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Abstract—In this paper we propose a framework of topic
modeling ensembles, a novel solution to combine the models
learned by topic modeling over each partition of the whole
corpus. It has the potentials for applications such as distributed
topic modeling for large corpora, and incremental topic mod-
eling for rapidly growing corpora. Since only the base models,
not the original documents, are required in the ensemble, all
these applications can be performed in a privacy preserving
manner. We explore the theoretical foundation of the proposed
framework, give its geometric interpretation, and implement it
for both PLSA and LDA. The evaluation of the implementa-
tions over the synthetic and real-life data sets shows that the
proposed framework is much more efficient than modeling the
original corpus directly while achieves comparable effectiveness
in terms of perplexity and classification accuracy.

Keywords-Topic model, Ensemble

I. I NTRODUCTION

Recent years have witnessed an increasing interest on
ensemble learning in the area of data mining and machine
learning. The idea of ensemble is to combine the base
models from multiple local data nodes to achieve the similar
(or even better) effectiveness with the model learned from
the whole data. Ensemble learning was firstly introduced to
supervised methods, i.e.ensembles of classifiers[1]. Then,
unsupervised ensemble learning techniques [2], [3] were
proposed asclustering ensembles, as shown in Figure 1(a). It
reconciles multiple clustering results (λ(1) · · ·λ(r)) of a data
set into a single consolidated clustering result (λ), without
accessing the original data. Illuminated by the success of
ensemble learning for classification and clustering, in this
paper we explore how to apply ensemble to topic modeling.

As a generalization of clustering, topic modeling, such
as PLSA [4] and LDA [5], [6], has been successfully used
for analyzing sparse vectors of count data, such as bag of
words for documents, bag of features for images, or bag
of activities for human daily routines. It provides a com-
pact and interpretable statistical summary for the original
corpus. However, due to the fast evolution of information
technology in the past decade, applying topic modeling to
real applications faces the following new challenges.
• Large scale data:Text data sets such as Web pages

are growing overwhelmingly large. Topic modeling on such
large scale data might be intractable due to memory and
time issues.
• Incremental data: Corpora such as news articles grow

rapidly over time. Traditional topic modeling needs to access
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Figure 1. (a)Clustering ensembles [2]. (b)Topic modeling ensembles

the entire corpus, including the old and new data, for model
update. However, it is really time-consuming to perform
topic modeling from the scratch, and also achieving the old
data consume lots of storage.
• Privacy concern: When the data for processing are

distributed separately over multiple organizations, we may
face privacy concern. Namely, the participating organizations
would not like to reveal their original data to public.

Motivated by these challenges we propose a novel en-
semble framework, so-calledtopic modeling ensembles. As
shown in Figure 1(b), it integrates multiple base topic models
(τ1 · · · τc), learned from the disjoint sub-corpora (X1 · · ·Xc),
into a single ensemble topic model (τ ). This framework
helps to address the challenges above. More specifically, two
of the application scenarios for topic modeling ensembles
are
• Distributed topic modeling: Based on topic modeling

ensembles, we could learn base topics models from each
data node and then combine these base topic models for
the entire data set. Different from previous distributed topic
modeling techniques, we do not need any communication
during the learning of base models.
• Incremental topic modeling: In the scenario of incre-

mental topic modeling, data could be regard as distributed
in different time slices. We can learn a base topic model
for the new time slice and then combine it with other base
topic models learned from the past time slices. Note that in
incremental topic modeling we need only achieve the base
topic models rather than the original data, which greatly
saves the storage.

It is worth mentioning that only the base topic models



(the statistic summary of the local data), rather than the
original data, are accessed by topic modeling ensembles.
Thus, it naturally preserve the privacy of the participating
organizations when the original data are not allowed to be
disclosed. Note also that it is not required that the base
topic models be learned from the disjoint sub-corpora of
the whole data. This is only required in this study for the
applications of distributed topic modeling and incremental
topic modeling. What we need are only based topic models,
no matter where they come from. Actually, some prelimi-
nary experiments show that if we perform topic modeling
methods with different parameters and different initialization
techniques over the whole corpus, the ensemble of these
resultant base topic models may improve the effectiveness
of each base model.

