

Keyword(s):

Abstract:

sNICh: Efficient Last Hop Networking in the Data Center

Kaushik Kumar Ram, Jayaram Mudigonda, Alan L. Cox, Scott Rixner, Partha Ranganathan, Jose
Renato Santos

HP Laboratories
HPL-2010-154

No keywords available.

Virtualization has fundamentally changed the data center network. The last hop of the network is no longer
handled by a physical network switch, but rather is typically performed in software inside the server to
switch among virtual machines hosted by that server. In this paper, we present the concept of a sNICh,
which is a combination of a network interface card and switching accelerator for modern virtualized
servers. The sNICh architecture exploits its proximity to the server by separating the network switching
tasks between hardware and software efficiently. This enables the sNICh to address the resource
intensiveness of software virtualization and the scalability limits of current hardware support. The sNICh
utilizes a flow-based approach, in which hardware performs basic switching while software handles flow
setup based on packet filtering rules. The sNICh minimizes I/O bandwidth utilization by transferring,
whenever possible, inter-virtual machine traffic within the main memory. We also present a preliminary
evaluation of this architecture using software emulation. We compare the performance of the sNICh with
two existing software solutions in Xen, the Linux bridge and Open vSwitch. Our results show that the
sNICh out-performs both these existing solutions and also exhibits better scalability.

External Posting Date: October 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: October 21, 2010 [Fulltext]
To be presented at ANCS 2010: The 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, San
Diego, CA, Oct 25-26, 2010.

Copyright ANCS 2010: The 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems.

sNICh: Efficient Last Hop Networking in the Data Center

Kaushik Kumar Ram
Rice University

kaushik@rice.edu

Jayaram Mudigonda
HP Labs

jayaram.mudigonda@hp.com

Alan L. Cox
Rice University
alc@rice.edu

Scott Rixner
Rice University
rixner@rice.edu

Partha Ranganathan
HP Labs

Partha.Ranganathan@hp.com

Jose Renato Santos
HP Labs

joserenato.santos@hp.com

ABSTRACT
Virtualization has fundamentally changed the data center
network. The last hop of the network is no longer handled by
a physical network switch, but rather is typically performed
in software inside the server to switch among virtual ma-
chines hosted by that server.

In this paper, we present the concept of asNICh, which
is a combination of a network interface card and switch-
ing accelerator for modern virtualized servers. The sNICh
architecture exploits its proximity to the server by separat-
ing the network switching tasks between hardware and soft-
ware efficiently. This enables the sNICh to address the re-
source intensiveness of software virtualization and the scal-
ability limits of current hardware support. The sNICh uti-
lizes a flow-based approach, in which hardware performs
basic switching while software handles flow setup based on
packet filtering rules. The sNICh minimizes I/O bandwidth
utilization by transferring, whenever possible, inter-virtual
machine traffic within the main memory.

We also present a preliminary evaluation of this architec-
ture using software emulation. We compare the performance
of the sNICh with two existing software solutions in Xen, the
Linux bridge and Open vSwitch. Our results show that the
sNICh out-performs both these existing solutions and also
exhibits better scalability.

1. INTRODUCTION
Virtualization has become an integral component of

the modern data center. Virtualization technologies
have advanced to simplify server allocation, failover,
and consolidation. However, networking technologies
have not kept pace with this relatively new use of vir-
tualization in the data center. Several disparate net-
works remain in the data center, and network perfor-
mance and functionality can vary across the data cen-
ter. Fortunately, the rapid growth in network link band-
width provides the opportunity for network consolida-
tion, whereby all traffic in the data center would be
carried over a single network. While advances in net-
work quality of service can facilitate such convergence
by isolating traffic, virtualization dramatically compli-

cates such network consolidation. Ultimately, the com-
munication endpoints within the data center are virtual
machines (VMs), not physical servers. Therefore, suc-
cessful networking in the data center requires network
features for protection, isolation, and allocation to op-
erate all the way to the VM.

While data center switches provide these capabilities
at high performance, there is still the issue of the last
hop switch. In most data centers, the last hop switch
operates in software either within the hypervisor or a
dedicated driver domain. The Linux Ethernet bridge is
used for this purpose in Xen. Cisco and VMware have
made this last-hop switch look and behave like other
switches in the data center [32]. However, there are
significant software overheads inherent in data center
switching that make this an inefficient solution. Cisco
and VMware have also developed an alternative solu-
tion, in which an external switch is used as the last hop
switch [25]. This entails routing all traffic, even traffic
among VMs co-located on the same physical server, to
the external switch. This inherently wastes I/O band-
width within the server and network link bandwidth
between the server and the switch.

These existing solutions for the last hop switch rep-
resent two ends of the spectrum: switching entirely in
software within the server and switching in hardware
outside the server. A middle ground in the design space
is to switch packets within the server’s network inter-
face cards (NICs). In fact there exist direct-access NICs
which provide this functionality [23]. The primary ben-
efit of a direct-access NIC is that it entirely bypasses
any software intermediary. So the VMs can directly
send and receive network packets to/from the NICs.
But this solution is not widely used since these NICs
only implement rudimentary switching functionality.

This paper presents the sNICh architecture to effi-
ciently support the last hop switch in the data cen-
ter. The sNICh is a combined network interface card
(NIC) and data center switching accelerator. But unlike
existing solutions, the sNICh supports all data center
switching functionalities. This enables protection, iso-
lation, and allocation to be performed uniformly across

1

the data center, in spite of VM placement and migra-
tion.

The sNICh architecture exploits its proximity to the
server by separating the network switching tasks be-
tween hardware and software efficiently. This simplifies
the delivery of complex switching functionality needed
in the data center. For example, while basic packet
switching is implemented in hardware, packet filtering
using access control lists (ACLs) is performed in soft-
ware. But this separation by itself is not useful if every
packet has to traverse the software path. Instead, the
packets are switched on a per-flow basis. The flows are
validated once in software and then the validated flows
are cached in hardware. Thus subsequent packets be-
longing to the validated flows are completely handled
in hardware itself. This enables the sNICh architecture
to address the resource intensiveness of software virtu-
alization and the scalability limits of current hardware
support.

