

Keyword(s):

Abstract:

Framework for Effective Representation of Wikipedia and Graph-based
Distance Calculation
Alexander Ulanov, Dmitry Ryashchentsev

HP Laboratories
HPL-2010-153

Wikipedia, semantic similarity, effective graph representation

We consider the problem of using Wikipedia as an external knowledge base in real-time applications. In
particular, present tools don't allow making fast computations on Wikipedia graph. This is essential for
such tasks as word sense disambiguation or term clustering. To address this issue we propose the
framework for effective representation of Wikipedia and graph-based distance calculation.

External Posting Date: October 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: October 21, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

Framework for Effective Representation of Wikipedia and Graph-based

Distance Calculation

Alexander Ulanov, Dmitry Ryashchentsev

HP Labs Russia

{alexander.ulanov;dmitry.ryashchentsev}@hp.com

Abstract. We consider the problem of using Wikipedia as an external knowledge base in real-

time applications. In particular, present tools don’t allow making fast computations on Wikipedia

graph. This is essential for such tasks as word sense disambiguation or term clustering. To

address this issue we propose the framework for effective representation of Wikipedia and

graph-based distance calculation.

1. Introduction

Wikipedia used in various applications: as thesaurus, ontology, for word sense disambiguation,

co-reference resolution, query expansion, named entity extraction etc. [Medelyan et al., 09].

Term lookup and computing similarity between them are ones of the most basic procedures,

used for more complex methods such as keyterm extraction, term disambiguation, term

clustering, taxonomy extraction, named entity recognition. In these tasks, term lookup and

similarity are computed huge amount of times, since they imply pair vise term comparison.

Although there are available several tools for solving the basic needs mentioned, they have quite

low performance, and allow computing only several basic operations per second. This is mainly

due to use of relational databases, which cannot deliver good performance in extensive ad-hoc

lookup of pages and links between them. This paper presents the framework for effective

representation of Wikipedia and graph-based distance calculation which allows storing structure

of Wikipedia categories and articles with redirects and corresponding senses for disambiguation

pages. Its use is not limited for: term and term senses lookup, term similarity measurement,

categories taxonomy extraction etc.

There are several approaches to computing term similarity in Wikipeadia. Wikirelate!

[Ponzetto & Strube, 07] is based on category structure. Explicit semantic analysis (ESA)

[Gabrilovich & Markovitch, 07] is based on text features and link within articles. Method

proposed in [Milne & Witten, 08] uses incoming and outgoing links. It is hard to estimate the

performance of Wikirelate! and ESA since they are not available for downloading. There is a

service for the method proposed in [Milne & Witten, 08]. It is server-based, so cannot be used

for stand-alone applications and large experiments.

We will use the following terminology. Wikipedia page – is any object that has an id in

Wikipedia. Wikipedia category is the page which name begins with “Category” prefix.

Wikipedia article is the page representing a notion in Wikipedia. Redirect is the page that

redirects to another page. Ambiguous page is such a page that has disambiguation categories or

“Other uses” link at the top.

The paper is organized as follows. Section 2 describes problem statement and proposed

approach. Section 3 describes how and which data were extracted from Wikipedia database.

Section 4 is devoted to data preprocessing and loading in memory. Section 5 represents the

experiments conducted with the developed library. Section 6 outlines the conclusion.

2. Problem statement

The goal of this work is to develop a library for effective lookup of Wikipedia terms and distance

calculation. Requirements are:

 Term lookup – milliseconds

 Distance calculation – tens of milliseconds

Several sub-problems will be solved to achieve the goal:

 Extracting data from Wikipedia database, including extraction of articles names,

redirects, disambiguation pages and categories

 Developing structures for effective data representation

 Preprocessing data for in-memory representation

 Implementation of term lookup and term distance

3. Extract data from Wikipedia XML database

We have downloaded and parsed Wikipedia dump and loaded it into XML Database

[Wikipedia]. Then we extract data from it. Two tables were used to extract data. First describes

categories and article with redirects structure. Second describes only ambiguous articles and

corresponding senses. The described structures are represented on the fig.1 and fig.2.

