus. However, due to the fast evolution of information e Incremental topic modeling: In the scenario of incre-
technology in the past decade, applying topic modeling tanental topic modeling, data could be regard as distributed
real applications faces the following new challenges. in different time slices. We can learn a base topic model
e Large scale data: Text data sets such as Web pagesfor the new time slice and then combine it with other base
are growing overwhelmingly large. Topic modeling on suchtopic models learned from the past time slices. Note that in
large scale data might be intractable due to memory anthcremental topic modeling we need only achieve the base
time issues. topic models rather than the original data, which greatly
e Incremental data: Corpora such as news articles grow saves the storage.
rapidly over time. Traditional topic modeling needs to e It is worth mentioning that only the base topic models



Table |

(the statistic summary of the local data), rather than the NOTATIONS
original data, are accessed by topic modeling ensembles. _
Thus, it naturally preserve the privacy of the participgtin Symbol | Description

sub-corpus ID

number of sub-corpora

word

size of vocabulary

word sequence

c-th sub-corpus

number of documents i®., D. = |D.|
corpus,D = |J, De

number of documents i®, D = |D|
documentd € D

document sequence

base topic set oD,

number of topics set foD., Z. = | Z.|
base topic setZ = |J,. Z.

the total number of local topics
base topicz € Z

sequence of local topics

global topic

number of global topics

ensemble topic

number of ensemble topics
ensemble topic sequence

organizations when the original data are not allowed to be
disclosed. Note also that it is not required that the base
topic models be learned from the disjoint sub-corpora of
the whole data. This is only required in this study for the
applications of distributed topic modeling and increménta
topic modeling. What we need are only based topic models,
no matter where they come from. Actually, some prelimi-
nary experiments show that if we perform topic modeling
methods with different parameters and different initiafian
techniques over the whole corpus, the ensemble of these
resultant base topic models may improve the effectiveness
of each base model.

The main contributions of the paper include:

e We propose the framework of topic modeling ensem-
bles and theoretically analyze the relationship between th
ensemble approach and the direct approach.

e We implement the proposed framework for the two most
popular topic models: PLSA and LDA.

 We conduct extensive experiments to evaluate the proseparately on each sub-corpus
posed ensemble approach using both synthetic and real-life
benchmark data sets. The experimental results demonstrate(w, d|c) = p(d|c)p(w|d, ¢) = p(d|e) > p(z|d)p(w]z)
the scalability of the proposed work with comparable per- Z2€Zc,
formance on effectiveness. . ) )

The rest of paper is organized as follows. Section IIWheréz € Z. is the locally learnedase topic
gives the basic theoretical analysis, which iluminatgsico ~ Note thatZ. with differentc are disjoint. We can integrate
modeling ensembles. Sections Il and IV details its imple-2/! the base topics int& = [, Z.. Now, if we consider the
mentations for PLSA and LDA respectively. Its geometric Variablez € Z aspseudo documenwe can apply another
interpretation is also discussed here. Section V present tHOPIC modeling over the co-occurrence ofand w in the
experimental results on the time efficiency and effectigsne Whole corpus,

of topic modeling ensemble. Finally, Section VI discusses _ _ 3
the related works, followed by the conclusion in Section. VII plw,2) = p(z)p(ulz) = p() ;p(ylz)p(ww) ®)

e Ssln e NN aowPYE =sas

To avoid ambiguity we cally in the above equation
ensemble topicand the topics directly learned from the
In this section we give the basic theoretical analysisentire original corpuglobal topic denoted by as shown in
which illuminates topic modeling ensembles. A glossary(1). Exploring the relation among global topics, base tepic
of notations used in this paper is given in Table |. Be-and ensemble topics, we have the following proposition.

fore describing the ensemble approach, we briefly describe . i , ) L

PLSA first. PLSA (Figure 2(a)) assumes that each documerftroPosition 1'_ lee_n base_ tc_>p|(z which satisfies (2), and
d € {1,2,3,...,D} is generated by a mixture of topics ensemble topig which satisfies (3), We have

t € {1,2,..,T}, where a topic is represented as a multi- w.d) = o(d Dolw 4
nomial distribution over words € {1, 2, ..., W}. Then the plw,d) = p( )Zy:p(m p(wly) )
learning of PLSA is to find appropriatés that decompose
the joint probability distribution ofl, w as follows:

p(w,d) = p(d)p(w|d) = p(d) Y _ p(tld)p(w[t) (1)