Further, since the sNICh is aware of all the VMs on
the server, it can manage the network traffic on a per-
VM basis. The sNICh also extends network QoS all
the way to the VMs, and thus addresses the problem of
ensuring end-to-end QoS. Finally, the sNICh is archi-
tected to minimize the I/O bus utilization by transfer-
ring, wherever possible, all the inter-VM traffic within
the main memory.

This paper presents a detailed description of the
sNICh architecture. In particular, it explains how
packet switching, packet filtering, and packet copying
are performed in this architecture. Packet switching
is implemented using the flow-based approach in hard-
ware. Packet filtering using ACLs is performed pri-
marily in software but flow entries based on match-
ing ACL rules are cached in hardware. Packet copy-
ing is offloaded to DMA engines to avoid wastage of
I/O bandwidth. This paper also presents a prelimi-
nary performance evaluation of the sNICh architecture.
The evaluation is based on a sNICh prototype where
the sNICh hardware is emulated in software. Specifi-
cally, the performance of the sNICh is compared to two
software switching solutions in Xen, namely the Linux
Ethernet bridge and Open vSwitch. The results show
that the sNICh out-performs both these existing solu-
tions and also exhibits better scalability than them.

The rest of this paper is organized as follows: in Sec-
tion 2 we provide an overview of data center networking
and discuss the current approaches to last-hop switch-
ing to virtual machines. Section 3 describes the sNICh
architecture and how it takes advantage of its tight in-
tegration with the server. Section 5 presents a perfor-
mance evaluation of the sNICh architecture. Section 6
reviews related work and finally Section 7 summarizes
our conclusions.

2. BACKGROUND
The data center is becoming one of the most critical

components of the modern computing infrastructure.
This trend has manifested in several ways. Primar-
ily, data intensive applications, such as Google’s search
engine, can only operate in large scale data centers.
However, even smaller applications—workplace appli-
cations, such as document editors and spreadsheets, are
migrating to the data center. Further, the utility com-
puting model is emerging, whereby it is cost efficient to
“rent” time in a large scale data center, enabling clients
to quickly scale up or down the amount of computing
resources at their disposal.

2.1 Data Center Networking Challenges
To efficiently serve this ever increasing number and

diversity of applications and customers, data centers
must address two inefficiencies: server sprawl and mul-
tiple poorly utilized networks.

Physical servers are rarely shared across multiple
clients, and in many cases not even across application
instances of the same client, so that the necessary per-
formance SLAs and the inter-customer isolation can be
achieved. Typically these servers are under-utilized and
are wasteful of power [12].

Most data centers also contain several parallel net-
works: a traditional Ethernet; a Fibre Channel net-
work for storage traffic; and an InfiniBand fabric to
support cluster traffic. These parallel networks are
not cost-effective for several reasons; they cost more to
build, require multiple administrators, complicate ca-
bling, waste rack space and energy.

Virtualization offers a promising avenue towards re-
ducing server sprawl, particularly when combined with
many core processors. Modern virtualization sys-
tems allow several servers to be effectively consolidated
onto a single physical machine. Similarly, advances
in Ethernet networking offer a promising avenue to-
wards increasing network utilization in the data cen-
ter. The rapid rise of Ethernet network link bandwidths
combined with the advent of sophisticated switch-
based mechanisms—such as VLANs, ACLs, and link
schedulers— for safely multiplexing different clients and
traffic types can facilitate fabric consolidation.

The networking subsystems of virtualized servers,
however, present a major impediment for both server
and fabric consolidation. Data center networks and the
server I/O subsystems are both architected in a way
that expects the physical server to be an end-point in
the network, and do not efficiently support a virtualized
server, which is in reality a network in itself of VMs.
Lack of efficient support for switching and for mech-
anisms that aid in ensuring isolation (such as ACLs,
VLANs and QoS) causes the following two major prob-
lems in data center networks:

2

1. Lack of efficient switching support within the
server can affect server densities in the near-future
for two reasons. First, in most modern data cen-
ters, inter-server communication is already signif-
icant, and is expected to increase further [9]. For
instance, in Amazon’s EC2 utility data center, a
request from an external client machine can make
as many as 100 different servers exchange mes-
sages among them [5]. Second, the increasing core
counts on processor chips can easily be utilized by
co-locating the servers of such applications on the
same physical machine. However, this will not be
possible if the networking subsystem cannot keep
up to provide efficient inter-VM packet switching
and isolation.

2. Lack of efficient access control within a server com-
plicates fabric consolidation. The central prob-
lem in fabric consolidation is to isolate different
clients and traffic types from hurting each other
when forced to share a common switch or link.
For instance, a buggy (or malicious) client should
not be allowed to direct its storage traffic to an-
other client’s parallel program VMs, causing seri-
ous drops in their synchronization traffic. To fully
ensure such isolation, one must enforce the access
restrictions (and QoS guarantees) on all hops of an
end-to-end path. However, in virtualized servers,
the real end-points are the VMs, and hence the
end-to-end path extends through the server, in-
volving the I/O subsystem as the last-hop. If the
I/O subsystem does not extend the isolation and
allows traffic from different clients and different
types to interact, it renders the isolation enforced
in the greater data center network completely use-
less and makes fabric consolidation impossible.

2.2 Network Virtualization
Current state of the art network subsystem architec-

tures for data center servers can be classified into three
main categories.

The first category of systems (shown in Figure 1) in-
cludes a simple NIC that is virtualized by a software
intermediary (such as the driver domain of Xen). These
implementations (because they are in software) tend to
have a rich set of packet processing functions such as
ACL matching and link-scheduling. However, in most
cases they cannot sustain high throughput for three rea-
sons. First, the cost of supporting advanced switching
functionalities like packet filtering to enforce access con-
trol and QoS can be expensive in software. Second, re-
gardless of how expensive the packet processing itself
is, merely getting the packet to and from the software
intermediary can be very resource intensive [27]. Third,
parallelizing these software implementations to take ad-
vantage of multiple processor cores remain challenging;

Figure 1: State of the Art in virtualized I/O
subsystems–The first type. These architectures
mostly rely on software–either the hypervisor or
a privileged domain such as a driver domain—to
virtualize a simple standard NIC. As the dotted
arrow shows, the packet switching happens en-
tirely in the software intermediary.

it has been shown that even a judicious mapping of mul-
tiple driver domain threads to cores can often result in
a net throughput loss [33].