Fig. 1. Wikipedia categories and articles structure with redirects

The table for representing Wikipedia categories and articles structure with redirects has

the following structure:

Page name Page id Page id, if redirect Categories ids (if not redirect)

Fig. 2. Wikipedia disambiguation articles structure

The table for representing Wikipedia disambiguation articles structure has the following fields:

Ambiguous

article name

Ambiguous

article id

Ids of articles that are various senses of ambiguous one

Two queries were implemented to extract data. The query for Wikipedia categories and

articles structure with redirects is rather straight-forward. Query processed all Wikipedia pages

in database, extracted name and id of it and id of an actual page if it was redirect. If it was an

actual page then all categories were extracted.

The query for extracting disambiguation articles structure was more complicated. Query

processed all Wikipedia pages and if it was an ambiguous page and not redirect then query

extracted its name and id and ids of articles that are other senses of the current article. The list of

senses contained senses listed on the disambiguation page plus id of the given page if it had “For

other uses” link. Only such senses were extracted that do not correspond to named entities, such

as person or location names etc.

4. Preprocess and load into memory

Wikipedia structure is represented in memory as:

 Wikipedia articles and categories titles dictionary

 Categories graph

 Graph of disambiguation references

 Redirects references

 Exclude list

The extracted tables are loaded into the memory, converted into compact binary format by

com.hp.hplabs.lim2.util.webgraph.GraphFunctions class methods and stored on disk:

 terms.csa – Wikipedia terms dictionary

 hash.graph-off, hash.graph-ref - Wikipedia terms dictionary hash index

 parents.graph-off, parents.graph-ref – Wikipedia categories graph

 children.graph-off, children.graph-ref – Wikipedia categories transposed graph

 redir.ids – redirects index

 disamb.graph-off, disamb.graph-ref – disambiguation graph

 allow.idx – allow/exclude index

 allowcat.graph-off, allowcat.graph-ref – Wikipedia categories graph with removed refs

to excluded nodes

 allowchild.graph-off, allowchild.graph-ref - Wikipedia categories transposed graph with

removed refs to excluded nodes

Wikipedia articles and categories dictionary is represented as a big byte sequence that

contain UTF8 encoded titles and indexes array. That allows storing all Wikipedia titles in 220Mb

of memory directly without compression. For the fast terms search it as also build a hash table

that takes 100Mb of memory (fig.3).

T

E

R

M

1

T

E

R

1
st

 term index

2
nd

 term index

UTF8 terms Indexes

M

2

3
rd

 term index

1
st

 reference of
hash=0

 2
nd

 reference of
hash=0

3
rd

 reference of
hash=0

4
th

 reference or
hash=0

1
st

 reference of
hash=1

2
nd

 reference of
hash=1

3
rd

 reference of
hash=1

1
st

 reference of
hash=2

Hash=0 index

Hash=1 index

Hash=2 index

Hash refs Hash index

Fig. 3. Structure for terms representation.

Categories, disambiguation graphs are represented as two integer arrays: graph references

and nodes indexes – that also allows to provide fast access without any decompression with

minimal data extraction stuff (fig.4).

1
st

 reference of
node 1

 2
nd

 reference of
node 1

3
rd

 reference of
node 1

4
th

 reference of
node 1

1
st

 reference of
node 2

2
nd

 reference of
node 2

3
rd

 reference of
node 2

1
st

 reference of
node 3

1
st

 node index

2
nd

 node index

3
rd

 node index

References Indexes

Fig. 4. Structure for categories and redirects representation.

The allow/exclude list index marks the following nodes:

 All nodes under the following categories:

o "Category:Hidden categories"

o "Category:Wikipedia maintenance",

o "Category:Thought"

 All nodes started from the following prefixes:

o "Category:Articles"

o "Category:Categories",

o "Category:Wikipedia",

o "Category:Very large categories",

o "Category:All Article",

o "Category:Cleanup",

o "Category:Hidden categories",

o "Category:Wikipedia administration",

o "Category:Categories by topic",

o "Category:Redirect templates",

o "Category:Redirects from other template",

o "Category:Interdisciplinary fields",

o "Wikipedia:",

o "File:",

o "Template:",

o "Media:",

o "User:",

o "MediaWiki:",

o "Help:",

o "Portal:",

o "Book:",

o "Talk:"

All in-memory structures: dictionary, dictionary hash table, categories direct and

transposed graphs, disambiguation and redirects graphs take less then 600Mb of memory.

