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Abstract—We present novel algorithms for feature extraction
and change detection in unstructured data, primarily in textual
and sequential data. Keyword and feature extraction is a
fundamental problem in text data mining and document
processing. A majority of document processing applications
directly depend on the quality and speed of keyword extraction
algorithms. In this article, a novel approach to rapid change
detection in data streams and documents is developed. It
is based on ideas from image processing and especially on
the Helmholtz Principle from the Gestalt Theory of human
perception. Applied to the problem of keywords extraction,
it delivers fast and effective tools to identify meaningful
keywords using parameter-free methods. We also define a level
of meaningfulness of the keywords which can be used to modify
the set of keywords depending on application needs.

Keywords-keyword extraction, feature extraction, unusual
behavior detection, Helmholtz principle, mining textual and
unstructured datasets

I. INTRODUCTION

Automatic keyword and feature extraction is a funda-
mental problem in text data mining, where a majority of
document processing applications directly depend on the
quality and speed of keyword extraction algorithms. The
applications ranging from automatic document classification
to information visualization, from automatic filtering to
security policy enforcement – all rely on automatically
extracted keywords [1]. Keywords are used as basic doc-
uments representations and features to perform higher level
of analysis. By analogy with low-level image processing,
we can consider keywords extraction as low-level document
processing.

The increasing number of people contributing to the
Internet and enterprise intranets, either deliberately or inci-
dentally, has created a huge set of documents that still do not
have keywords assigned. Unfortunately, manual assignment
of high quality keywords is expensive and time-consuming.
This is why many algorithms for automatic keywords extrac-
tion have been recently proposed . Since there is no precise
scientific definition of the meaning of a document, different
algorithms produce different outputs.

The main purpose of this article is to develop novel
data mining algorithms based on the Gestalt theory in
Computer Vision and human perception. More precisely, we

are going to develop Helmholtz principle for mining textual,
unstructured or sequential data.

Let us first briefly explain the Helmholtz principle in hu-
man perception. According to a basic principle of perception
due to Helmholtz [2], an observed geometric structure is
perceptually meaningful if it has a very low probability to
appear in noise. As a common sense statement, this means
that “events that could not happen by chance are immedi-
ately perceived”. For example, a group of five aligned dots
exists in both images in Figure 1, but it can hardly be seen
on the left-hand side image. Indeed, such a configuration is
not exceptional in view of the total number of dots. In the
right-hand image we immediately perceive the alignment as
a large deviation from randomness that would be unlikely
to happen by chance.

Figure 1. The Helmholtz principle in human perception

In the context of data mining, we shall define the
Helmholtz principle as the statement that meaningful fea-
tures and interesting events appear as large deviations from
randomness. In the cases of textual, sequential or unstruc-
tured data we derive qualitative measure for such deviations.

Under unstructured data we understand data without an
explicit data model, but with some internal geometrical
structure. For example, sets of dots in Figure 1 are not
created by a precise data model, but still have important
geometrical structures: nearest neighbors, alignments, con-
centrations in some regions, etc. A good example is textual
data where there are natural structures like files, topics,
paragraphs, documents etc. Sequential and temporal data
also can be divided into natural blocks like days, months



or blocks of several sequential events. In this article, we
will assume that data comes packaged into objects, i.e.
files, documents or containers. We can also have several
layers of such structures; for example, in 20Newsgroups all
words are packed into 20 containers (news groups), and each
group is divided into individual news. We would like to
detect some unusual behavior in these data and automatically
extract some meaningful events and features. To make our
explanation more precise, we shall consider mostly textual
data, but our analysis is also applicable to any data that
generated by some basic set (words, dots, pair of words,
measurements, etc.) and divided into some set of containers
(documents, regions, etc.), or classified.

This paper is the first attempt to define document meaning
following the human perceptual model. We model document
meaning through a set of meaningful keywords, together
with their level of meaningfulness.

The current work introduces a new approach to the
problem of automatic keywords extraction based on the
following intuitive ideas:

• keywords should be responsible for topics in a data
stream or corpus of documents, i.e. keywords should
be defined not just by documents themselves, but also
by the context of other documents in which they lie;

• topics are signaled by “unusual activity”, i.e. a new
topic emerges with some features rising sharply in their
frequency.

For example, in a book on C++ programming language a
sharp rise in the frequency of the words “file”, “stream”,
“pointer”, “fopen” and “fclose” could be indicative of the
book chapter on “File I/O”.

These intuitive ideas have been a source for almost all
algorithms in Information Retrieval. One example is the
familiar TF-IDF method for representing documents [3], [4].
Despite being one of the most successful and well-tested
techniques in Information Retrieval, TF-IDF has its origin
in heuristics and it does not have a convincing theoretical
basis [4].

Rapid change detection is a very active and important area
of research. A seminal paper by Jon Kleinberg [5] develops a
formal approach for modeling “bursts” using an infinite-state
automation. In [5] bursts appear naturally as state transitions.