The second category of systems (shown in Figure 2)
employ more sophisticated NICs with multiple contexts

that present virtual NIC (vNIC) interfaces to individual
VMs [34, 24]. A VM that has a vNIC allocated to it can
completely bypass the software intermediary and access
the NIC directly. However, today most of these NICs
only implement a rudimentary form of switch which
does not support any advanced switching features. Fur-
ther, these NICs waste substantial I/O bandwidth be-
cause they always transfer the full packet payload for
each inter-VM packet twice over the I/O bus (to and
from the NIC).

The third approach tries to leverage the functionali-
ties which already exist in today’s data center switches.
This approach—being promoted by the industrial al-
liance between Cisco and VMWare—uses an external
switch for switching all packets including the inter-VM
traffic (as shown in Figure 3) [25]. In this architecture,
a server agent and the external switch attach a special
label to each packet that identifies the VM the packet
belongs to. While the server agent uses this label to de-
multiplex the packets into the per-VM receive queues,
the external switch uses it to enforce per-VM access con-
trols and QoS. This also simplifies management, since
all traffic from within the server now transits a tradi-
tional switch and hence can be managed by a network
manager system.

Today, there are not many systems of this kind avail-

3

Figure 2: State of the Art in virtualized I/O
subsystems–The second type. These architec-
tures employ more sophisticated NICs that al-
low a subset of the VMs to directly access the
hardware and support rudimentary switching.

able for experimentation, however, a server agent imple-
mented in software very likely incurs a good fraction of
the CPU overhead of the software-based virtualization
systems discussed above. Further, similar to the direct
hardware access systems, this approach can result in
substantial wastage of network bandwidth in addition
to the I/O bandwidth, since all the packets from inter-
VM traffic always travel all the way to the external
switch.

To summarize, modern servers are networks them-
selves, yet they are not effectively integrated into the
data center network as a whole. New solutions are
needed that provide sophisticated data center network-
ing functionality more efficiently, while tightly integrat-
ing into the consolidated data center network. The
sNICh provides an effective solution to these prob-
lems by integrating the capabilities of a data center
switch into the network interface hardware of virtual-
ized servers.

3. SNICH ARCHITECTURE
The sNICh, as the name suggests, is a combination of

a NIC and a switch. The sNICh acts as both an inter-
face between the server and the external network and
as a switch for the virtual machines within the server.
Figure 4 illustrates sNICh’s high-level architecture, and
its relationship with rest of the server and the greater
data center network.

Getting a packet to and from a software intermediary
can be expensive. Hence, the sNICh presents a regular
NIC-like interface to multiple virtual machines. These
interfaces can be created and destroyed by the manage-
ment software as needed. Thus, as far as the guest VMs
and hypervisor are concerned the sNICh looks exactly

Figure 3: State of the Art in virtualized I/O
subsystems–The third type. The servers blindly
forward all packets to the external switch which
then manages the traffic on a per-VM basis to
ensure isolation and QoS guarantees.

like today’s direct-access NICs [34, 15, 24].
The sNICh, however, does not solely operate as a

conventional direct-access network interface. Instead, it
also integrates the packet processing functions that are
typically found in today’s data center switches. These
functions include packet filtering, packet switching, and
packet buffering.

Today’s direct-access NICs also support switching
packets between virtual machines. But they only pro-
vide rudimentary support for advanced switching func-
tionalities like packet filtering. The sNICh extends
these devices to support the functionality of a full
fledged switch, while enabling a low cost NIC solution
by exploiting its tight integration with the server inter-
nals. This makes sNICh more valuable than simply a
combination of a network interface and a data center
switch. Instead, it takes advantage of the server and
network proximity to achieve efficiencies that would not
be possible if these functions were separated.

The rest of this section explains how packet switch-
ing, packet filtering, and packet copying is supported in
the sNICh architecture.

3.1 Flow-based Packet Switching
The sNICh uses a flow-based approach to switch in-

coming packets. A packet is switched in three steps.

• Flow identification The packet is parsed to ob-
tain 9 header fields. These header fields include
source MAC address, destination MAC address,
Ethernet type, VLAN id, source IP address, des-
tination IP address, transport protocol number,
source port number and destination port number1.

1The flow is defined here only for a TCP/UDP and IP

4

Datacenter

Network

Memory-2-Memory

DMA Engine

System Interconnect

(Memory channels + FSB)

Memory Modules

VM

Server

Processor Cores

sNICh

Backend

I/O Bus

sNICh

P
C
I
E

I
n
t
e
r
f
a
c
e

Copy

Engine

Flow Table TCAM

v
P
o
rt

v
P
o
rt

c
o
n
tr
o
l

Chip-Set

M

A

C

&

P

H

Y
Dom0

VM

Figure 4: sNICh’s high-level architecture and its relationship with rest of the server and data center.
The sNICh takes the place of a traditional network interface card on the I/O bus. In addition to
the standard NIC functionality it also implements a flow-based switch. The sNICh has a flow table,
implemented using a TCAM, to cache flow entries. It also has a copy engine that exploits sNICh’s
direct access to system memory and memory-to-memory DMA engine to achieve high inter-VM
throughput, while improving I/O bus availability for traffic to and from the external world. The
sNICh backend is implemented in Dom0 software and manages the hardware flow entries.

These header fields along with the input port form
the 10-tuple used to identify a flow.

• Flow table lookup: The 10-tuple is used to
lookup a flow table to search for matching flow
entries cached in sNICh. The flow table is im-
plemented using a TCAM in hardware. Ideally
the TCAM size should be large enough to accom-
modate most of the active flow entries and small
enough to be implemented inside sNICh. When
the flow table lookup fails (a cache miss), the
packet is sent to the sNICh backend software.

• Flow action execution: A successful flow table
lookup (a cache hit) identifies a flow entry which
specifies the action to be performed. Typically,
the action is to forward the packet to a particular
output port on the sNICh. It can also specify to
drop the packet.

A packet which is switched entirely in hardware rep-
resents the best-case switching scenario. But packets
may have to be handled in software when the flow table
lookup fails. The lookup can fail due to two reasons, ei-
ther the packet belongs to a new flow or the flow entry
is no longer cached in hardware. Then the sNICh back-
end software, which is implemented inside the manage-
ment domain (Dom0) or the hypervisor, is responsible
for correctly forwarding the packet. This is an example

packet. This can easily be extended to accommodate other
transport and network protocols.

of how the sNICh architecture takes advantage of the
close proximity of the switching hardware to the server.