Therefore this framework can be used on common PC. The use of light in-memory compression

methods like [Boldi et al., 04] allows to save ~30% of memory, but we did not find it reasonable

to use for Wikipedia for the price of performance.

We store on disk the created arrays and can load them back into memory (in lazy way) very

quickly and no deployment is needed. All 600Mb of data are loaded in about 7 seconds.

5. Shortest path

In-memory library contains the following methods to calculate shortest path on a graph:

1. Minimal distance calculation on direct graph with equal arc lengths

2. Making minimal paths using minimal distance calculation temp data

Minimal distance can be calculated from node to node, from node to nodes set, and from

nodes set to nodes set. The algorithm is based on breadth-first search. On every n-step it finds all

nodes that are in n-arcs minimal distance from the initial node (or nodes set), i.e. on every n-step

the area is built around the initial nodes (or nodes sets) of nodes with minimal distances <= n.

This process is limited by receiving a minimal distance through the areas intersections or by

exceeding a maximum deep.

Gradient descent is used to find all shortest paths between initial points or set of points. It is

done using the points in the intersections of the points areas mentioned.

A

1

2

1

1
2

B
1

2

Fig. 5. Example of gradient descent.

With this algorithm a distance from a single node to single node is calculated faster than 1ms,

between sets of 5-8 terms is it calculated for about 30ms.

6. Experiments

Two benchmarks were run for evaluation of the proposed framework: Miller&Charles [Miller &

Charles, 91] and WordSim353 [Finkelstein et al., 02] testsets. They are based on semantic

similarity computation between pairs of nouns. The goal of the benchmark is to show correlation

of computer-based similarity with human evaluated. The following similarity function between

articles i and j was implemented [Leacock & Chodorow, 98]:

d

s
jiSimJac

2
log, ,

where s is the shortest path between articles in a category hierarchy and d is the Wikipedia

depth. Due to large categories interconnectivity maximum depth can reach the amount of 30. But

such long sequences don’t make sense and depth can be approximated as a minimal depth of the

deepest node. The implemented function shows very good correlation with human opinions. It is

usually used on WordNet. By our experiments we demonstrated that it could be successfully

used for Wikipedia categories structure (Table 1). We compared it with WikiRelate! method that

also uses category structure of Wikipedia. Methods by [Gabrilovich & Markovitch, 07] and

[Milne & Witten, 08] show better correlation, but they use links in the article body.

Table 1. Similarity benchmarks results

Method Miller&Charles WordSim353 (full/set1/set2)

Leacock & Chodorow 0.63 0.42; 0.48; 0.32

WikiRelate! [Ponzetto & Strube, 07] 0.49 0.49; n/a ; n/a

7. Conclusion

The framework for effective representation of Wikipedia and graph-based distance computation

was developed. It was done in several stages: extraction of articles and categories structure from

Wikipedia, developing a structure for storing it in memory, preprocessing and loading it in

memory. Graph-based distance function was developed for enabling computation of similarity

between Wikipedia articles. The developed library was used in experiments for similarity

computation in two state of the art benchmarks and it demonstrated high-performance results.

 Further work is connected with the use of this framework for Taxonom DTX. The

framework is available for download by request and as a service [Service].

References

[Boldi et al., 04] Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:

Proc. Of the Thirteenth International World Wide Web Conference, Manhattan, USA, ACM

Press (2004) 595–601

[Finkelstein et al., 02] Finkelstein, L., Gabrilovich, E.,Matias, Y., Rivlin, E., Solan, Z.,Wolfman,

G., & Ruppin, E. Placing search in context: The concept revisited. ACM Transactions on

Information Systems, 20(1), 116–131, 2002.

[Gabrilovich & Markovitch, 07] Gabrilovich, G. and S. Markovitch. [2007] Computing Semantic

Relatedness using Wikipedia-based

Explicit Semantic Analysis. In Proceedings of the 20th International Joint Conference on

Artificial

Intelligence, IJCAI’07, Hyderabad, India, January 2007, p.1606–1611.

[Leacock & Chodorow, 98] Leacock, C., Chodorow, M. Combining local context and WordNet

similarity for word sense identification. In Fellbaum, C. (Ed.), WordNet. An Electronic Lexical

Database, chap. 11, pp. 265–283. Cambridge, Mass.: MIT Press, 1998.

