

Keyword(s):

Abstract:



APEX: Automated Policy Enforcement eXchange

Steven J. Simske, Helen Balinsky

HP Laboratories
HPL-2010-134

Policy, Text Analysis, Policy Server, Policy Editor, Document Systems, Document System Components,
Security

The changing nature of document workflows, document privacy and document security merit a new
approach to the enforcement of policy. We propose the use of automated means for enforcing policy, which
provides advantages for compliance and auditing, adaptability to changes in policy, and compatibility with
a cloud-based exchange. We describe the Automated Policy Enforcement eXchange (APEX) software
system, which consists of: (1) a policy editor, (2) a policy server, (3) a local daemon on every PC/laptop to
maintain local secure up-to-date storage and policy, and (4) local (policy-enforcing) wrappers to capture
document-handling user actions such as document export, e-mail, print, edit and save. During the
performance of relevant incremental change, or other user-elicited action, on a composite document, the
document and its metadata are scanned for salient policy eliciting terms (PETs). The document is then
partitioned based on relevant policies and the security policy for each part is determined. If the document
contains no PETs, then the user-initiated actions are allowed; otherwise, alternative actions are suggested,
including: (a) encryption, (b) redirecting to a secure printer and requiring authorization (e.g. PIN) for
printing, and (c) disallowing printing until specific sensitive data is removed.

External Posting Date: October 6, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2010 [Fulltext]
To be presented at ACM DocEng 2010. Manchester UK.

Copyright ACM DocEng 2010.

APEX: Automated Policy Enforcement eXchange
Steven J. Simske
Hewlett-Packard Labs

3404 E. Harmony Rd., MS 36
Fort Collins CO 80528 USA

Steven.Simske@hp.com

Helen Balinsky
Hewlett-Packard Labs

Long Down Avenue, Stoke Gifford
Bristol BS34 8QZ UK

Helen.Balinsky@hp.com

ABSTRACT
The changing nature of document workflows, document privacy
and document security merit a new approach to the enforcement
of policy. We propose the use of automated means for enforcing
policy, which provides advantages for compliance and auditing,
adaptability to changes in policy, and compatibility with a cloud-
based exchange. We describe the Automated Policy Enforcement
eXchange (APEX) software system, which consists of: (1) a
policy editor, (2) a policy server, (3) a local daemon on every
PC/laptop to maintain local secure up-to-date storage and policy,
and (4) local (policy-enforcing) wrappers to capture document-
handling user actions such as document export, e-mail, print, edit
and save. During the performance of relevant incremental change,
or other user-elicited action, on a composite document, the
document and its metadata are scanned for salient policy eliciting
terms (PETs). The document is then partitioned based on relevant
policies and the security policy for each part is determined. If the
document contains no PETs, then the user-initiated actions are
allowed; otherwise, alternative actions are suggested, including:
(a) encryption, (b) redirecting to a secure printer and requiring
authorization (e.g. PIN) for printing, and (c) disallowing printing
until specific sensitive data is removed.

Categories and Subject Descriptors
I.7.1 Document and Text Editing; I.7.4 Electronic Publishing

General Terms
Algorithms, Design, Security

Keywords
Policy, Text Analysis, Policy Server, Policy Editor, Document
Systems, Document System Components, Security

1. INTRODUCTION
1.1 Document Security Problems
Sensitive information routinely escapes governments and
companies in the form of digital or printed documents, for
example [1,2]. Document fraud, intentional or unintentional,
includes reading or removal of printed documents by other
members of a company (even visitors), unauthorized emailing of
the documents, and surreptitious, unauthorized alteration of

documents. Private, confidential and otherwise sensitive
documents should not be printed, routed, stored unencrypted, etc.,
outside of company, government, or other organization.

Today documents are becoming more complex, combining
multiple parts and formats together: e.g., xml-files, images, video
clips, Microsoft Word and PowerPoint, and PDF files. These
composite documents are created and accessed by different
workflow participants with various access rights, which requires
the corresponding parts to be protected accordingly. Changing
company rules, emerging security threats, new privacy
requirements, and government legislation result in new policies
for the lifecycle of a document. Thus, document workflows
comprise a composite of different parts and different formats,
each with potentially changing security and privacy levels.