When a packet reaches the sNICh backend, it is first
filtered using ACL rules. For the sake of clarity, this
operation is explained separately in the next section.
Then it checks if the packet belongs to a new flow or
not. If the packet belongs to a new flow, then it creates
a new flow entry along with an action to forward the
packet to the appropriate output port. This is possible
since the sNICh backend is aware of the MAC addresses
and ports allocated to the guest VMs. Then it caches
the flow entry in the hardware flow table. If the flow
table is full, then the least recently used (LRU) flow is
replaced. Finally, the packet is re-injected into sNICh.
If a flow entry matching the packet already exists, it
simply caches the entry and re-injects the packet. So
the sNICh backend maintains all flow entries and caches
them in hardware as needed.

The flow-based approach proposed here has similari-
ties to the OpenFlow approach [16]. In particular, our
flow identification methodology is inspired by Open-
Flow. But the sNICh architecture is not intended to
be OpenFlow compatible.

3.2 Packet Filtering
A key function of the modern data center switch is

packet filtering. Packet filtering is necessary for func-
tions such as access control list (ACL) processing and
quality of service (QoS). These packet filtering oper-
ations typically involve multiple hash table lookups

5

on simple regular expressions. In modern data cen-
ter switches this is performed using large ternary con-
tent addressable memories (TCAMs). This facilitates
high-throughput pattern matching on selected fields in
the packet header. But as discussed earlier using large
TCAMs to support packet filtering in the sNICh hard-
ware is not a scalable solution. Instead, the packets are
filtered in software in the sNICh backend.

In fact even a modern VMM has to filter packets in
software in the driver domain or hypervisor, which typ-
ically involves list traversal and perhaps some limited
hashing. Since most modern systems use TCP segmen-
tation offload (TSO), such packet filtering in software
can be done on large packets, instead of MTU-sized
packets. This can decrease the filtering burden on the
software by an order of magnitude. Even so, performing
the necessary lookups in software, on every packet, is
prohibitively expensive. It is not possible to approach
the filtering throughput of the dedicated TCAM hard-
ware in a data center switch.

But in the sNICh architecture instead of validating
every packet, we just validate the flows. Once a flow
is validated, subsequent packets belonging to that flow
need not be validated and the cost of filtering those
packets is not incurred. So even though packet filter-
ing is performed in software, it is not going to be pro-
hibitively expensive.

In the sNICh architecture, the packets are filtered us-
ing ACL rules which are installed in the sNICh backend
software. Packet filtering is performed in software when
the flow table lookup fails and the packet is forwarded
to the backend. The packet is matched against all the
ACL rules before the backend creates a normal flow en-
try to forward the packet to the appropriate output
port and caches it in the sNICh hardware (as explained
above).

Access control rules can be of two types. In the first
type the default action is to block traffic and the ACL
rules specify flows which are allowed. If the packet
matches such an ACL rule then it is processed normally.
Otherwise, the backend creates a “negative” flow based
on this packet, caches it in the hardware, and drops the
packet. Now all subsequent packets belonging to this
flow will be dropped in the hardware itself.

In the second type the default action is to allow traffic
and the ACL rules specify flows which are to be blocked.
If the packet does not match any of these rules, then it is
processed normally. If the packet matches an ACL rule,
then a ”negative” flow entry based on the ACL rule is
created and cached in the hardware, and the packet is
dropped. Now all subsequent packet flows which match
this ACL rule will be dropped in the hardware itself.

Note that “negative” flows are cached in the hard-
ware only when a packet belonging to an active flow is
blocked by the ACL rules. Thus we avoid unnecessary

utilization of the flow table TCAM entries.

3.3 Packet Copying
After the data center switch has determined the des-

tination port for a packet, the packet must actually be
transferred to the output port. In a software switch,
this stage requires copying the packet, usually from one
address space to another. Such data transfers are typi-
cally limited by the memory bandwidth of the machine
(as at least one of the source or destination buffers is
not resident in the processor caches). This wastes pro-
cessing resources effectively waiting for memory.

In the sNICh architecture, only the packet headers
are copied to the hardware using DMA. These packet
headers are then used to perform the switching opera-
tions. Once the destination port is identified, the packet
is directly copied from the source VM to the destination
VM by offloading the packet copy operation.

Modern server platforms enable offloading of data
copies using DMA engines. The DMA engine, typically
built into the server chipset, can perform asynchronous
memory-to-memory movement of data thus freeing up
CPU cycles to perform other compute tasks. The sNICh
architecture takes advantage of the DMA engine to per-
form asynchronous packet copies to the destination VM.
This is feasible due to the proximity of the sNICh to the
server internals. The DMA engine on modern Intel plat-
forms is used as an example here to describe the steps
involved in setting up asynchronous DMA operations.

3.3.1 Server DMA Architecture

Recently, Intel introduced Quick Data Technology, as
a part of Intel I/O Acceleration Technology (I/OAT), in
its server platforms which includes a DMA engine. This
technology was originally proposed to eliminate server
I/O bottlenecks in native systems by offloading packet
copies, from the kernel to application buffers, to DMA
engines [11].

The DMA engine presents a standard PCI-E device
interface to the host OS. It supports multiple indepen-
dent DMA channels to the host memory. Each DMA
channel has a queue of pending asynchronous transac-
tions associated with it where a transaction describes
the operation to be offloaded to the DMA engine. A
transaction is setup by creating hardware descriptors
in the host memory. Each hardware descriptor includes
the source physical address, the destination physical ad-
dress, and the size of the data to be copied. The trans-
action descriptors queued for a particular DMA channel
are linked together and the physical location of the first
descriptor is given to the DMA engine.

Once the new transactions are setup, they are pushed
to the DMA engine by tickling one of its registers. This
is also sometimes called a “door bell” since it triggers
the DMA engine to process the pending transactions.

6

Then the DMA engine performs the asynchronous data
copies without any processor intervention.