The main contributions of the paper include:
• We propose the framework of topic modeling ensem-

bles and theoretically analyze the relationship between the
ensemble approach and the direct approach.
• We implement the proposed framework for the two most

popular topic models: PLSA and LDA.
• We conduct extensive experiments to evaluate the pro-

posed ensemble approach using both synthetic and real-life
benchmark data sets. The experimental results demonstrate
the scalability of the proposed work with comparable per-
formance on effectiveness.

The rest of paper is organized as follows. Section II
gives the basic theoretical analysis, which illuminates topic
modeling ensembles. Sections III and IV details its imple-
mentations for PLSA and LDA respectively. Its geometric
interpretation is also discussed here. Section V present the
experimental results on the time efficiency and effectiveness
of topic modeling ensemble. Finally, Section VI discusses
the related works, followed by the conclusion in Section VII.

II. TOPIC MODELING ENSEMBLES

In this section we give the basic theoretical analysis,
which illuminates topic modeling ensembles. A glossary
of notations used in this paper is given in Table I. Be-
fore describing the ensemble approach, we briefly describe
PLSA first. PLSA (Figure 2(a)) assumes that each document
d ∈ {1, 2, 3, ..., D} is generated by a mixture of topics
t ∈ {1, 2, ..., T}, where a topic is represented as a multi-
nomial distribution over wordsw ∈ {1, 2, ..., W}. Then the
learning of PLSA is to find appropriatet’s that decompose
the joint probability distribution ofd, w as follows:

p(w, d) = p(d)p(w|d) = p(d)
∑

t

p(t|d)p(w|t) (1)

In this work, we assume the original corpus is separated
into sub-corpora. Suppose each document corresponds to
only one sub-corpus, we can denotecd as the ID of the sub-
corpus that containsd. Then we can learn a topic model

Table I
NOTATIONS

Symbol Description
c sub-corpus ID
C number of sub-corpora
w word
W size of vocabulary
w word sequence
Dc c-th sub-corpus
Dc number of documents inDc, Dc = |Dc|
D corpus,D =

⋃

c
Dc

D number of documents inD, D = |D|
d document,d ∈ D
d document sequence
Zc base topic set ofDc

Zc number of topics set forDc, Zc = |Zc|
Z base topic set,Z =

⋃

c
Zc

Z the total number of local topics
z base topic,z ∈ Z
z sequence of local topics
t global topic
T number of global topics
y ensemble topic
Y number of ensemble topics
y ensemble topic sequence

separately on each sub-corpusc.

p(w, d|c) = p(d|c)p(w|d, c) = p(d|c)
∑

z∈Zc
d

p(z|d)p(w|z)

(2)
wherez ∈ Zc is the locally learnedbase topic.

Note thatZc with differentc are disjoint. We can integrate
all the base topics intoZ =

⋃

c Zc. Now, if we consider the
variablez ∈ Z as pseudo documentwe can apply another
topic modeling over the co-occurrence ofz and w in the
whole corpus,

p(w, z) = p(z)p(w|z) = p(z)
∑

y

p(y|z)p(w|y) (3)

To avoid ambiguity we cally in the above equation
ensemble topic, and the topics directly learned from the
entire original corpusglobal topic, denoted byt as shown in
(1). Exploring the relation among global topics, base topics
and ensemble topics, we have the following proposition.

Proposition 1. Given base topicz which satisfies (2), and
ensemble topicy which satisfies (3), We have

p(w, d) = p(d)
∑

y

p(y|d)p(w|y) (4)

where
p(y|d) =

∑

z

p(z|d)p(y|z) (5)

Proof: . See Appendix A

Comparing (4) and (1), Proposition 1 actually says that if
Equations (2) and (3) hold the ensemble topicy represented
by p(w|y) can be viewed as a solution to the topic modeling
over the original whole corpus. This motivates us to propose
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Figure 2. Graphical representation

the framework of distributed topic modeling ensembles as
follows.

Phase 1. Base Topic Modeling:Learn base topics
p(w|z, c) from each sub-corpusc, as shown in Figure 2(b).

