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ABSTRACT
We present Gatekeeper, a distributed rate control mechanism
that supports network link bandwidth guarantees for mul-
tiple co-located tenants in a virtualized datacenter. Gate-
keeper provides network performance isolation across ten-
ants by enforcing link bandwidth allocations for both egress
and ingress network traffic at each physical host. Experi-
ments on our Xen-based implementation of Gatekeeper in a
datacenter cluster demonstrate effective control of link band-
width for both TCP and UDP traffic, and for a Hadoop-based
application running concurrently with streaming workloads.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems

General Terms
Distributed Cloud Bandwidth Control

Keywords
Cloud Computing, Bandwidth, Virtualization, Virtual
Machines, Rate Control, Virtual Switch

1. INTRODUCTION
A typical datacenter hosts multiple services in a shared

facility. The services are often consolidated onto phys-
ical servers using virtual machine (VM) technology [8,
3, 19]. Each service can consist of a collection of one
or more VMs placed on one or more physical machines.
With the rise of cloud computing [2], services will be-
long to mutually non-trusted tenants and exhibit varied
and dynamic demands on datacenter resources.

These emerging environments will have a strong need
for improved mechanisms to enforce performance isola-
tion for tenants that share datacenter resources. While
existing hypervisor mechanisms provide good support
for allocating CPU and memory resources, only rudi-
mentary support is currently available to manage the
use of datacenter network I/O resources (for example,
VMware ESX Server 3 can enforce parameter settings
for average bandwidth, burst size, and peak bandwidth
for each VM, but only in the transmit direction [10]).

Effective management of network bandwidth will be
crucial to handle the growing range of service work-
loads that stress local area network resources in the
datacenter. For example, data-intensive applications on
scalable frameworks like MapReduce [6] can be highly
network-intensive. Also, future datacenters are expected
to merge traditional messaging traffic with network stor-
age traffic onto a single converged datacenter network
fabric, using new network standards [5, 7] and new dis-
tributed storage and file systems [12].

The traditional performance bottleneck for datacen-
ter local area networking was in the core of the fabric.
Datacenter networks were constructed as tree topolo-
gies with high oversubscription ratios that severely lim-
ited network bisection bandwidth near the root of the
tree. Thus, careful consideration of the entire network
topology was needed to provide guaranteed bandwidth
for each tenant. Recently, a flurry of advances in data-
center networking research [13, 21, 1, 20, 23], commer-
cial products [11], and Ethernet standards [25] promises
to make it practical to cost-effectively scale the bisec-
tion bandwidth of datacenter networks using multi-path
switching. In addition, network topology-aware place-
ment of service workloads in the datacenter can mini-
mize the number of network hops that traffic traverses,
reducing the aggregate load on network link and switch
resources in the fabric core [16].

Our key observation is that the use of scalable data-
center networks shifts the bottleneck from the network
fabric to the endpoint links that connect each physi-
cal server to the network fabric. This allows translat-
ing the problem of managing tenant network bandwidth
into the (possibly more tractable) problem of managing
each server’s network access links. Thus, tenant band-
width management can focus on the endpoint server
links, which are potentially shared by all VMs hosted
on a server, instead of having to reason about network
bottlenecks that could arise anywhere in the fabric.

This paper presents Gatekeeper, a distributed rate
control mechanism that provides network isolation for
multi-tenant datacenters. Gatekeeper controls the us-
age of each server’s network access link, which is pre-
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sumed to be the bottleneck resource for datacenter net-
work I/O. It provides per-VM link bandwidth guaran-
tees in both directions of the link at each physical server,
i.e., for both ingress and egress traffic. The logical view
provided to a tenant is that all of its VMs attach to
a single dedicated non-blocking switch, and each VM
connects to the switch via an access link with a guar-
anteed level of bandwidth. Compared to static band-
width allocations, the bandwidth guarantees in Gate-
keeper provide more flexibility to achieve higher ag-
gregate throughput. In particular, each VM can ex-
ceed its guaranteed allocation when extra bandwidth is
available at both transmitting and receiving endpoints.
Gatekeeper is a distributed mechanism that achieves
scalability using a simple point-to-point protocol and
minimal datacenter-wide control state – a small con-
stant amount of state for each VM plus a small constant
amount of state for each network access link.