3.3.2 sNICh DMA Architecture

The sNICh’s proximity to the host will enable it to
exploit a DMA engine within the server to accelerate
packet copying operations. The sNICh can effectively
setup a DMA operation independently of the host to en-
able packet copying in the background without software
intervention or wasting I/O bandwidth. In general, it
has been shown that utilizing such DMA engines is only
profitable for large copies, as the setup and completion
overhead outweighs the benefits [35]. The setup costs
arise largely from writes to uncached memory regions to
store the DMA descriptors. The completion costs arise
largely from polling or interrupt overheads.

The sNICh avoids these overheads in two ways. First,
DMA descriptors are stored in memory via DMA from

the sNICh. Therefore, sNICh can perform these writes
in the background and in parallel with other operations
instead, whereas the CPU would likely stall waiting for
the memory operations to complete. Second, sNICh
can easily mitigate the completion overhead by limited
polling. After copying a packet using the DMA engine,
sNICh will notify the receiving virtual machine that a
new packet has been received. As NICs use interrupt
moderation to batch notifications to the operating sys-
tem, sNICh need only poll the DMA engine for comple-
tion once every interrupt moderation period, which is
frequently 100µs or more on modern high performance
NICs. Therefore, sNICh provides an extremely effective
way to exploit server DMA engines to accelerate packet
copying among virtual machines.

While not a technical challenge, current server plat-
forms do not allow PCI-E devices to access each other’s
memory spaces. For sNICh to exploit a server DMA en-
gine, it must be able to directly access the DMA engine
in order to initiate the transfer, otherwise the bene-
fits will be lost, as sNICh would have to interrupt the
host simply to start the DMA transfer. Furthermore,
each sNICh device would need access to its own dedi-
cated DMA channel in order not to incur synchroniza-
tion overheads with other devices or software that are
also attempting to use the DMA engine. Although not
supported in current systems, peer to peer PCIe mes-
sages needed by sNICh are supported in the PCIe spec-
ification and expected to be included in future server
platforms.

4. SNICH PROTOTYPE USING SOFT-
WARE EMULATION

We have built a sNICh prototype where the sNICh
hardware is emulated in software. Currently, only
inter-VM packet switching by sNICh is emulated. In
other words, guest VMs cannot send and receive pack-

ets to/from external networks via the emulated sNICh
hardware. The sNICh flow table is emulated using hash
tables in software (in place of hardware TCAMs). There
is an upper limit (1024) on the total number of flow en-
tries in the flow table to emulate TCAM restrictions.
Packet copy offloading using DMA engines is also not
emulated. The sNICh emulation is run on a dedicated
processor core to isolate it from the host software.

We use Xen [2], an open source virtualization plat-
form, as our testbed. The sNICh backend is imple-
mented in Xen Linux Dom0 (management domain)
and the sNICh driver in Xen Linux DomU (a para-
virtualized guest VM). The sNICh backend is initialized
when Dom0 is booted up. This also sets up the control
interface which is used for communication between the
emulated sNICh hardware and the sNICh backend soft-
ware in Dom0. The communication occurs out-of-band
using a pair of descriptor rings. ACLs are installed in
the sNICh backend software using an user-level tool.
Packets are matched against the ACL rules in the back-
end using a simple linear search algorithm.

When a guest VM boots up, it registers with the
sNICh backend. During registration, the sNICh back-
end is informed of the MAC address allotted to that
VM. The sNICh backend then creates a new vNIC in-
terface on the sNICh hardware. The vNIC interface
implements a pair of descriptor rings for packet trans-
mission and reception. The guest VM (and its vNIC in-
terface) is also bound an unique virtual port (vPort) on
the sNICh. Once the registration is complete, the guest
VM can directly send and receive packets to/from other
guest VMs via the emulated sNICh hardware. Hard-
ware interrupts are emulated using inter-processor in-
terrupts (IPIs). So a guest VM is notified by first send-
ing an IPI to the appropriate processor core and then
the hypervisor delivers a virtual interrupt to the guest
VM.

Figure 5 explains the steps involved in switching a
packet between two guest VMs through sNICh.

5. PERFORMANCE EVALUATION
This section presents a preliminary performance eval-

uation of the sNICh architecture using the sNICh pro-
totype. In this evaluation, the sNICh architecture is
compared with two software switching solutions in Xen,
Linux Ethernet bridge and Open vSwitch. Traditionally,
Xen uses the driver domain model [8] to support I/O
virtualization. The driver domain is a VM which has di-
rect access to the hardware and performs I/O on behalf
of the guest VMs. The driver domain also implements a
software switch. The guest VMs send all network pack-
ets to the driver domain and the driver domain then
switches the packet to send it to another guest VM or
to the external network.

The Linux bridge is a software Ethernet switch

7

sNICh
Hardware

Dom0 VM1 VM2

sNICh

driver

sNICh

driver

Flow table

vNIC vNIC

Identify

flow

Lookup

flow

Execute

Action

Control

ACLs

sNICh

backend

1

2 3

4

5

6

7

8

9

Figure 5: Steps involved in switching a packet between two guest VMs through sNICh. (1) sNICh
driver in VM1 transmits packet to sNICh hardware through its vNIC interface. (2) sNICh hardware
identifies the flow by parsing packet’s headers. (3) Flow table is looked up to search for a matching
flow entry. (4) If lookup fails, packet is sent to sNICh backend software through control interface.
(5) If packet belongs to new flow, backend validates packet against all ACL rules. (6) Flow entry
is cached in hardware through control interface. (7) Packet is re-injected into sNICh again through
control interface. (8) If flow table lookup is successful, the flow action is executed. (9) Packet is
forwarded to VM2 through its vNIC interface.

shipped with Linux. We use the netfilter/iptables
framework (www.netfilter.org) in Linux to support
ACLs. Open vSwitch [26] is an openflow [16] compatible
open source software switch. The openflow approach is
similar to the flow-based architecture proposed in this
paper where the switching is per-flow instead of per-
packet. Open vSwitch implements two network paths:
an in-kernel fast-path and an user-level slow-path. The
fast-path is implemented as a kernel module which re-
places the Linux Ethernet bridge in the driver domain.
In the fast-path a software flow table is looked up and
the actions associated with the matching flow entry are
executed. When the flow table lookup fails, the pack-
ets are sent to the control software via the slow-path.
Open vSwitch also provides a tool (ovs-ofctl) to cre-
ate ACLs. The ACL rules are initially installed only in
the slow-path. When a packet matches an ACL rule in
the slow-path, then a flow entry with the appropriate
ACL rule actions is added by the control software to
the flow table in the fast-path.