Phase 2. Ensemble Topic Modeling:Learn ensemble
topicsp(w|y) over the co-occurrence ofz andw in the whole
corpus, as shown in Figure 2(c). Here,z is any topic in the
union of all the base topics.

Phase 3. Inference:Take p(w|y) as a resulting topic
model and inferencep(y|d) for each documentd. Phase 3 is
optional becausep(y|d) can also be directly calculated via
(5).

Note that Equations (2) and (3) only indicate the ensemble
topic modeling are a solution for the entire corpus, but
they give no demonstration on how “good” it is. In Section
III-C we will show how good this solution is in terms of
maximizing data likelihood.

III. I MPLEMENTATION FOR PLSA

In the previous section we take PLSA as an example to
motivate the proposed framework. In this section we will
detail the implementation of this framework for PLSA and
give the theoretical analysis to validate our approach.

A PLSA model can be learned via a standard EM algo-
rithm which maximizes the following log-likelihood.

Lt:d =
∑

d

∑

w

[

log p(d)
∑

t

p(t|d)p(w|t)

]

(6)

The update formulas used in the EM algorithm of param-
eter learning is shown as follows.

E-step:

p(t|w, d) =
p(t)p(t|d)p(w|t)

∑

t p(t)p(t|d)p(w|t)
(7)

M-step:

p(w|t) =

∑

d n(d, w)p(t|w, d)
∑

d,w′ n(d, w)p(t|w′, d)

p(t|d) =

∑

w n(d, w)p(t|w, d)
∑

d′,w n(d, w)p(t|w, d′)

p(t) =

∑

d,w n(d, w)p(t|w, d)
∑

d,w n(d, w)

(8)

wheren(d, w) is the occurrence number ofd andw.

A. PLSA Ensembles

In the proposed framework, the base topics are learned via
maximizing the following log-likelihood for each sub-corpus
c:

Lz,dc
=

∑

d∈Dc

∑

w

[

log p(d)
∑

z∈Zc

p(z|d)p(w|z)

]

(9)

By replacingt with z in (7) and (8), we can learnp(w|z)
and p(z|d) in a sub-corpus. Then, givenp(w, z) over the
whole corpus, we can learn the ensemble topicsy’s by
maximizing the following log-likelihood:

Ly:z =
∑

z

∑

w

log p(w, z)

=
∑

z

∑

w

log

{

p(z)
∑

y

[p(y|z)p(w|y)]

}

(10)
Specifically, by replacingt, d with y, z respectively in (7)
and (8), we can learnp(w|y) and p(y|z) by the EM
algorithm. This timez is used aspseudo document. In this
EM process the occurrence numbern(w, z) can be replaced
by p(w, z), where

p(w, z) = p(w|z)p(z) = p(w|z)
∑

d

p(z|d)p(d).

and p(d) is proportional tod’s length, p(w|z), p(z|d) are
obtained from the base topics.

The complexity of EM algorithm for learning global
topics isO(DWY ) while if the learning of base topics is
performed in parallel, the complexity of PLSA ensembles is

max
c

[O(DcWZc)] + O(ZWY ) (11)

B. Geometric Interpretation

Topic modeling has an elegant geometric interpretation
[4], [5], [6] as shown in Figure 3(a). In topic modeling, a
document and a topic can be both represented as distribu-
tions over words, sayp(w|d) andp(w|t), which can both be
viewed as points on the(W − 1)-simplex (word simplex).
The T points corresponding to the topics can span another
(T − 1)-simplex (topic simplex). Then, the documents are
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Figure 3. Geometric interpretation.

projected onto the topic simplex via maximizing (6). We
setW = 3 andT = 2 in the illustrative example of Figure
3(a) where the word simplex is a triangle and the documents
and topics are represented as points in this triangle. We use
120 points corresponding to 120 documents withp(w|d) as
the coordinates. The two black points corresponding to the
topics span a 1-simplex (a line segment).