Existing virtualization mechanisms can guarantee to
each VM a specific fraction of the server’s network link
bandwidth, but only in the transmit direction. To our
knowledge, no existing solution provides similar guar-
antees in the receive direction. Existing rate limiters
in hosts and NICs are able to cap the maximum de-
livery rate to a VM by simply dropping any packets
that are received in excess of the rate limits. Unfortu-
nately, received packets only encounter the rate limiters
after traversing the link. Hence, rate limiters alone are
unable to control the use of the link bandwidth in the
receive direction. Without link receive bandwidth guar-
antees, a service that receives a high rate of incoming
network traffic can severely hurt the performance of co-
located services. These ineffective rate limiters have the
additional disadvantage that VMs are prevented from
using bandwidth above their caps even when idle band-
width is available.

Gatekeeper overcomes these limitations by approxi-
mating work-conserving scheduling while satisfying rate
guarantees for all tenants that have traffic demands. It
observes true traffic demands for each VM even though
it encounters packets only after they traverse the phys-
ical link and uses that demand information to dynami-
cally allocate bandwidth for each VM. To enforce these
dynamic rate allocations, Gatekeeper takes advantage
of the throughput adaptation property of TCP-friendly
transport protocols. Specifically, Gatekeeper drops se-
lected packets, causing remote senders to adjust trans-
mission rates to satisfy the current allocation. For traf-
fic that does not adjust rates in response to packet
drops, Gatekeeper enforces dynamic rate assignments
by imposing egress rate limits on remote senders through
a distributed control protocol.

Gatekeeper is currently implemented in software at
end hosts. This software-based approach enabled us
to deploy and evaluate Gatekeeper on a real datacen-

ter cluster. Alternatively, Gatekeeper could be imple-
mented in hardware/firmware in host network interfaces
(e.g., an Ethernet NIC) or edge switches. Our perfor-
mance evaluation uses a mixture of streaming micro-
benchmarks and a Hadoop cluster application to show
that Gatekeeper provides effective bandwidth guaran-
tees that enable: 1) better control than with best-effort
scheduling, and 2) better performance than using strict
rate limits. A preliminary analysis of the CPU over-
head of our current unoptimized implementation indi-
cates that it uses only around 25% of a single CPU core
to manage a gigabit Ethernet link.

2. GATEKEEPER ARCHITECTURE
A key design decision is to choose the form of net-

work performance guarantees that Gatekeeper should
provide to each tenant. The guarantee should be simple
enough for users (customers) of a datacenter to reason
about so that they can make appropriate requests to
the datacenter provider when deploying tenants.

We chose to provide the tenant with the logical view
that all VMs of the tenant are connected to a full cross-
bar switch. Each VM has an access link to the switch
with a guaranteed bandwidth. However, a VM may
find that it can exceed this bandwidth at times. As it
is common in real physical deployments to attach mul-
tiple servers directly to the same switch, it is likely that
our model will seem familiar to users who deploy ten-
ants in a datacenter. Except for allowing bandwidth use
above the guaranteed rate, this model is similar to the
hose model [9, 13] in which throughputs are constrained
only by the guaranteed bandwidths of the access links
of the VMs.

The tenant model can be extended to include man-
agement of bandwidth between the tenant and external
services or clients. For example, the logical full crossbar
switch can include additional ports with assigned band-
width for external client traffic. This requires Gate-
keeper to operate on a router or gateway that handles
all traffic exchanged between the external clients and
the datacenter tenant. We note that this simple model
could potentially be extended further to allow users to
specify more general virtual topologies, but it is unclear
whether many users would need that generality.