5.1 Experimental Methodology
Our experiments are run on an Intel machine with

quad-core 2.67 GHz Intel Core i7 processor and 6 GB
of memory. The system is configured with up to three
guest VMs, each with a single virtual CPU (pinned to
a separate processor core) and 1024 MB of memory.
The final processor core is used to run either the sNICh
emulation or the driver domain. The driver domain
configuration is similar to the guest VMs’ configuration.

The netperf UDP stream microbenchmark
(www.netperf.org) is used in the experiments to
generate network traffic between the guest VMs. We
use five UDP packet sizes (250, 450, 650, 850, and 1050
bytes) in our experiments. The packet throughput at
the switch is used as the metric to compare perfor-
mance. In all the experiments the rate at which the
switch processes packets is limited either by the CPU
on which the switch is running or the CPU at the
transmit side guest VM. We also ensure that there are
no packet drops at the switch to avoid distorting the
throughput calculations.

5.2 Throughput Results
Figure 6 compares the packet throughput at the three

switches when there are no ACL rules to process. We
observe that sNICh out-performs both the software
switches for all packet sizes. The throughput at both
the Linux bridge and Open vSwitch is limited by the
driver domain CPU. But in the case of sNICh, the
throughput is limited only by the CPU at the transmit
side guest VM. Figure 7 shows the CPU cost (in CPU
cycles/packet) incurred in driver domain when process-
ing 650 byte packets. Here, the “misc” overheads essen-
tially represent the cost of interfacing with the driver
domain to switch packets. This primarily includes the
cost incurred in Xen’s network backend driver and in
Xen’s memory sharing mechanism. Clearly, this cost
dominates the total packet processing cost in the driver
domain.

8

Packet Size (bytes)

S
w

it
ch

T
h
ro

u
g
h
p
u
t

(M
b
p
s) Linux bridge

Open vSwitch
sNICh

250 450 650 850 1050
0

2000

4000

6000

8000

10000

Figure 6: Packet throughput at switch without
packet filtering

C
P

U
c
y
c
le

s/
P
a
ck

e
t

Linux bridge
Open vSwitch

Pkt
Switching

Pkt
Copying

Misc
0

1000

2000

3000

4000

5000

Figure 7: Packet processing cost in driver do-
main without packet filtering

In these experiments, the performance difference be-
tween the software solutions and sNICh is primarily due
to the cost incurred in moving the packets from/to the
guest VM to/from to the driver domain. This cost is not
incurred when a guest VM directly communicates with
the sNICh hardware. Note that we are able avoid this
cost even in our software emulation due to two reasons.
First, Xen’s memory sharing mechanism is entirely cir-
cumvented. Second, the packet processing within the
emulation is simpler and faster than the standard Xen
backend driver. Thus we are able to closely emulate the
sNICh hardware.

Figure 8 compares the packet throughput when
packet filtering is also performed at the switches. Pack-
ets are filtering using a single ACL with 971 reject rules
in these experiments. The ACL rules are generated us-
ing the ClassBench toolkit [31]. Each rule in the ACL
filters packets based on five fields in the packet head-

Packet Size (bytes)

S
w

it
ch

T
h
ro

u
g
h
p
u
t

(M
b
p
s) Linux bridge

Open vSwitch
sNICh

250 450 650 850 1050
0

2000

4000

6000

8000

10000

Figure 8: Packet throughput at switch with
packet filtering

C
P

U
c
y
c
le

s/
P
a
ck

e
t

Linux bridge
Open vSwitch

Pkt
Switching

Pkt
Filtering

Pkt
Copying

Misc
0

2000

4000

6000

8000

10000

12000

14000

16000

Figure 9: Packet processing cost in driver do-
main with packet filtering

ers (source and destination IP addresses, source and
destination ports, and the protocol number) or some
subset of these fields. None of the generated packets
match any of these rules. We chose this scenario since
in most systems, the number of packets dropped by
the filter is much smaller than the number of packets
that get admitted. We observe that the performance
at the Linux bridge drops significantly as compared to
the previous set of experiments (Figure 6). This is be-
cause the ACL implementation using netfilter/iptables
requires every packet to be serially compared against all
the ACL rules. The performance of both Open vSwitch
and sNICh is not affected since only the first few pack-
ets of the flow incur this cost, until the flow is validated
against the ACL rules and the flow entry is installed
in the flow table. Figure 9 shows the CPU cost in
the driver domain when processing 650 byte packets.
Clearly, the packet filtering costs dominate the total

9

Packet Size (bytes)

S
w

it
ch

T
h
ro

u
g
h
p
u
t

(M
b
p
s) Linux bridge

Open vSwitch
sNICh

250 450 650 850 1050
0

2000

4000

6000

8000

10000

Figure 10: Packet throughput at switch with
ACL processing (2 transmit side guest VMs)

packet processing cost in the driver domain with the
Linux bridge.

Figure 10 compares the packet throughput at the
switches when there are two guest VMs transmitting
packets. In the case of sNICh, its throughput nearly
doubles for all packets sizes as compared to the pre-
vious set of experiments where there is just one guest
VM transmitting packets (Figure 8). But the perfor-
mance of both the Linux bridge and Open vSwitch do
not scale. This is because, unlike sNICh, the CPU at
the switch is the bottleneck. Clearly, sNICh achieves
better scalability than both the software solutions.

5.3 Hardware Vs Software Flow Tables
Open vSwitch implements its flow table in software

using hash tables. A fundamental limitation of such a
flow table is that it cannot support flow entries with
wildcard fields. On the other hand, sNICh can effi-
ciently support flow entries with wildcards as the flow
table is implemented using TCAMs in hardware. Wild-
cards are a very useful feature since a small set of flow
entries with wildcards can match a large number of
flows. This is essential in a hardware flow table since
there is a restriction on the number of flow entries that
can be supported.