Web-based documents such as Wikis, blogs and on-line forms
have been around for some time now, and there is a consistent
move to integrate dynamic document attributes into browsers
and/or the cloud [3-5]. Because the confidentiality classification
of these documents may change over time, the dynamic
determination of policy may be beneficial.

The paper is organized as follows: we start with the problem
statement (Sect 1.1), followed by existing solutions (Sect 1.2). In
Section 2, we provide our proposed solution. In Section 3, details
of the current implementation are discussed. Conclusions and
future work are provided in Section 4.

1.2 Problem Statement
We considered the following security threats and threat responses
in our design of an Automatic Policy Enforcement eXchange
(APEX) system:
(1) Alleviating the threat of the “weakest” link security risk,

wherein the individual least familiar with policy may
inadvertently perform actions contradicting the required
security policies - for example, printing at a multi-user
printer, emailing outside the enterprise, etc.

(2) Alleviating the threat of the insidious insiders, using a local
daemon to log all confidential, private, secure, etc.
documents, if appropriate and/or allowed for the jurisdiction.

(3) Allowing policy enforcement actions to change independently
of the interface software to monitor the documents during
their lifecycle. Policy is enforced throughout the document
lifecycle, so that documents are compliant by design.

1.3 Prior Art
Many current document systems and their security components
are based on the application of static workflow policies. Access
control is exclusively linked to the document metadata, which is
either manually assigned by the document creator/owner (e.g.
discretionary) or automatically determined by his/her role (e.g.
mandatory, role based access control). Thus, access control and
other security policies are determined when the document is
created and not changed thereafter (e.g., HP Exstream); or, even if

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DocEng ’10, September 21–24, 2010, Manchester, UK.
Copyright 2010 ACM 978-1-60558-575-8/09/09...$10.00.

allowed to change thereafter (e.g. Adobe LiveCycle), a single
policy is applied to the document. For these system, the document
itself is considered the atomic element for the application of
security policies. Currently, there is a rapid adoption of
workflows comprised of distributed, multi-participant and
composite documents – comprised of multiple traditional
documents – by businesses and other large enterprises. These
create are new concerns for document privacy, access control and
other security topics. In an effort to staunch security attacks, a
new model for enforcing the correct policies is proposed.

2. OUR SOLUTION
The sensitivity level of a document or one of its parts can
dramatically change as the result of:
A. A part being modified by user or a process, e.g. a credit card

number and customer data were added or removed;
B. A new government legislation, industry standard, company

policy being introduced, e.g. the Freedom of Information Act
[6], HIPAA [7], etc.

To adequately address this dynamicity, the sensitivity level of a
document, and/or its parts needs to be determined when the
document is “acted upon”: e.g., is about to be saved into non-
secure location, e-mailed, printed, etc. Any action by a user or by
a process which can potentially expose sensitive information
needs to be intercepted (captured). Not only document metadata,
but also its actual content, must be evaluated for policy eliciting
tags (PETs), which are Boolean expressions governing allowance
of terms. Each executing unit (desktop, laptop, etc.) must have
secure access to the up-to-date policy storage.

Steps:
1. Automatically intercept user/process actions that are

potential data exposure risks.
2. Deep scan of document parts and metadata for PETs

(including patterns of PETs) associated with the requested
action to determine each part sensitivity level.

3. Policy-defined action for each part based on its current
sensitivity level.

2.1 Apex Architecture

Figure 1: APEX architecture high level overview
The APEX architecture is based on the following currently
implemented elements (Figure 1):
(1) Central Authoritative Policy Server - the APEX Policy

Server (PS) to maintain persistent access to current policies.
(2) A Policy Editor (PE) to manage the policies on the PS in a

single location (Figure 2).
(3) Local Policy Enforcement Point on every PC/laptop

comprising a Local Daemon (LD) to maintain local secure

up-to-date storage, and local wrapper applications to enforce
policies.

There are two distinct deployment modes for APEX: as a part of a
document handling application and as a “corporate desktop”
advisory or mandatory safeguarding agent.

Figure 2: Simple Policy Editor, where each policy is
represented by one SQL-entry with 3 main components:
document handling operation, policy eliciting terms, and a
protection mechanism.