We can also perform topic modeling ensemble as follows.
In Phase 1 we learn a base topic simplex on each of the three
sub-corpora, which are represented with different markersin
Figure 3(b). The resultant three topic simplices, represented
by the three line segments with six vertices, are also shown
in Figure 3(b). In this phase all the documents actually are
projected onto the corresponding base topic simplices. In
Phase 2, instead of considering their image points in the
base topic simplices we use the vertices of the base topic
simplices as the pseudo documents to learn the ensemble
topics via maximizing (10). Here, we have six vertices for
the three base topic simplices. As we can see, the learned
ensemble topic simplex in Figure 3(c) is close to the global
topic simplex in Figure 3(a). Next, we will theoretically
show that using only the vertices of the base topic simplices
in Phase 2 is reasonable.

C. Discussions on the Approximate in Topic Modeling En-
semble

In Phase 2, rather than consider all the documents’ image
points in the base topic simplices, we propose to maximize
the log-likelihood in (10), which only use the vertices of the
base topic simplices. The following proposition shows that
this approximate is reasonable.

Proposition 2. Let Ly:d denote the log-likelihood based on
the ensemble topics, where

Ly:d =
∑

w

∑

d

log p(d)
∑

y

p(y|d)p(w|y) (12)

Then, maximizingLy:z in (10) is equivalent to maximize a
lower bound ofLy:d.

Proof: See Appendix B

It indicates that the EM algorithm for the ensemble pro-
cess actually maximize a lower bound of the log-likelihood
over the whole corpus. In this sense we argue that the output
from the ensemble process is a good solution. The experi-
ments in Section V further demonstrate that the effectiveness
of this approximation is acceptable in practice.

IV. I MPLEMENTATION FOR LDA

In this section we will detail how to implement this
ensemble framework for LDA.

When we regardp(t|d) and p(w|t) as random variables
and assume they have Dirichlet prior with hyper-parameters
α and β respectively, we get the LDA model. We then
denote the posterior ofp(t|d) and p(w|t) as p(t|d; α) and
p(w|t; β). In this paper we consider the LDA model with
prefixedα andβ and the posteriorsp(t|d; α) andp(w|t; β)
could be estimated via Collapsed Gibbs Sampling (CGS) [6].
Specifically, the input data for CGS are two aligned vectors:

[

d

w

]

=

[

d1, ..., dn

w1, ..., wn

]

wheren denotes total number of tokens,di ∈ {1, 2, ..., D}
and wi ∈ {1, 2, ..., W}. The tuple (di, wi) denotes an
occurrence of wordwi in documentdi. The output of
CGS is another vectort = t1, t2, ..., tn, where eachti ∈
{1, 2, ..., T} is a topic assignment for tuple(di, wi). The
states int are randomly initialized. Then, the assignment of
eachti is iteratively updated by sampling from a distribution
as follows:

p(t|t¬i, wi, di, α, β)

∝
OWT

wit
− 1 + β

∑W

w=1(O
WT
wt + β) − 1

×
ODT

dit
− 1 + α

∑T

t=1(O
DT
dt + β) − 1

(13)
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whereODT
dt = #(d, t), OWT

wt = #(w, t) and¬i denotes the
exclusion of the current one.

After a sufficient number of sampling iterations, the
posterior ofp(t|d; α) andp(w|t; β) could be estimated based
on ODT , OWT , α andβ.

A. LDA Ensembles

We apply CGS in LDA ensembles as illustrated in Figure
4. In Phase 1 for base topic modeling, we split the original
[d,w]T into distributed segments (indicated with different
colors), each of which corresponds to the data from a sub-
corpus. Then, for each segment we learn the base topics
z ∈ Zc separately. In Phase 2 for ensemble topic modeling,
we combine the segments of base topics from all the sub-
corpora into a single vectorz and take[w, z]T as input for
another CGS, where we can regardz as pseudo document
again. Note that the base topics with different colors should
be indexed distinctly. The output from Phase 2 is the vector
of y based on which it is easy to get the ensemble topics
p(w|y).

B. Rescale on Co-occurrence Number

It is clear that the complexity of CGS is proportional to
the number of tokens in the corpus, namely

∑

d,w

ODW
dw = |d| = |w| = |z| = |y| (14)

Thus, Phase 2 has the same complexity with that in topic
modeling over the whole corpus. To achieve better efficiency
in Phase 2, we can obviously employ PLSA or the variational
EM proposed in [5] overOZW , whose complexity are both
O(Z ×W ). Here, we propose another strategy to accelerate
the CGS process in Phase 2.