II. TOPICMODELING ENSEMBLES

where

p(yld) = p(zld)p(y|2) (5)

Proof: . See Appendix A [ ]

In this work, we assume the original corpus is separated Comparing (4) and (1), Proposition 1 actually says that if
into sub-corpora. Suppose each document corresponds Exquations (2) and (3) hold the ensemble topiepresented
only one sub-corpus, we can deneteas the ID of the sub- by p(w|y) can be viewed as a solution to the topic modeling
corpus that containg. Then we can learn a topic model over the original whole corpus. This motivates us to propose
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Figure 2. Graphical representation

the framework of distributed topic modeling ensembles as

follows.

M-step:
5y nlds w)p(tw, )
> M w)p(tw’, d)
_ X, w)p(tlw, d)
D = ety ©
2w "(d w)p(t|w, d)
Zd,w n(d’ w)

wheren(d, w) is the occurrence number dfandw.

p(wlt) =

p(t) =

A. PLSA Ensembles

In the proposed framework, the base topics are learned via
maximizing the following log-likelihood for each sub-cap

Phase 1. Base Topic Modeling:Learn base topics
p(w|z, ¢) from each sub-corpug as shown in Figure 2(b).

Phase 2. Ensemble Topic ModelinglLearn ensemble
topicsp(w|y) over the co-occurrence efandw in the whole
corpus, as shown in Figure 2(c). Hereis any topic in the

Log.= > > |logp(d) > plzld)p(wlz)| (9)

deD. w z€EZ,

union of all the base topics.

Phase 3. Inference:Take p(w|y) as a resulting topic
model and inferencg(y|d) for each document. Phase 3 is
optional becausg(y|d) can also be directly calculated via

(5).

Note that Equations (2) and (3) only indicate the ensemble
topic modeling are a solution for the entire corpus, but
they give no demonstration on how “good” it is. In Section
[1I-C we will show how good this solution is in terms of

maximizing data likelihood.

Ill. | MPLEMENTATION FOR PLSA

By replacingt with z in (7) and (8), we can learn(w|z)
and p(z|d) in a sub-corpus. Then, givep(w, z) over the
whole corpus, we can learn the ensemble topj&s by
maximizing the following log-likelihood:

Lyz = > logp(w,z)
= 3 D log {p(z)z [p(yIZ)p(wly)]}

z Y

(10)
Specifically, by replacing, d with y, z respectively in (7)
and (8), we can learrp(w|y) and p(y|z) by the EM
algorithm. This timez is used agpseudo documentn this
EM process the occurrence numbeiv, z) can be replaced
by p(w, z), where

In the previous section we take PLSA as an example to

motivate the proposed framework. In this section we will
detail the implementation of this framework for PLSA and

give the theoretical analysis to validate our approach.

p(w, z) = p(w|z)p(z) = p(w|2) Y p(z|d)p(d).
d

and p(d) is proportional tod's length, p(w|z), p(z|d) are

A PLSA model can be learned via a standard EM algo-obtained from the base topics.

rithm which maximizes the following log-likelihood.

Lia=Yy_ > |logp(d)d p(t|d)p(wlt) (6)
d w t

The update formulas used in the EM algorithm of param-

eter learning is shown as follows.