Figure 1 shows an overview of the Gatekeeper archi-
tecture. Gatekeeper intercepts packets sent from local
VMs that are destined to traverse the server’s network
link, as well as packets received from the network link
for local VMs. Internally, Gatekeeper has three compo-
nents: the egress scheduler, the ingress scheduler, and
the congestion agent.

The egress controller is depicted in Figure 2. The
egress scheduler implements a traditional weighted fair
scheduling policy with rate guarantees. The scheduler
services packets to be transmitted from multiple queues.
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Each queue is associated with a virtual machine, and
when non-empty it is drained with at least its guaran-
teed link bandwidth rate Ri. Any excess bandwidth is
distributed among queues that have additional traffic.

For the ingress scheduler, a simple approach would
be to impose a rate limit that bounds the maximum
rate at which each VM can receive traffic. However,
this would amount to a static allocation of bandwidth
and could lead to wasted bandwidth during periods
when some VMs had demands for ingress traffic that
were lower than their bandwidth allocations. During
such periods, ideally another VM that had extra de-
mands should be able to “borrow” the available band-
width until the first VM experiences higher demand and
reclaims its share. Thus, Gatekeeper seeks to achieve
work-conserving scheduling for ingress traffic as well as
for egress traffic.

To achieve work-conserving scheduling with guaran-
tees, Gatekeeper must not only satisfy all guarantees,
but also must satisfy demand in excess of guaranteed
rates until either capacity or demand is exhausted. How-
ever, the challenge for ingress traffic is that the receiv-
ing host has incomplete knowledge of traffic demands.

scheduler classifier
R1

LIM1
RN

R2

vswitch link

Figure 3: Ingress Controller

The receiving host only sees the arriving traffic that
successfully traverses the physical link without getting
dropped at the edge switch. For example, if the link is
fully utilized, suppose one VM A is receiving at a rate
higher than its guaranteed rate. If another co-located
VM B is receiving at a rate lower than its guaranteed
rate, it is not clear whether that is because there is
no additional demand from VM B, or because there is
additional demand which cannot be satisfied because
the link is saturated receiving excess traffic for VM A.
Gatekeeper uses two mechanisms working in concert to
overcome this difficulty.

To expose the real traffic demand for each VM, Gate-
keeper shifts the resource bottleneck for ingress traffic
from the physical link to the Gatekeeper scheduler it-
self. As shown in Figure 3, the ingress controller places
arriving packets into per-VM queues based on the des-
tination MAC address, and delivers the traffic to the
VMs using weighted fair queueing with rate guarantees.
The ingress scheduler serves traffic to VMs at a maxi-
mum aggregate rate of LIMIN , a rate which is slightly
lower than the link rate. Maintaining this bandwidth
headroom allows Gatekeeper to experience most traf-
fic demands that would otherwise be shed at the edge
switch. Conceptually, Gatekeeper uses this information
to determine appropriate ingress bandwidth allocations
at each moment in time for each VM to achieve approx-
imately work-conserving scheduling with guarantees.