After Phase 1, we observe that due to
∑

z,w OZW
zw =

∑

d,w ODW
dw and Z ≪ D, some counts inOZW are very

large. We can rescaleOZW via ⌈OZW

R
⌉ as the input for

Phase 2 with less tokens, whereR is a rescaling coefficient.
Then, if the learning of base topics is conducted in parallel
the total complexity of Phases 1 and 2 is

max
c

[O(
∑

z∈Zc,w

OZcW
zw )] + O(

∑

z,w

⌈
OZW

zw

R
⌉) (15)

We setR = 2C in our experiments and find in experi-
ments that this setting significantly improves the efficiency
of the ensemble topic modeling phase while achieves ac-
ceptable effectiveness on the large data corpus.

V. EXPERIMENTAL RESULTS

In this section with various data sets we evaluate the
ensemble framework for distributed topic modeling. For
each data set we randomly divide it into several sub-corpora,
lean the base topics over the sub-corpora separately, and then
combine these base topics by ensemble. Incremental topic
modeling can be viewed as a special case of distributed topic
modeling, thus is not evaluated individually.

We set different topic numbers to be the same, i.e.T =
Y = Zc. In the EM procedures for PLSA, we terminate the
iteration at roundp, if the relative change of log-likelihood
∆L/L(p−1) < 10−4. In the CGS procedure of LDA, we set
α = 50/T andβ = 0.01 if there is no extra declaration, and
run 100 iterations for each algorithm.

A. Illustrative Examples on Synthetic Data

In Section III-B, we’ve illustrated the implementation for
PLSA ensembles by simplex examples. Here we borrow
the bar graphical example [6] for LDA ensembles. In this
synthetic data set, documents and topics are represented by
images, each containing 9 pixels in a 3×3 square. These 9
pixels can be viewed as words and the intensity of a pixel in
a image encodes the frequency of the corresponding word
in a document or the word’s weight in a topic. We firstly
give 6 topics (Figure 5(a)) corresponding to horizontal and
vertical bars and then generate 600 documents (Figure 5(b))
following a standard LDA generative process based on these
6 topics with α = 1, β = 1 and for each document
we sample 100 words. We can learn the global topics
(Figure 5(c)) via apply CGS directly to all the 600 pseudo
documents. Comparing panel (c) to panel (a) of Figure 5,
we see the learned topics approximately reveal the underline
structure of these documents.

Now we apply the LDA ensembles to this synthetic data
set. In the base topic modeling phase (Arrow 3 in Figure
5), we split the documents into 3 parts, and then learn 3
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Figure 5. Illustration with bar example.

sets of base topics (Figure 5(d)). There are totally 3×6 =
18 based topics. In the ensemble topic modeling phase, we
treat these base topics as another set ofpseudo documents
and then learn the ensemble topics as shown in Figure
5(e). We show both the results with or without the rescale
strategy introduced in Section IV-B. Compare these results
with directly learned topics in Figure 5(c) and the ground
truth topics in Figure 5(a), we can see the ensemble topics
are even better than the topics directly learned from the
original data. This superior result is based on the fact thatthe
number of instances in each sub-corpus is sufficient enough
to get the good base topics. This superiority will not hold
for all real-life applications and in the experiments on real-
world document sets we only demonstrate that the proposed
distributed ensemble framework can approximate the non-
distributed topic modeling.

B. Experiments on Real-life Data

In this section, evaluate the proposed topic modeling en-
sembles over three real-life data set for document modeling
and document classification task.

1) Data Sets:The real-life data sets are generated from
three text sources1, including Industry Sector(Sector for
short),20-Newsgroups(Newsgroupfor short) andSRAA.
Sector: The Sectordata set is a collection of web pages
classified into a class hierarchy and we use the 12 classes
in the 2nd level.
Newsgroup: The Newsgroupdata set is a text collection of
about 20,000 UseNet postings from 20 newsgroups consid-
ered as 20 classes.
SRAA: The SRAAdata set contain 73,218 UseNet articles
from four discussion groups regarded as four classes. For

1http://www.cs.umass.edu/∼mccallum/code-data.html

each data set, we choose 2,000 words2 with highest infor-
mation gains according to the known categories.