E-step:

p®)p(tld)p(wlt)

Plthe.d) = S~ ) p(wl)

(7)

The complexity of EM algorithm for learning global
topics isO(DWY') while if the learning of base topics is
performed in parallel, the complexity of PLSA ensembles is

max [O(DW Z.)] + O(ZWY) (11)

B. Geometric Interpretation

Topic modeling has an elegant geometric interpretation
[4], [5], [6] as shown in Figure 3(a). In topic modeling, a
document and a topic can be both represented as distribu-
tions over words, say(w|d) andp(w|t), which can both be
viewed as points on thélV — 1)-simplex (vord simplex.
The T points corresponding to the topics can span another
(T — 1)-simplex (opic simple)x. Then, the documents are
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Figure 3. Geometric interpretation.

projected onto the topic simplex via maximizing (6). We Then, maximizingC,,.. in (10) is equivalent to maximize a
setW =3 andT = 2 in the illustrative example of Figure lower bound ofL,.q4.
3(a) where the word simplex is a triangle and the documents  Proof: See Appendix B [ ]

and topics are represented as points in this triangle. We use It indicates that the EM algorithm for the ensemble pro-

120 points corresponding to 120 documents withv/d) as cess actually maximize a lower bound of the log-likelihood

the coordinates. The two black points corresponding to the :
. . : over the whole corpus. In this sense we argue that the output
topics span a 1-simplex (a line segment).

We can also perform topic modeling ensemble as foIIowsTrOm the ensgmble process is a good solution. The _experi-

In Phase 1 we learn a base topic simplex on each of the thremem.S n Sectpn V futher demonstrgte that _the effectigsne
: L ot this approximation is acceptable in practice.

sub-corpora, which are represented with different marikers

Figure 3(b). The resultant three topic simplices, represkn V. | MPLEMENTATION FOR LDA

by the three line segments with six vertices, are also shown

i Fi 3(b). In this oh Il the d " wall In this section we will detail how to implement this
in Figure 3(b). In this phase all the documents actually are, cemble framework for LDA.

projected onto the corresponding base topic simplices. In When we regard(t|d) and p(w|t) as random variables

Phase 2’. |n§teaq of considering the|r Image points in th%nd assume they have Dirichlet prior with hyper-parameters
base topic simplices we use the vertices of the base topic and 3 respectively, we get the LDA model. We then

simplices as the pseudo documents to learn the ensemb note the posterior qf(t|d) and p(wl|t) as p(¢|d; a) and

:ﬁp'ﬁ via l;naxw;nm_ng .(10)|2 Heri,\ we have six VetLt'C?S for wlt; B). In this paper we consider the LDA model with
N rEIe tas_e qp'CIS'mp :;:_es. Zwe_ caln Se?’ the e;al;n efixeda and 8 and the posteriors(t|d; «) and p(wlt; )
ensemble topic simplex in Figure 3(c) is close to the glo acould be estimated via Collapsed Gibbs Sampling (CGS) [6].

topic S|mple>-< In Figure 3(a).. Next, we will the.ore.t|cal_ly Specifically, the input data for CGS are two aligned vectors:
show that using only the vertices of the base topic simplices

in Phase 2 is reasonable. di |di, .., dn
w|  |wi, .., Wy

C. Discussions on the Approximate in Topic Modeling En-yheren denotes total number of tokend, € {1,2, ..., D}
semble and w; € {1,2,..,W}. The tuple (d;,w;) denotes an

In Phase 2, rather than consider all the documents’ imag@ccurrence of wordw; in documentd;. The output of
points in the base topic simplices, we propose to maximiz&GS is another vectot = ¢y, 15, ...,t,, where each; <
the log-likelihood in (10), which only use the vertices ogth {1,2,...,T'} is a topic assignment for tupll;, w;). The
base topic simplices. The following proposition shows thatstates int are randomly initialized. Then, the assignment of

this approximate is reasonable. eacht; is iteratively updated by sampling from a distribution
N o as follows:
Proposition 2. Let £,,.q denote the log-likelihood based on (1]t i o, )
the ensemble topics, where PR, Wiy Gy
P Ot —1+p Off — 1+«

Lra= Y Nlos () Dooldp(uin) 12 " DLOW A1 TLOFEA L
w d Yy
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Figure 4. lllustration of Gibbs Sampling

whereODT = #(d, t), OY)," = #(w,t) and—i denotes the We setR = 2C in our experiments and find in experi-

exclusion of the current one. ments that this setting significantly improves the efficienc
After a sufficient number of sampling iterations, the of the ensemble topic modeling phase while achieves ac-

posterior ofp(t|d; o) andp(w|t; 3) could be estimated based ceptable effectiveness on the large data corpus.

on OPT, OWT o andp.