3. APEX IMPLEMENTATION
3.1 Local Policy Enforcement Point
APEX Document Scanning (Parsing)
The APEX prototype searches the salient fields in any
combination of Microsoft PowerPoint, Word, Excel, and Adobe
PDF documents (and is potentially extensible to any other
common formats) to determine if PETs are present. This has
advantages over previously-reported XML-based methods [8]
which include the fact that the composite document parts are in
their native form. For example, PETs may include “Private”,
“Confidential” and “Secure”, or any employer-defined tags
provided with their corresponding levels of security, e.g.:
Confidentiel (French), high security; Privé (French), medium
security, etc. As regular expressions, PETs have wildcards, error
tolerance, and AND, OR, NOT operations, etc. We implemented
deep content-based search for other potentially sensitive data, e.g.
"credit card number", “social security number”, "customer data",
etc. This scan can be assigned to individual parts of any
partitioning of the document. Figure 3, left, shows one such
partitioning: by footer, header and body of the document.

Statistical language processing (SLP) techniques are used to
provide “fuzzy” matching for these terms in case of misspelling or
language variants (e.g. plural forms of a PET defined in the
singular, etc.). We implemented both the Levenshtein and the
Damerau–Levenshtein distances [9] with variable tolerance to
error (Figure 3, left). The system is currently integrated into the
APEX prototype, and can be just as readily integrated with the
specific application software monitored (as a “corporate desktop”)
or run as a Local Daemon, or LD.

Multiple policies may be applied to a document part
simultaneously, obviating the need to create a new policy update
aggregating the two. As potentially multiple policies are applied
in response to any specific operation, they are classified by the
operation type to simplify the policy enforcement interactions
best overall system performance. Policy assignment is dynamic in
APEX as a consequence of the deep document scan for policy
eliciting terms. Document metadata and internal sections (header,
footer, body, etc.) are probed for salient fields as described above.

The composite document is logically partitioned based on
relevant policies and the security level of each part is determined.

Policy
Server

Policy

Editor

(PE)

(1)
(2)

 Trusted
local policy

store

Local Policy
Enforcement
Mechanism

Local Policy
Enforcement
Mechanism

(3)

(3)

Parts with like security are combined logically to reduce security
algorithmic overhead. If a document contains no PETs, then the
user required actions are allowed. If, however, PETs which
require a change in enforced security approach are identified, then
alternative actions are enforced as prescribed by the identified
policy. For example, the mandatory encryption can be applied or
the job can be redirected to a secure printer, requiring the user to
provide a PIN for job retrieval.

Documents are automatically scanned when any action that
can potentially reveal the information is detected.

Figure 3 APEX prototype: [left] Selection options for the
search for policy-eliciting terms(PETs) including selection of
error tolerance algorithm and the number of errors tolerable;
[right] security levels associated with specific PETs,
“Confidential” here has the highest security (level 0)

Action Capturing Wrappers:
Local wrappers capture document-handling user actions such as
export, e-mail, and print, in addition to read/write permission with
document part sensitivity levels and access controls.
User actions are captured using system call interception with code
injection. On Linux, this is accomplished using Linux kernel
hooks and/or the Linux login shell (e.g. systrace). More generally,
Aspect Oriented Programming (AOP) can be deployed as the
process around the system call interpretations. AspectJ, for
example, can be used to capture and act upon all requests for
save, print, import and send.

Local Daemon (LD)
The LD is a secure automatic service (CORBA, RMI, etc) run in
background of every unit. Owned by the root/admin, the LD is
persistent: if accidentally or intentionally killed, a new daemon
automatically appears. The properties of the LD are:
1. Accepts the https PUT request for new policy definitions

only from the PS, or automatically polls it.
2. Updates the secure local storage accordingly.
3. Generates a transaction ID and sent it as the confirmation to

the PUT request.
The transaction ID is {policy_update, timestamp} signed by the
LD signature key. Only this signature and the timestamp are sent
back.

The LD provides real-time logging, so that inadvertent or
malicious early session terminations are still auditable (stored and
suitable for data mining). Role management can be tied to
existing access control management/identity systems (PIN, Smart
Card, static biometrics, username and password, etc.).
Communication Channel PS and LD
Secure communication between the PS and the LD comprises: (1)
mutual authentication based on known certificates; (2) an

encrypted communication channel (SSL/TLS, https); and (3)
preliminary registration/subscription, which can be automated,
during or after LD installation.