Instead of explicitly managing these dynamic band-
width allocations for ingress traffic, Gatekeeper implic-
itly manages allocations by leveraging the throughput
adaptation property of TCP-friendly transport proto-
cols. When the aggregate arrival rate on the physical
link exceeds LIMIN , packets will accumulate in some
queues of the ingress controller. Since the ingress sched-
uler services the queues with at least their guaranteed
rate Ri, only the queues that are receiving packets at
rates higher than their Ri can overflow and drop pack-
ets. For traffic that has good congestion control, the
packet drops cause the remote senders to react by re-
ducing transmission rates to satisfy the current implicit
rate allocation (in addition, queuing alone helps because
of the self-clocking behavior of TCP ACKs).
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While dropping selected ingress packets causes TCP-
friendly traffic to adapt to the available delivery rate,
a remote VM may not reduce traffic rate appropriately
in response to packet drops. For example, it can use
non-TCP-friendly protocols like UDP, or a flood of very
short-lived connections, or modified or misbehaving TCP
implementations that disobey TCP’s congestion con-
trol. To protect well-behaved TCP flows from such
unresponsive traffic, Gatekeeper introduces a second
mechanism which detects if the transmission rates fail
to adjust to packet drops and, if so, imposes egress rate
limits (LIMj in Figure 2) on remote senders using a
distributed control protocol. This assumes Gatekeeper
is running on the sender side to react to the notifica-
tion. Unresponsive traffic is detected by periodically
monitoring packet drop rates at each ingress queue and
generating a congestion notification message when the
packet drop rate exceeds a threshold. This congestion
message is sent to the sender side. Since many senders
could be transmitting to a single receiver, a policy is
needed to select which sender will be targeted for a con-
gestion message. The policy used in the current version
of Gatekeeper is to target the sender of the last packet
that was dropped from the ingress queue. If multiple
senders are transmitting to the same VM, it is possible
that congestion messages are sent to VMs that are send-
ing only TCP-friendly traffic in addition to VMs that
are sending non-TCP-friendly traffic. We consider this
acceptable since all senders belong to the same tenant.

Initially, the limit LIMj is set equal to the physical
link bandwidth and so does not impede transmission
at all unless a congestion notification message for that
VM is received. Gatekeeper at the sender side reacts to
a congestion message by reducing the egress rate limit
LIMj for the sender VM that is the target of the conges-
tion message. Gatekeeper reduces the VM’s limit LIMj

by half on each congestion message. Then the rate is
increased linearly over time until it reaches the maxi-
mum rate or another congestion notification is received.
We experimentally determined the packet drop thresh-
old to ensure that congestion notification messages are
not triggered by TCP but instead only by unresponsive
traffic. We adjusted the slope of the rate increase at the
rate limiter to ensure that the distributed rate control
favors well-behaved TCP connections.

To send congestion feedback messages back to the
source, the current implementation of Gatekeeper main-
tains a directory service that maps the MAC addresses
of all VMs to the address of the physical server that
hosts each VM. Thus, Gatekeeper can identify the
physical server of each transmitting VM and send con-
gestion notifications to the Gatekeeper port on the send-
ing physical servers. A possible alternative to this ap-
proach is to send congestion notifications to the MAC
address of the transmitting VMs themselves but use a

new ethertype. Gatekeeper could intercept all packets
that use this new ethertype instead of delivering them
to the VMs. While this would avoid the need for a
directory service, we observe that equivalent directory
services are already typically provided in systems that
manage VMs, and could be leveraged by Gatekeeper.

Gatekeeper is currently implemented in host software
(specifically, in a Xen dom0 driver domain) but could in-
stead be implemented in NIC hardware or firmware. Al-
ternatively, a slightly modified Gatekeeper design could
be implemented in edge switches connected directly to
servers. In that case, there is no need to limit the receive
rate on the server network link to be less than the physi-
cal link bandwidth. However, since system management
of VMs (e.g., VM live migration) needs to coordinate
closely with the Gatekeeper mechanism, it seems pre-
ferred to implement Gatekeeper in servers rather than
creating new dependencies between VM management
and network switch management.

3. EVALUATION
Our Gatekeeper prototype based on the Xen hyper-

visor implements the congestion agent as a user-level
process in Domain 0 (dom0) on each physical machine.
The ingress and egress schedulers are implemented us-
ing the Linux traffic control framework TC in the dom0
kernel. The agent queries the schedulers using the rtnet-
filter library to collect network statistics, such as per-
VM bandwidth and packet drop rates. Each server in
the test cluster has a Gigabit Ethernet link with maxi-
mum goodput of 941 Mb/s.