[Medelyan et al., 09] O. Medelyan, D. Milne, C. Legg and I. H. Witten. 2009. Mining meaning

from Wikipedia. International Journal of Human-Computer Studies. Volume 67, Issue 9, pp.

716-754

[Miller & Charles, 91] Miller, G. A., & Charles,W. G. Contextual correlates of semantic

similarity. Language and Cognitive Processes, 6(1), 1–28, 1991.

[Milne & Witten, 08] Milne, D. and Witten, I.H. (2008) An effective, low-cost measure of

semantic relatedness obtained from Wikipedia links. In Proceedings of the first AAAI Workshop

on Wikipedia and Artificial Intelligence (WIKIAI'08), Chicago, I.L.

[Ponzetto & Strube, 07] Ponzetto, S. P. and M. Strube. Knowledge Derived from Wikipedia for

Computing Semantic Relatedness. Journal of Artificial Intelligence Research 30, pp. 181–212

[Service] Wikipedia similarity service. http://bakeoff-srv-3.hpl.hp.com/wikigraph/similarity.html

[Wikipedia] Wikipedia database download

http://en.wikipedia.org/wiki/Wikipedia:Database_download

Appendix. In-memory library interface

The in-memory library consists of two parts:

 Data primitives

 Algorithms

The following data access interfaces are defined in the library:

 IIndexStorage – immutable int array

 IArray – general array

 BigByteSequence – growable byte array

 IGraph – minimal graph access interface

 IFastGraph – graph access interface with additional methods that allow to reduce

memory allocation operations

There is a number of the interfaces implementations that allow:

 Read-Write data into memory in fastest way

 Read-Write data into memory with light compression

 Read-Write data directly to file in fastest way

 Read-Write data directly to file with custom compression (gzip) of arrays content

Any memory structures can be serialized and deserialized from a file.

Class com.hp.hplabs.lim2.wikipedia.CompactWiki provides the following Wikipedia data

methods with fast memory access:

 int getTermID(String) – get internal Wikipedia term ID by title with hash search

 String getTermByID(int) – get Wikipedia term title by internal ID

 FileGraph getCategoriesGraph() – get Wikipedia categories graph

 FileGraph getChildrenGraph() – get Wikipedia transposed categories graph

 IIndexStorage getRedirectsIdx() – get Wikipedia redirects index

 FileGraph getDisambiguationGraph() – get Wikipedia disambiguation graph

 IIndexStorage getWikiIDs() – get Wikipedia ID by internal one.

 int[] getAllowList() – get allow list flags array: 0 – allow, -1 - exclude

 FileGraph getAllowCatGraph() – get Wikipedia categories graph with removed

references to excluded nodes

 FileGraph getAlloChildGraph() - get Wikipedia transposed categories graph with

removed references to excluded nodes

Class com.hp.hplabs.lim2.util.webgraph.GraphFunctions contains data import stuff.

The second part of the library is shortest paths search algorithms implementations that operate

with in-memory library interfaces.

The following classes are defined to store result and intermediate data:

 DistanceMap – region (node or list of nodes) with distances to n-deep neighbors, this

object can be reused in more than one distance calculations that allows to reuse previous

calculations steps

 DistanceIntersection – two regions closest intersection

 DistanceStaticFullPathTree – two regions closest paths

The following algorithms are implemented in class

com.hp.hplabs.lim2.util.webgraph.DistanceEngine:

 getIntersection(IFastGraph iGraph, int nMaxDeep, DistanceMap map1, DistanceMap

map2, DistanceIntersection iIntersection) – calculates closest intersection from region

map1 to map2 on graph iGraph with max deep nMaxDeep. Result is put to iIntersection.

 getPaths(IFastGraph iTransGraph, DistanceMap map, DistanceStaticFullPathTree tree)

– make closest path from intersection to points defined in map on graph iTransGraph by

gradient descent method

 dumpPath(ElementDumper dumper, DistanceStaticFullPathTree.PathInfo path, int

nFrom) – dumps nFrom-path contained in path into dumper

Example of the library usage is in com.hp.hplabs.lim2.util.webgraph.DistanceEngine.pathsTest()

Performance evaluation is provided in class com.hp.hplabs.lim2.util.webgraph.GraphTest