The communication channel between the local enforcement
point (LD) and the PS is very secure, as compromising it results
in every corporate unit (PC/Laptop/iPhone/…) being exposed to
policy spoofing. Every unit handling sensitive data, must run an
LD and subscribe to the PS by exchanging certificates.

3.2 Policy Server (PS)
The PS is an SSL/TLS supporting server that provides two secure
services:
(1) Get the last policy update (PU) reference number, where

policy updates are numbered sequentially; and
(2) Get a PU by its given unique number.

In the polling mode, each client periodically queries for the
latest policy update PUX, compares it with its own latest policy
update number PUC, and downloads, sequentially, all intervening
policy updates pu, whose IDs are PUC < pu ≤ PUX and PUC > PUX
is an invalid state and system fault.

In the active policy distribution mode, the PS deploys
messaging to publish or subscribe to a service (e.g. in our system
using JavaMS) to inform its subscribers that the new policy is
placed on-line. This message is securely communicated and the
transaction ID is communicated back. Off-line systems
communicate and retrieve the latest policy when they are updated.

For each downloaded policy update, the client generates the
transaction ID by signing the downloaded policy update together
with the client name/ID and a secure timestamp. Only this
signature is communicated to the PS. The server verifies the
timestamp and the unit name/ID, then validates the signature for
the communicated policy update using the (known) client
signature verification key. If everything verifies, the server marks
that the client received the policy and stores this information for
any subsequent audit. All transactions are archived by the PS:
they provide the non-repudiation proof for timely policy delivery.

A central high reliability server or distributed cluster (e.g. a
JBOSS cluster) can be used to ensure reliability and persistence of
policy distribution across multiple machines [10]. At least one of
the policy servers should be responsive to allow a policy decision
to be made. As an example, even over a virtual private network
(VPN) connection, at least one gateway connection should
respond for a connection to be established.

Policy: Update and Policy Distribution Tracking
A policy comprises a unique ID, a policy condition, a
“required_action” and a response, as shown by simple example in
Figure 2. The unique policy ID, p, is usually sequential in time
(since there is no need to obfuscate the ID). The policy also
encodes a policy condition, which can include new PETs, new
security requirements (e.g. encryption standards, certificates, or
hashing algorithms), new data retention rules, new auditing rules,
etc. The policy also contains a required_action specification
which determines, for example, if the policy needs to be applied
retroactively to existing documents (possibly even ones associated
with completed workflows, which may need to be updated for
compliance on encryption, archiving, etc.). The required_action
may also specify the terms of the response. The response is the
acknowledgement of policy receipt. It may also include user roles
to which the given policy is applied. The policies can be different
for different roles.

A Policy Update (PU) for adding a new policy contains this
new policy PX (with new policy id) in its body. The PU is one of
3 types: adding a new policy, updating an existing policy, or
deprecating a policy. The type of PU is optional: as it can be
automatically inferred by the system. It contains the following
security-related elements:
1. [mandatory] The corresponding sequential ID number assigned

to each PU; for example, its primary key in the PU database.
2. [mandatory] PS signature of this PU. This will reassure each

client that this is a valid/legitimate update.
3. [optional] The type of update: “new policy”, “update” or

“cancellation”. This optional field is a convenient way to
simplify software logic on the client side.

4. [optional/mandatory] Timestamp T1
As with software updates, the order of application for policy

updates is extremely important, as policy update k could be an
update or cancellation of an existing policy that by itself was
introduced by some previous update PU: j < k.

When a new policy update is received, a client verifies its
signature using the known PS signature verification key, the
policy update ID, and the current timestamp. If all tests on these
data pass, then the new policy is placed into the local client’s
policy store. The client then generates a transaction ID to confirm
to the PS that the policy update has been accepted. The client
automatically signs the received PU together with the current
timestamp. This timestamp T2 and the signature S are
communicated to the PS. The PS checks that the received
timestamp T2 is not earlier than T1 and is within acceptable limits:
0 ≤ T2 – T1 ≤ ∈. Knowing the communicated PU, T2, and the
client’s verification key (known from client subscription to the
service), the PS validates the received signature. If it validates,
the PS accepts that a given PU was successfully delivered. This
transaction ID is stored for further audit or to respond to a
situation in which the client denies being notified of policy. This
security non-repudiation is very important for both the PS and a
client when a policy breach is investigated.
A Policy Update replay attack cannot be accomplished. Since all
policy updates have a unique ID, only PU’s with ID’s different
(typically incremental) than the current PU ID may be applied.