Typical ACL rules make heavy use of wildcards. For
example, an ACL rule which blocks all traffic to a par-
ticular port has the IP source and destination fields,
among others, wildcarded. While Open vSwitch does
support ACL rules with wildcards, it can do so only
in the slow-path. When a packet matches an ACL
rule in the slow-path (and say gets dropped), then a
flow entry is installed in the fast-path to drop all sub-
sequent packets belonging to that flow. A malicious
guest VM can exploit this limitation by overwhelming
the control software and forcing all packets to take the

slow-path. This can be achieved, even if there is an
ACL rule blocking this traffic, by sending packets be-
longing to different flows (different TCP/IP address and
ports). Now the slow-path is so overwhelmed with the
work caused by the bad packets that the communica-
tion channel between the fast-path and the slow-path
fills up. Once that happens, legitimate packets that
don’t have a current matching flow entry get dropped
before they even make it to the slow-path to setup a
flow entry. We observe this effect when several legit-
imate TCP connection establishments fail due to the
dropping of SYN/ACK packets.

In fact, this limitation is true for any implementa-
tion of a flow-based switching approach using a software
flow table. Clearly, such a scenario is preventable with
sNICh since a small number of TCAM flow entries can
effectively block all the illegitimate packets from a ma-
licious guest VM. While this is not proof that sNICh
can prevent all malicious traffic, it does show the value
of efficient wildcard matching for ACL rules.

6. RELATED WORK
Most of the early work into the network subsystem ar-

chitectures focuses on accelerating and scaling protocol
processing. Makineni, et al. have shown that the pro-
tocol processing in the traditional network stacks can
be too CPU and memory bandwidth intensive to scale
to Gigabit speeds [14]. Several designs that are col-
lectively known as offloading approaches address this
overhead by moving the protocol processing from the
host CPU to the NIC [13, 21].

In spite of the performance benefits, offloading archi-
tectures can be too inflexible and hard to evolve and
maintain [21]. Hence, an alternative class of propos-
als, known as onloading approaches, retain the protocol
processing in the host OS, but supply it with hardware
support to make it efficient and scalable. For instance,
the coherence attached NIC design proposed in [29]
can eliminate interrupt overhead by enabling efficient
polling. The receive side scaling technique attempts to
make the protocol processing scalable to multiple CPUs
(or cores) by sending all the interrupts of a flow to the
same CPU [20]. Intel’s (I/O Acceleration Technology)
I/O AT [11] proposes a DMA engine on the system
chip set that can be used to eliminate buffer copies in
software. The direct cache access scheme [10] reduces
latency and saves memory bandwidth, by placing the
incoming packets directly into the processor cache (in-
stead of the main memory).

Virtualizing the networking subsystem brings in fur-
ther overheads [18]. These overheads have been the
focus of extensive body of work that can broadly be
classified into two categories. The first category retains
the virtualization in software and seeks to minimize the
overheads [17, 19, 28, 27]. For instance, Ram et. al. [27]

10

propose the use of dedicated receive queues on modern
server class commodity NICs to avoid packet copying
overheads. On the other hand, the second category
of work investigates elimination of these overheads by
moving the virtualization support to the NIC itself. For
instance, several designs have been proposed to allow a
VM to directly access the NIC bypassing the software
intermediary [15, 23, 34]. None of these, however, con-
sider any switching functionality, the main focus of our
work.

Integration of switch and server functionality was
considered in an early InfiniBand NIC, called InifiniB-

ridge [6]. This NIC although integrated an InfiniBand
switch, it was primarily meant to extend the old PCI
(not the PCI-Express of today) and SCSI buses to
form a Storage Area Network. RiceNIC [30] and NetF-
PGA [22] are two extensible NICs with on-board FP-
GAs that can be utilized to integrate switch function-
ality. However, such modifications have not yet been
attempted on these platforms.

OpenFlow [16] is also a flow-based switching architec-
ture which was primarily proposed as a way to deploy
experimental network protocols over existing networks.
Existing switches are modified to support the Open-
Flow protocol [1] which allows an external controller
to program the flow tables within the switch. Thus
the controller can be used to setup flow entries which
isolate experimental network traffic from real network
traffic. The flow-based approach proposed in this pa-
per is inspired by the OpenFlow protocol. In particular,
our flow definition is similar to how flows are defined in
OpenFlow. Open vSwitch [16] is an OpenFlow compat-
ible software switch for virtualized servers. While the
fast-path in Open vSwitch is implemented in software,
packets with successful flow table lookups are handled
completely in hardware by the sNICh.

Distributing virtual networking across all endpoints
within a data center is investigated in [3, 7]. Here
software-based components reside on all servers that
collaborate with each other and implement network vir-
tualization and access control for VMs, while network
switches are completely unaware of the individual VMs
on the end-points. Virtual Distributed Ethernet (VDE)
is a similar tool that, based on the general concepts of
LAN emulation, enables the interconnection of virtual
environments via virtual Ethernet switches and virtual
plugs [4]. All these approaches differ from our work
in that they are designed, at a fundamental level, to be
very high-level software implementations and cannot be
easily adapted for hardware implementations.

7. CONCLUSIONS
The increasing adoption of virtualization and recent

solutions to perform the last hop of the network in soft-
ware is likely to lead to an untenable situation in the

future in terms of overheads. This paper addresses this
challenge by introducing the concept and design of a
new I/O subsystem called the sNICh which is a combi-
nation of a network interface and a switching accelera-
tor.

The sNICh utilizes minimal and off-the-shelf building
blocks to support key elements of data center switching
and leverages its proximity to the server to provide ef-
ficient last-hop data center switching. We have built a
software prototype of this architecture using software
emulation. Preliminary evaluation using this proto-
type has shown encouraging results. The sNICh out-
performs two software switching solutions used in Xen.

We also believe that the increased proximity of the
switch and the server can enable other new optimiza-
tions and are interested in looking at these further.
Overall, as virtualization gets more widely adopted and
networking and I/O performance become ever more im-
portant, we believe that approaches like ours that exam-
ine blurring of the boundaries between the computing
and networking infrastructure and their tighter integra-
tion, are likely to be a key part of future designs.

8. REFERENCES
[1] Openflow switch specification. version 1.0.0.

http://www.openflowswitch.org/documents/
openflow-spec-v1.0.0.pdf, December 2009.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of SOSP ’03, pages
164–177. ACM, 2003.

[3] S. Cabuk, C. I. Dalton, H. Ramasamy, and M. Schunter.
Towards automated provisioning of secure virtualized
networks. In Proc. ACM Conference on Computer and
Communications Security, pages 235–245. ACM, 2007.