3.1 System Tuning
The Gatekeeper agent configures the TC mechanism

with separate ingress and egress traffic queues for each
virtual machine on each host. The agent periodically
collects statistics for each queue, measuring the ingress
arrival and drop rates. These measurements are taken
at 10 msec intervals, and are averaged over the previ-
ous 100 msec to minimize noise. The ingress queue ca-
pacity determines the maximum traffic burst that can
be received without packet dropping. This size should
be sufficiently large to accommodate short term bursts
caused by TCP’s slow start and statistical interleaving
of packets from multiple flows. However, the queue size
should also be sufficiently short to enable fast reaction
to changes in traffic demand.

We experimentally determined the minimum queue
size that can accommodate a large number of simulta-
neous TCP flows without causing the packet drop rate
at the ingress queue to exceed the ingress bandwidth
headroom. As discussed in Section 2 this is needed to
enable Gatekeeper to provide work-conserving schedul-
ing for ingress traffic from the server side. We argue
that providing a 5% headroom (reducing goodput from
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941 Mb/s to ∼900 Mb/s on a gigabit link) is an ac-
ceptable price to pay for more predictable network per-
formance and isolation. We determined the minimum
ingress queue size that supports a large number of TCP
connections while limiting the drop rate to at most half
the ingress bandwidth headroom (20 Mb/s). To be con-
servative we assumed a worst case scenario where a large
number of TCP flows start approximately simultane-
ously and enter slow start together. We run tests with
a total of 256 simultaneous TCP connections to a single
receiver. We varied the number of sender host servers
from 1 to 16 while holding constant the total number
of TCP connections. We found that a queue size of 160
packets was sufficient to limit the drop rate to 20 Mb/s
at all times during a 60 sec experiment. We also verified
that the measured drop rate decreases as the number
of sending hosts increases, and the highest drop rate
is observed when all TCP connections originate at the
same sender host. These results give us confidence that
the selected queue size is large enough to absorb traf-
fic bursts in most practical scenarios with well behaved
TCP flows.

3.2 Evaluating Gatekeeper Behavior
Our initial evaluation uses a simple configuration with

three servers hosting VMs from two customers, A and
B, as shown in Figure 4. Host H1 runs one VM for each
customer, while hosts H2 and H3 each run a single VM
for customer A and customer B, respectively. Each cus-
tomer runs a netperf microbenchmark between its two
VMs. We examine two scenarios: 1) transmit (TX) bot-
tleneck where traffic is transmitted from host H1 to the
other corresponding server, and 2) receive (RX) bottle-
neck where traffic is transmitted from hosts H2 and H3
to the shared host H1. We evaluated different commu-
nication patterns varying the number of flows (none, 1,
10) and type of flow (TCP or UDP) for each customer.
Due to a limitation of the current Linux TC implemen-
tation, the largest total rate limit below the link ca-
pacity that could be configured was 860 Mb/s. This
reduces the maximum achievable bandwidth in these
experiments, but we expect that the results would be
similar if we could set a rate limit of 900 Mb/s (the 5%
headroom would still be needed). To evaluate Gate-
keeper’s ability to allocate network bandwidth, we set
targets of 75% of link bandwidth (645 Mb/s) for cus-
tomer A and 25% (215 Mb/s) for customer B.

Figure 5 shows the rate achieved for each customer
for different configurations. The x-axis shows the type
and number of netperf flows for each customer. The
horizontal dotted lines show the ideal rate allocated to
the corresponding customer. Figure 5(a) shows that
without Gatekeeper the rate achieved by one customer
is significantly affected by the other customer’s traffic.
In particular, for the RX scenario a TCP connection

Figure 4: Experimental setup to evaluate Gate-
keeper’s basic functionality

from customer A is severely degraded when customer B
has more TCP connections (10) or generates non-TCP-
friendly network traffic such as UDP. This shows that
traditional rate limiting at the transmitting side can-
not provide network performance isolation. In contrast,
Figure 5(b) shows that Gatekeeper enables customers
with both UDP and TCP traffic to achieve rates close
to their assigned bandwidths. At the same time, Gate-
keeper detects any unused bandwidth by one customer
and reassigns it to the other customer as shown in the
experiments with no traffic from customer B.