Policy Distribution and Off-Line Work
The deployment availability of a unit that is off-line or otherwise
without active connection to the PS depends on the deployment
scenario and the sensitivity of handling data. An important factor
is the tolerable time delay, τ, between an update issuance and its
mandatory applicability. For a period of time t ≤ τ, since the last
policy update, the unit is allowed to function as usual and/or be
fully functional, or to have some limited functionality: e.g., to
store the user request pending final approval.

4. CONCLUSIONS AND FUTURE WORK
We have herein introduced a system for the dynamic application
of policies to composite documents throughout their lifecycles.
This system can be integrated with a separately-described
distributed document access control system [11] through the use
of full composite document security. Security overhead for
encryption, decryption, etc., is minimized through the use of
“virtual” policy “parts” which can include any combination of
parts of individual files, multiple files, or even other composite
documents.

APEX uses a policy-specified, timely scan of its contents to
ensure that documents are not changed, saved, emailed or
otherwise altered in opposition to the required policy. This
provides a real-time policy adherence approach that would
augment, for example, role-template based policy adherence [12].
APEX is focused, therefore, on “keeping honest people honest”;
that is, in preventing users who may not be familiar with all
aspects of company policy from inadvertently “leaking”
documents that are more appropriately restricted, Combined with
an architecturally-compatible access control approach [11], and
the LD-ensured logging, APEX can also prevent the attacks of
intentionally dishonest users.

The work presented here focuses on the real-time analysis of
the contents in the visible parts, or “data portions”, of the
document: header, footer, and body. However, real-time analysis
of the metadata, or more sophisticated (e.g. natural language
processing based) analysis of the data, in the document, is readily
supported by APEX. Future work will focus on improving the
complexity of policies supported (Figure 2) by the PE.

The applicability of APEX to dynamic, composite documents
is by design. The APEX system is also currently being evaluated
for digital rights management (DRM) and multi-media composite
document applications - along with the associated necessary
extensions in the PE. Further work on optimizing the PETs is also
underway.

5. REFERENCES
[1] BBC News: UK's families put on fraud alert

http://news.bbc.co.uk/2/hi/7103566.stm.
[2] BBC News: Q&A: Child benefit records lost

http://news.bbc.co.uk/2/hi/7103828.stm.
[3] http://googleblog.blogspot.com/2009/07/introducing-google-

chrome-os.html, last accessed on 16 March 2010.
[4] http://spectrum.ieee.org/computing/software/microsoft-

shows-off-experimental, last accessed on 16 March 2010.
[5] http://www.microsoft.com/windowsazure/, last accessed on1

June 2010.
[6] Freedom of Information Act, United Kingdom,

http://www.direct.gov.uk/en/Governmentcitizensandrights/Y
ourrightsandresponsibilities/DG_4003239.

[7] HIPAA, http://www.hipaa.org/ last accessed 1 June 2010.
[8] E. Damiani, S. de Capitani di Vimercati, S. Paraboschi and

P. Samarati, “A Fine-Grained Access Control System for
XML Documents”, ACM TISSEC, vol. 5, issue 2, pp. 169-
202, 2002.

[9] G.V. Bard, “Spelling-Error Tolerant, Order-Independent
Pass-Phrases via the Damerau-Levenshtein String-Edit
Distance,” AISW, Ballarat, Australia, CRPIT, vol. 68,
Australian Computer Society, Inc., 2007, 8pp.

[10] Data Protection Guide, last accessed 24 March 2010,
http://www.ico.gov.uk/for_organisations/data_protection_gui
de.aspx

[11] H. Balinsky and S.J. Simske, “Differential Access for
Publicly-Posted Composite Documents with Multiple
Workflow Participants,” accepted, DocEng 2010, 10 pp.

[12] L. Giuri , P. Iglio, Role templates for content-based access
control, Proc. ACM Workshop Role-Based Access Control,
p.153-159, 1997.