A. LDA Ensembles n thi i ith } dat ) uate th
. . - n this section with various data sets we evaluate the
We apply CGS in LDA ensembles as illustrated in F'gureensemble framework for distributed topic modeling. For

4. In Phase 1 for base topic modeling, we split the Orlglnaleach data set we randomly divide it into several sub-corpora

[d’IW] Into hdlsftrlb#tehd segments d('r:d'iﬁteg \;\"t? different lean the base topics over the sub-corpora separately, and th
colors), each of which corresponds to the data from a SUBzombine these base topics by ensemble. Incremental topic

corpus. Then, for each segment we learn the_ base to.p'(fﬁodeling can be viewed as a special case of distributed topic
z € Z. separately. In Phase 2 for ensemble topic mOde“ngmodeling, thus is not evaluated individually.

we combine the segments of base topics from all the sub- We set different topic numbers to be the same, Te-

corpora into a single vectar and takelw, z]” as input for Y = Z.. In the EM procedures for PLSA, we terminate the
anofcher CGS, where we can reggrms_pseudo document iteration at round, if the relative change of log-likelihood

again. Note that the base topics with different colors sthoul AL/LP-D < 10-4. In the CGS procedure of LDA, we set
be indexed distinctly. The output from Phase 2 is the vector i :

O .« =50/T andp = 0.01 if there is no extra declaration, and
of y based on which it is easy to get the ensemble top|c§un 100 iterations for each algorithm

V. EXPERIMENTAL RESULTS

p(wly).
B. Rescale on Co-occurrence Number A. lllustrative Examples on Synthetic Data
It is clear that the Comp|exity of CGS is proportiona| to In Section I“'B, we've illustrated the imp|ementati0n for
the number of tokens in the corpus, namely PLSA ensembles by simplex examples. Here we borrow
D the bar graphical example [6] for LDA ensembles. In this
ZOdw =[d| = |w| = [z] = |y| (14) synthetic data set, documents and topics are represented by
d,w

images, each containing 9 pixels in a3 square. These 9
Thus, Phase 2 has the same complexity with that in topipixels can be viewed as words and the intensity of a pixel in
modeling over the whole corpus. To achieve better efficiency image encodes the frequency of the corresponding word
in Phase 2, we can obviously employ PLSA or the variationain a document or the word’s weight in a topic. We firstly
EM proposed in [5] oveD?"', whose complexity are both give 6 topics (Figure 5(a)) corresponding to horizontal and
O(Z x W). Here, we propose another strategy to acceleratgertical bars and then generate 600 documents (Figure 5(b))

the CGS process in Phase 2. following a standard LDA generative process based on these
After Phase 1, we observe that due ¥o_, OZY = 6 topics witha = 1,4 = 1 and for each document

> 4w Oy and Z < D, some counts ir0?" are very we sample 100 words. We can learn the global topics

large. We can rescal®?" via [2%-] as the input for (Figure 5(c)) via apply CGS directly to all the 600 pseudo

Phase 2 with less tokens, wheReis a rescaling coefficient. documents. Comparing panel (c) to panel (a) of Figure 5,

Then, if the learning of base topics is conducted in parallelve see the learned topics approximately reveal the underlin
the total complexity of Phases 1 and 2 is structure of these documents.

07w Now we apply the LDA ensembles to this synthetic data

max[O( Z 0Z:W] +0(Z(i]) (15)  set. In the base topic modeling phase (Arrow 3 in Figure

¢ 2€Ze,w Zw R 5), we split the documents into 3 parts, and then learn 3



(a) Ideal Topics (6 topics, 3x3 =9 “words”) (d) Topics learned separately (3x6 = 18 topics in total)
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Figure 5. lllustration with bar example.

......