[4] R. Davoli. VDE: Virtual distributed ethernet.
TRIDENTCOM ’05: Proceedings of the 1st International
Conference on Testbeds and Research Infrastructures for
the DEvelopment of NeTworks and COMmunities, pages
213–220, 2005.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. SIGOPS Operating Systems Review,
41(6):205–220, 2007.

[6] C. Eddington. Infinibridge: An Infiniband channel adapter
with integrated switch. IEEE Micro, 22(2):48–56, 2002.

[7] A. Edwards, A. Fischer, and A. Lain. Diverter: A new
approach to networking within virtualized infrastructures.
In Proceedings of the ACM SIGCOMM Workshop:
Research on Enterprise Networking, August 2009. To be
published.

[8] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williams. Safe hardware access with the Xen virtual
machine monitor. In OASIS ’04: Proceedings of the 1st
Workshop on Operating System and Architectural Support
for the on demand IT Infrastructure, October 2004.

[9] A. Greenberg, J. Hamilton, D. A.Maltz, and P. Patel. The
cost of a cloud: research problems in data center networks.
SIGCOMM Computer Communcation Review, 39(1):68–73,
2009.

[10] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache access
for high bandwidth network I/O. In ISCA ’05: Proceedings
of the 32nd annual International Symposium on Computer
Architecture, pages 50–59. IEEE Computer Society, 2005.

11

[11] Intel Corporation. Accelerating high-speed networking with
Intel I/O Acceleration Technology.
http://download.intel.com/technology/comms/perfnet/
download/98856.pdf, April 2007.

[12] J. M. Kaplan, W. Forrest, and N. Kindler. Revolutionizing
data center energy efficiency. July 2008.

[13] H.-Y. Kim and S. Rixner. TCP offload through connection
handoff. SIGOPS Operating Systems Review,
40(4):279–290, 2006.

[14] S. Makineni and R. Iyer. Performance characterization of
TCP/IP packet processing in commercial server workloads.
In WWC-6 ’03: Proceedings of the IEEE 6th Annual
Workshop on Workload Characterization, pages 33–41,
October 2003.

[15] K. Mansley, G. Law, D. Riddoch, G. Barzini, N. Turton,
and S. Pope. Getting 10 Gb/s from Xen: Safe and fast
device access from unprivileged domains. In Euro-Par 2007
Workshops: Parallel Processing, pages 224–233, 2007.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling innovation in campus networks.
SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[17] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in Xen. In ATEC ’06: Proceedings of
the USENIX Annual Technical Conference, pages 2–2.
USENIX Association, 2006.

[18] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the
Xen virtual machine environment. In VEE ’05: Proceedings
of the 1st ACM/USENIX International Conference on
Virtual Execution Environments, pages 13–23. ACM, June
2005.

[19] A. Menon and W. Zwaenepoel. Optimizing TCP receive
performance. In ATC’08: Poceedings of USENIX Annual
Technical Conference, pages 85–98. USENIX Association,
2008.

[20] Microsoft Corporation. Scalable networking with RSS.
http://www.microsoft.com/whdc/device/network/NDIS_
RSS.mspx, November 2008.

[21] J. C. Mogul. TCP offload is a dumb idea whose time has
come. In HOTOS’03: Proceedings of the 9th Conference on
Hot Topics in Operating Systems, pages 25–30. USENIX
Association, 2003.

[22] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: reusable router architecture for experimental
research. In PRESTO ’08: Proceedings of the ACM
workshop on Programmable Routers for Extensible Services
of TOmorrow, pages 1–7. ACM, 2008.

[23] Neterion, Inc. Neterion X3100 series. http://www.
neterion.com/products/pdfs/X3100ProductBrief.pdf.

[24] PCI-SIG. Single Root I/O Virtualization. http:
//www.pcisig.com/specifications/iov/single_root,
2009.

[25] J. Pelissier. VNTag 101.
http://www.ieee802.org/1/files/public/docs2009/
new-pelissier-vntag-seminar-0508.pdf, 2009.

[26] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado,
and S. Shenker. Extending networking into the
virtualization layer. In HotNets-VIII: Proceedings of the
workshop on Hot Topics in Networks, 2009.

[27] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and
S. Rixner. Achieving 10 Gb/s using safe and transparent
network interface virtualization. In VEE ’09: Proceedings
of the ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 61–70. ACM,
2009.

[28] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt.
Bridging the gap between software and hardware
techniques for I/O virtualization. In ATC’08: Proceedings
of the USENIX Annual Technical Conference, pages 29–42.
USENIX Association, 2008.

[29] M. S. Schlansker, N. Chitlur, E. Oertli, P. M. Stillwell Jr.,
L. Rankin, D. Bradford, R. J. Carter, J. Mudigonda, N. L.
Binkert, and N. P. Jouppi. High-performance
ethernet-based communications for future multi-core
processors. In SC ’07: Proceedings of the ACM/IEEE
Conference on SuperComputing, pages 1–12. ACM, 2007.

[30] J. Shafer and S. Rixner. RiceNIC: A reconfigurable network
interface for experimental research and education. In
ExpCS ’07: Proceedings of the workshop on Experimental
Computer Science, page 21. ACM, 2007.

[31] D. E. Taylor and J. S. Turner. ClassBench: a packet
classification benchmark. In INFOCOM ’05: Proceedings of
the Annual Joint Conference of the IEEE Computer and
Communications Societies, pages 2068–2079, March 2005.

[32] VMware, Inc. VMware virtual networking concepts.
http://www.vmware.com/files/pdf/virtual_networking_
concepts.pdf, 2007.

[33] J. Wiegert, G. Regnier, and J. Jackson. Challenges for
scalable networking in a virtualized server. ICCCN ’07:
Proceedings of the 16th International Conference on
Computer Communications and Networks, pages 179–184,
August 2007.

[34] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner,
A. L. Cox, and W. Zwaenepoel. Concurrent Direct Network
Access for virtual machine monitors. In Proceedings of
HPCA, pages 306–317. IEEE Computer Society, 2007.

[35] L. Zhao, L. N. Bhuyan, R. Iyer, and D. N.
Srihari Makineni. Hardware support for accelerating data
movement in server platform. IEEE Transactions on
Computers, 56(6), January 2007.

12