3.3 Hadoop Experiments
The previous results show that Gatekeeper success-

fully schedules network traffic to achieve the desired
bandwidth allocation for a static scenario on a small
number of nodes. We next evaluate Gatekeeper in a
more realistic environment using a larger number of
nodes and a workload with time-varying network de-
mand. We consider a scenario with a Hadoop job run-
ning on 26 VMs distributed across 26 hosts and com-
peting with background TCP and UDP traffic. The
Hadoop job runs a custom application, named “Ran-
dom”, which in the Map phase generates random data
lines from a set of input files and then in the Reduce
phase counts the number of lines. The duration of
the data transfer phase between the Map and Reduce
phases is relatively long to ensure that the application
performance is sensitive to the available network band-
width. In addition, the sequence of Map, data transfer
and Reduce phases exhibits a dynamic behavior with
varying network demand over time.

The competing background TCP and UDP traffic
is generated by netperf processes running on VMs co-
located on the same 26 servers as the Hadoop job. These
VMs were organized in 13 sender/receiver pairs. We
evaluate two background traffic cases: one with 10 TCP
streams and one with a UDP stream. We configured
Gatekeeper with three different bandwidth allocations
for the Hadoop job, 25% 50% and 75%, and allocated
the remaining bandwidth to the background netperf
traffic. Experiments were run 5 times and the results
show a 95% confidence interval for each experiment.
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Figure 5: Results for simple scenarios

The results for background traffic with 10 TCP con-
nections in each sender/receiver pair are shown in Fig-
ure 6. Figure 6(a) shows the Hadoop job execution
time for different scheduling mechanisms and different
Hadoop bandwidth allocations, and Figure 6(b) shows
the average throughput of netperf sender/receiver pairs.
The rate limit case shows the results for a simple static
rate limiter for both the ingress and egress traffic. For
Gatekeeper, results are shown with and without the
congestion feedback mechanism used to detect unre-
sponsive traffic. Finally, the best effort case shows per-
formance with no rate control. The dotted line shows
the optimal performance that is achieved by the Hadoop
job when there is no competing background traffic. When
no rate control is used, the 10 TCP connections signif-
icantly affect the performance of the Hadoop job caus-
ing the execution time to increase from 41 to 75 sec-
onds (more than 70% slowdown). When rate control
is used, Hadoop execution time decreases as expected
as the bandwidth allocated to Hadoop is increased. In
general, Hadoop performance under Gatekeeper is sim-
ilar to a simple rate limiter mechanism, but Gatekeeper
detects bandwidth unused by Hadoop during the Map
and Reduce phase and re-assigns it to the netperf flows,
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Figure 6: Hadoop job competing with 10 TCP
streams

as shown in Figure 6(b). Gatekeeper provides much
higher bandwidth to the netperf flows while providing
similar performance for Hadoop. Since TCP is well be-
haved, Gatekeeper avoids using the congestion control
feedback mechanism, and thus the two Gatekeeper cases
show identical performance.

While Gatekeeper performs well in most scenarios,
it provides slightly lower performance (8%) than with
static rate limits at high bandwidth allocations (75%)
In this case, Gatekeeper’s drop policy at the receiver
nodes ends up causing slightly more drops than static
rate limits because of the higher rate of the compet-
ing traffic. However, when the bandwidth allocation
for Hadoop is lower (25%), Gatekeeper outperforms the
static allocation. This is a consequence of using a work
conserving scheme in Gatekeeper. In our scenario net-
perf streams generate egress traffic at only half of the
nodes and receive ingress traffic at the other half. Gate-
keeper detects this unused bandwidth and re-assigns it
to the Hadoop job, improving its performance.

Figure 7 shows that Gatekeeper’s congestion feedback
mechanism maintains good performance isolation in the
presence of competing unresponsive UDP traffic, pro-
viding Hadoop performance equivalent to that achieved
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Figure 7: Hadoop job competing with UDP
stream

with static rate limits while providing better use of the
available bandwidth by the netperf traffic.