(b) Pseudo “documents”
(600 docs, 100 tokens each)

sets of base topics (Figure 5(d)). There are totalh63=  each data set, we choose 2,000 wéraith highest infor-

18 based topics. In the ensemble topic modeling phase, waation gains according to the known categories.

treat these base topics as another sgbsudo documents  Note that the ranking of these three data sets in the

and then learn the ensemble topics as shown in Figurincrease order of corpus size iSector Newsgroupand

5(e). We show both the results with or without the rescaleSRAA

strategy introduced in Section IV-B. Compare these results 2) Evaluation Metrics: Perplexitys a common measure

with directly learned topics in Figure 5(c) and the groundfor the document modeling effectiveness which evaluates th

truth topics in Figure 5(a), we can see the ensemble topicsodel generalization performance on a held-out document

are even better than the topics directly learned from the&et. Formally, for a test corpus with/ documents, the

original data. This superior result is based on the factttiet perplexity is defined as

number of instances in each sub-corpus is sufficient enough

to get the good base topics. This superiority will not hold 224:1 logp(wa) (16)

for all real-life applications and in the experiments onltea - 224:1 N

world document sets we only demonstrate that the proposed

distributed ensemble framework can approximate the non- Let C denote the result of classification atidenote the

distributed topic modeling. “true” class labels. The number of classegisSupposer;;
is the number of documents which are labeled esC and

B. Experiments on Real-life Data j in B the classification accuracy is defined as

Perplexity(Dyest) = exp {

In this section, evaluate the proposed topic modeling en- Zfil Nii
sembles over three real-life data set for document modeling Accuracy(C, B) = “T (17)
and document classification task.

1) Data Sets:The real-life data sets are generated from
three text sourcés including Industry SectdiSector for
short), 20-Newsgroupidlewsgroupfor short) andSRAA 3) Results in Document modelingVe evaluate the ef-
Sector: The Sectordata set is a collection of web pages fe

lassified int | hi h d the 12 cl ctiveness and efficiency of document modeling over two
icnatshsg Izendlrlle?/e? class hierarchy and we use the clasSeimensions: number of topics and number of sub-corpora,

) i and train the following models: IBLSAfor non-distributed
Newsgroup: The Newsgroupdata set is a text collection of PLSA: 2) PLSA-Efor PLSA ensembles; 3)DA for non-

about 20,000 UseNet postings from 20 newsgroups COI"Siddistributed LDA,; 4)LDA-E with rescale€or LDA ensembles

ered a.s 20 classes. ) ) with the rescale step and BPA-E without rescaldor that
SRAA: The SRAAdata set contain 73,218 UseNet articles, itnout the rescale step.

from four discussion groups regarded as four classes. For

Note that smaller perplexity means better performance,
and bigger accuracy means better performance.

2We use such small vocabularies that the non-distributedritthgns can
Thttp://www.cs.umass.edumccallum/code-data.html work on large corpus such &RAAIn a tolerable time.
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Figure 6. Results with varying number of topics.

Figure 6 illustrates the perplexity results (upper row)column of Figure 7. The speed-up is not significant when
and the time costs (lower row) with respect to differentthe corpus size is relatively small, while for the corpus as
numbers of topics (increasirig from 60 to 240 by 20). For large asSRAA PLSA-EandLDA-E with rescalecan almost
eachT’, we do five-fold cross validation and plot the mean achieve linear speed-up.
value together with a error bar for the standard deviation.

It shows that the perplexity values strictly decrease along 4) Results in Document ClassificatiorSince all the
the increase of topic numbef8. We also find that along corpora we used in experiments have class labels we can
with the increase of the corpus size, the perplexity valuegonduct binary classification problems on them. For a corpus
of the ensemble methods are more and more close to (evatith K classes, we can condukt(K — 1)/2 binary classi-
better than for the large corpus 8RAA their corresponding fication problems, and the values pft|d) over different
original topic modeling. Meanwhile, we plot the absolute topics can be viewed as the features of the docunaent
time costs for the models. The efficiency and scalability offor classification. So we can compare the classification
the ensemble methods are significantly better than applyingccuracy over the topic spaces from different topic modelin
topic modeling directly to the original corpus. methods with that over the original bag-of-words space as
the baseline. Logistic regression is adopted as the binary