Note that the ranking of these three data sets in the
increase order of corpus size is:Sector, Newsgroupand
SRAA.

2) Evaluation Metrics: Perplexityis a common measure
for the document modeling effectiveness which evaluates the
model generalization performance on a held-out document
set. Formally, for a test corpus withM documents, the
perplexity is defined as

Perplexity(Dtest) = exp

{

−

∑M

d=1 logp(wd)
∑M

d=1 Nd

}

(16)

Let C denote the result of classification andB denote the
“true” class labels. The number of classes isK. Supposenij

is the number of documents which are labeled asi in C and
j in B ,the classification accuracy is defined as

Accuracy(C, B) =

∑K

i=1 nii

M
(17)

Note that smaller perplexity means better performance,
and bigger accuracy means better performance.

3) Results in Document modeling:We evaluate the ef-
fectiveness and efficiency of document modeling over two
dimensions: number of topics and number of sub-corpora,
and train the following models: 1)PLSAfor non-distributed
PLSA; 2) PLSA-E for PLSA ensembles; 3)LDA for non-
distributed LDA; 4)LDA-E with rescalefor LDA ensembles
with the rescale step and 5)LDA-E without rescalefor that
without the rescale step.

2We use such small vocabularies that the non-distributed algorithms can
work on large corpus such asSRAAin a tolerable time.
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Figure 6. Results with varying number of topics.

Figure 6 illustrates the perplexity results (upper row)
and the time costs (lower row) with respect to different
numbers of topics (increasingT from 60 to 240 by 20). For
eachT , we do five-fold cross validation and plot the mean
value together with a error bar for the standard deviation.
It shows that the perplexity values strictly decrease along
the increase of topic numbersT . We also find that along
with the increase of the corpus size, the perplexity values
of the ensemble methods are more and more close to (even
better than for the large corpus ofSRAA) their corresponding
original topic modeling. Meanwhile, we plot the absolute
time costs for the models. The efficiency and scalability of
the ensemble methods are significantly better than applying
topic modeling directly to the original corpus.

Figure 7 shows the impact of increasing the numberC of
sub-corpora. From these results we can see the perplexity
values of the ensemble methods, exceptLDA-E with rescale,
are stable along with the increase of sub-corpora number.
It shows that the rescale process sacrifices more when the
sub-corpora number increases. We also find that when the
corpus is large, e.g. onSRAA, this sacrifice begins later (from
a larger sub-corpora number). It indicates again that our
ensemble methods prefer large data sets. We also measure
the speed-up for the ensemble methods as plotted in the right

column of Figure 7. The speed-up is not significant when
the corpus size is relatively small, while for the corpus as
large asSRAA, PLSA-EandLDA-E with rescalecan almost
achieve linear speed-up.

4) Results in Document Classification:Since all the
corpora we used in experiments have class labels we can
conduct binary classification problems on them. For a corpus
with K classes, we can conductK(K − 1)/2 binary classi-
fication problems, and the values ofp(t|d) over different
topics can be viewed as the features of the documentd
for classification. So we can compare the classification
accuracy over the topic spaces from different topic modeling
methods with that over the original bag-of-words space as
the baseline. Logistic regression is adopted as the binary
classifier. We rank all the classification problems from a
corpus in the increase order of their accuracy from the bag-
of-words baseline. All these results are included in Figure
8 where two values of sub-corpora number,C = 5 and
C = 10, are tested. For each corpus we also give the
mean accuracy values together with standard deviation in the
legends of the figures. It shows that the ensemble methods of
topic modeling are very close to those directly modeling the
original corpora in terms of classification accuracy. We also
find that the accuracy values do not significantly decrease
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Figure 7. Results with varying number of subcorpora.

when we increase the sub-corpora number from 5 to 10.

C. Discussions

According to the complexity analysis in Section III and
Section IV the speed-up will be significant whenD ≫
maxc(Dc), D ≫ W , Dc ≫ Zc. This is validated especially
on the large corpusSRAA. In terms of effectiveness our
ensemble methods also prefer large corpora with great co-
occurrences, which leads to 1) data instances in each sub-
corpus are sufficient for base topic learning; 2) base topics
learned from different sub-corpora have enough overlaps
which benefit the subsequent ensemble phase. In casesDc’s
are sufficient but the sub-corpus is too large to fit in the
memory of node c, we can reduceW by feature selection
to reduce the sub-corpus size.