4. RELATED WORK
Bandwidth controls in modern NICs, operating sys-

tems and hypervisors merely cap maximum delivery
rates to VMs. Thus, these solutions cannot match the
ability of Gatekeeper to provide link bandwidth guaran-
tees. Moreover, rate caps are non-work-conserving and
thus often waste idle bandwidth.

Several recent efforts propose to rearchitect Layer-2
data center networks to provide scalable bisection band-
width [1, 13, 21, 20, 23]. Gatekeeper assumes that fabric
bandwidth is well provisioned and focuses on managing
the links that provide a server access to the network
fabric. Each access link can be shared by VMs belong-
ing to different services. Thus, Gatekeeper extends net-
work bandwidth guarantees from the network edge all
the way to end-point VMs.

More closely related work is Core-Stateless Fair Queue-
ing (CSFQ) [24] for the Internet. In CFSQ, all state is
maintained by the edge routers but packet labels al-
low the core to drop traffic and thus achieves approx-
imately fair bandwidth allocation. CSFQ assumes the

end-nodes cannot be trusted and therefore concentrates
all trust in the core. In contrast, Gatekeeper concen-
trates on a managed cloud environment and does not
need to rely on switch or router support.

Gatekeeper also differs significantly from other router-
based mechanisms to provide QoS and prevent Dis-
tributed Denial-of-Service attacks [15]. In particular,
Gatekeeper is complementary to Cloud Control [22].
While Cloud Control performs distributed rate limit-
ing, it uses a complex distributed protocol to enforce
traffic constraints between different data center loca-
tions. Gatekeeper, in comparison, focuses on providing
distributed rate guarantees within a single data center
and uses a simpler approach to meet its goals.

The congestion feedback mechanism of Gatekeeper
may be conceptually related to the in-progress IEEE
802.1Qau standards effort to extend Ethernet to sup-
port some type of congestion notification. However, this
standard is not yet released, and Gatekeeper congestion
feedback works with unmodified Ethernet.

OpenFlow [18] is gaining traction in providing pro-
grammable network switches that can provide differ-
entiated routing or other treatment depending on a
flexible match of field values in packet headers. Sev-
eral projects (e.g., SANE [17], Ethane [4], NOX [14])
leverage OpenFlow to provide centralized network-wide
management of performance, security, and other net-
working properties. This work is complementary to
Gatekeeper. Individual flows or traffic classes used by
VMs could be managed in the fabric using centralized
network management of NOX or similar systems, while
Gatekeeper provides bandwidth guarantees for VMs at
the endpoint links.

Finally, VM placement and reallocation systems mi-
grate VMs based on the load at each physical machine,
mainly in terms of CPU usage [26, 27]. While migration
could also be triggered by insufficient network band-
width, Gatekeeper can help these systems guarantee
network bandwidth and reduce the need for migration.

5. CONCLUSION
In this paper we showed that traffic isolation between

virtualized datacenter tenants is achievable by combin-
ing egress and ingress traffic control at the end machines
using drops and explicit feedback. We presented Gate-
keeper, our Xen-based prototype, and described how it
was tuned to perform under different load conditions
with acceptable drop rates. Our evaluation showed
that Gatekeeper is a viable solution for achieving good
rate guarantees while allowing efficient use of unused re-
served bandwidth. In tests combining a Hadoop work-
load and a network-intensive application, Gatekeeper
was able to preserve good execution times for Hadoop
while allowing the network-intensive workload to use all
available bandwidth in periods when the Hadoop appli-
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cation was not using the network. As expected, ingress
control and drops were sufficient to reach good results
for TCP-based traffic, while the feedback mechanism
used to limit egress traffic was essential when UDP was
present. In future work we intend to extend the control
mechanisms to refine the control of TCP traffic and to
take into account complex network topologies. We also
plan to combine Gatekeeper with VM migration man-
agement so that VM placement can factor in observed
traffic behavior and reservations.
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