Figure 7 shows the impact of increasing the numBesf  classifier. We rank all the classification problems from a
sub-corpora. From these results we can see the perplexigorpus in the increase order of their accuracy from the bag-
values of the ensemble methods, exddpA-E with rescale  of-words baseline. All these results are included in Figure
are stable along with the increase of sub-corpora numbe8 where two values of sub-corpora numbét,= 5 and
It shows that the rescale process sacrifices more when th@ = 10, are tested. For each corpus we also give the
sub-corpora number increases. We also find that when thmean accuracy values together with standard deviatiorein th
corpus s large, e.g. d®RAA this sacrifice begins later (from legends of the figures. It shows that the ensemble methods of
a larger sub-corpora number). It indicates again that outopic modeling are very close to those directly modeling the
ensemble methods prefer large data sets. We also measwgginal corpora in terms of classification accuracy. Weals
the speed-up for the ensemble methods as plotted in the rigfihd that the accuracy values do not significantly decrease
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Figure 7. Results with varying number of subcorpora.

when we increase the sub-corpora number from 5 to 10. ensembles [2], [7], [8], [9], soft clustering ensembles][10
[11], [3] and co-clustering ensembles [12]. The extens®n i
not only in conceptual but also methodological. A popular
According to the complexity analysis in Section Il and method for clustering ensembles is to take multiple cluster
Section IV the speed-up will be significant whel >  ing results as "pseudo features”, and apply another phase
max.(D.),D > W, D. > Z.. This is validated especially of clustering over them to get a consensus clustering result
on the large corpu$ RAA. In terms of effectiveness our In topic modeling ensembles, multiple local topic models
ensemble methods also prefer large corpora with great cdearned from the partitions of the original corpus are used
occurrences, which leads to 1) data instances in each subs sets of "pseudo documents” for the second phase of topic
corpus are sufficient for base topic learning; 2) base topicanodeling, which generate the global topic models.
learned from different sub-corpora have enough overlaps
which benefit the subsequent ensemble phase. In dagss Comparing with distributed topic modeling [13], [14],
are sufficient but the sub-corpus is too large to fit in the[15], the proposed framework has a complete distributed
memory of node c, we can redud€ by feature selection manner, i.e. it needs no communication overhead in the local
to reduce the sub-corpus size. computing phase. Moreover, unlike the traditional distiéul
topic modeling techniques, which rely on elaborately de-
signed parallel computing algorithms, the proposed frame-
The related works to the proposed framework can bewvork employs the original PLSA or LDA algorithms. The
separated into two parts: clustering ensembles, dis&ibut incremental topic modeling [16] and other related works,
topic modeling and incremental topic modeling. As to thesuch as dynamic topic modeling [17], [18], [19] or online
best of our knowledge, there is no close related work to théopic modeling [20] can also handle the text data with
privacy preserving topic modeling. growing size. However, most of them pay more attention
Topic modeling could be viewed as soft co-clustering forto tracking the topic evolution in the text streams while the
both documents and words. The proposed topic modelingroposed frame work aim to learn a global topic model as
ensembles could also be viewed as an extension of clusteririjthe data is static.

C. Discussions

VI. RELATED WORKS
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VIlI. CONCLUSIONS [16]

In this paper we propose topic modeling ensembles, an
novel solution to combine the base topic models fromp;7
disjoint subsets of a corpus. The proposed framework has
no communication overhead in the distributed computing
phase and is easy to implement. We apply our approach to
both PLSA and LDA with the discussion of the theoretical [18]
foundation. The experiments validate the effectivenesk an

efficiency of the proposed framework. [19]
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+3 3N pald)ogp(d) = L4
z w d



where (20) follows from Equation (5), and (21) follows from
Jensen’s inequality. ThusC) ; is a lower-bound ofL,.q.
From (10) we have

Llg—=> > plzld)logp(d)
Ly.. = L +ZZlogp(z)
> p(zld) e
d
(22)
Since z and d are observed in Phase 2 p(z|d),

5735 p(z]d)logp(d) and S-S log p(z) are alldconstant.
d

zZ w z w
Therefore, maximizingC,,.. in (10) is equivalent to maxi-
mizing £, a lower-bound ofC,.,. |