VI. RELATED WORKS

The related works to the proposed framework can be
separated into two parts: clustering ensembles, distributed
topic modeling and incremental topic modeling. As to the
best of our knowledge, there is no close related work to the
privacy preserving topic modeling.

Topic modeling could be viewed as soft co-clustering for
both documents and words. The proposed topic modeling
ensembles could also be viewed as an extension of clustering

ensembles [2], [7], [8], [9], soft clustering ensembles [10],
[11], [3] and co-clustering ensembles [12]. The extension is
not only in conceptual but also methodological. A popular
method for clustering ensembles is to take multiple cluster-
ing results as ”pseudo features”, and apply another phase
of clustering over them to get a consensus clustering result.
In topic modeling ensembles, multiple local topic models
learned from the partitions of the original corpus are used
as sets of ”pseudo documents” for the second phase of topic
modeling, which generate the global topic models.

Comparing with distributed topic modeling [13], [14],
[15], the proposed framework has a complete distributed
manner, i.e. it needs no communication overhead in the local
computing phase. Moreover, unlike the traditional distributed
topic modeling techniques, which rely on elaborately de-
signed parallel computing algorithms, the proposed frame-
work employs the original PLSA or LDA algorithms. The
incremental topic modeling [16] and other related works,
such as dynamic topic modeling [17], [18], [19] or online
topic modeling [20] can also handle the text data with
growing size. However, most of them pay more attention
to tracking the topic evolution in the text streams while the
proposed frame work aim to learn a global topic model as
if the data is static.
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Figure 8. Document classification via logistic regression.



VII. C ONCLUSIONS

In this paper we propose topic modeling ensembles, an
novel solution to combine the base topic models from
disjoint subsets of a corpus. The proposed framework has
no communication overhead in the distributed computing
phase and is easy to implement. We apply our approach to
both PLSA and LDA with the discussion of the theoretical
foundation. The experiments validate the effectiveness and
efficiency of the proposed framework.
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APPENDIX A.
PROOF OFPROPOSITION1

Proof: For (5): we have

p(y|d) =
∑

z

p(y, z|d) =
∑

z

p(y|z, d)p(z|d) (18)

Since y and d are independent whenz is fixed which
means

p(y|z, d) = p(y|z) (19)

Thus, (5) holds.
For (4): substitute (3) into (2) we have

p(w, d) = p(d)
∑

z

p(z|d)[
∑

y

p(w|y)p(y|z)]

= p(d)
∑

y

p(w|y)
∑

z

p(z|d)p(y|z)

= p(d)
∑

y

p(w|y)p(y|d)

APPENDIX B.
PROOF OFPROPOSITION2

Proof: First, we have the following inequality

Ly:d =
∑

w

∑

d

log p(d)
∑

y

p(y|d)p(w|y)

=
∑

w

∑

d

log
∑

y

∑

z

p(d)p(z|d)p(y|z)p(w|y) (20)

≥
∑

w,d,z

p(z|d)log

{

p(d)
∑

y

[p(y|z)p(w|y)]

}

(21)

=
∑

d

p(z|d) ·
∑

z

∑

w

log

{

∑

y

[p(y|z)p(w|y)]

}

+
∑

z

∑

w

∑

d

p(z|d)logp(d) = L′
y:d



where (20) follows from Equation (5), and (21) follows from
Jensen’s inequality. Thus,L′

y:d is a lower-bound ofLy:d.
From (10) we have

Ly:z =

L′
y:d −

∑

z

∑

w

∑

d

p(z|d)logp(d)

∑

d

p(z|d)
+

∑

z

∑

w

log p(z)

(22)
Since z and d are observed in Phase 2,

∑

d

p(z|d),
∑

z

∑

w

∑

d

p(z|d)logp(d) and
∑

z

∑

w

log p(z) are all constant.

Therefore, maximizingLy:z in (10) is equivalent to maxi-
mizing L′

y:d, a lower-bound ofLy:d.