The current work proposes to model the above mentioned
unusual activity by analysis based on the Gestalt theory
in Computer Vision (human perception). The idea of the
importance of “sharp changes” is very natural in image
processing, where edges are responsible for rapid changes
and the information content of images. However, not all
local sharp changes correspond to edges, as some can be
generated by noise. To represent meaningful objects, rapid
changes have to appear in some coherent way. In Computer
Vision, the Gestalt Theory addresses how local variations
combined together to create perceived objects and shapes.

As mention in [6], the Gestalt Theory is a single sub-
stantial scientific attempt to develop principles of visual
reconstruction. Gestalt is a German word translatable as
“whole”, “form”, “configuration” or “shape”. The first rig-
orous approach to quantify basic principles of Computer
Vision is presented in [6]. In the next section, we develop
a similar analysis for the problem of automatic keywords
extraction.

The paper is organized as follows. In Section II we
analyze The Helmholtz Principle in the context of document
processing and derive qualitative measures of the meaning-
fulness of words. In Section III numerical results for State of
the Union Addresses from 1790 till 2009 (data set from [7])
are presented and compared with results from [5, Section
4]. We also present some preliminary numerical results for
the 20Newsgroups data set [8]. Conclusions and future work
are discussed in the Section IV.

II. THE HELMHOLTZ PRINCIPLE AND MEANINGFUL
EVENTS

We have defined Helmholtz principle as the statement that
meaningful features and interesting events appear as large
deviations from randomness. Let us now develop a more
rigorous approach to this intuitive statement.

First of all, it is not enough to say that interesting struc-
tures are those that have low probability. Let us illustrate
it by the following example. Suppose one unbiased coin is
being tossed 100 times in succession, then any 100-sequence
of heads (ones) and tails (zeros) can be generated with the
same equal probability (1/2)100. Whilst both sequences

s1 = 10101 11010 01001 . . . 00111 01000 10010

s2 = 111111111 . . . 111111︸ ︷︷ ︸
50 times

000000000 . . . 000000︸ ︷︷ ︸
50 times

are generated with the same probability, the second output
is definitely not expected for an unbiased coin. Thus, low
probability of an event does not really indicates its deviation
from randomness.

To explain why the second output s2 is unexpected we
should explain what an expected output should be. To do
this some global observations (random variables) on the
generated sequences are to be considered. This is similar
to statistical physics where some macro parameters are
observed, but not a particular configuration. For example, let
µ be a random variable defined as the difference between
number of heads in the first and last 50 flips. The expected
value of this random variable (its mean) is equal to zero,
which is with high level of accuracy true for s1. However,
for sequence s2 with 50 heads followed by 50 tails this value
is equal to 50 which is very different from the expected value
of zero.

Another example can be given by the famous ‘Birthday
Paradox’. Let us look at a class of 30 students and let us



assume that their birthdays are independent and uniformly
distributed over the 365 days of the year. We are interested
in events that some students have their birthday on the same
day. Then the natural random variables will be Cn, 1 ≤
n ≤ 30, the number of n-tuples of students in the class
having the same birthday. It is not difficult to see that the
expectation of the number of pairs of students having the
same birthday in a class of 30 is E(C2) ≈ 1.192. Similarly,
E(C3) ≈ 0.03047 and E(C4) ≈ 5.6 × 10−4. This means
that ‘on the average’ we can expect to see 1.192 pairs of
students with the same birthday in each class. So, finding
two students with the same birthday is not surprising, but
having three or even four students with the same birthday
would be unusual. If we look in a class with 10 students,
then E(C2) ≈ 0.1232. This means that having two students
with the same birthday in a class of 10 should be considered
as an unexpected event.

More generally, let Ω be a probability space of all possible
outputs. Formally, an output ω ∈ Ω is defined as unexpected
with respect to some observation µ, if the value µ(ω) is
very far from expectation E(µ) of the random variable µ,
i.e. the bigger the difference |µ(ω) − E(µ)| is, the more
unexpected outcome ω is. From Markov’s inequalities for
random variables it can be shown that such outputs ω are
indeed very unusual events.

The very important question in such setup is a question of
how to select appropriate random variables for given data.
The answer can be given by standard mathematical and sta-
tistical physics approach. Any structure can be described by
its symmetry group. Thus, for any completely unstructured
data, any permutation of the data is possible. However, if
we want to preserve a structure, then we can only perform
structure preserving transformations. For example, if we
have a set of documents, then we can not move words
between the documents, but can reshuffle words inside
each document. In such case, the class of suitable random
variables are functions that are invariant under the group of
symmetry.

A. Counting Functions

Let us return to the text data mining. Since we defined
keywords as words corresponding to a sharp rise in fre-
quency, then our natural measurements should be counting
functions of words in documents or parts of documents. Let
us first derive the formulas for expected values in the simple
and ideal situation of N documents or containers of the same
length, where the length of a document is the number of
words in the document.

Suppose we are given a set of N documents (or contain-
ers) D1, . . . , DN of the same length. Let w be some word
(or some observation) that is present inside one or more of
these N documents. Assume that the word w appears K

times in all N documents and let us collect all of them into
one set Sw = {w1, w2, . . . , wK}.

Now we would like to answer the following question: If
the word w appears m times in some document, is this an
expected or unexpected event? For example, the word “the”
usually has a high frequency, but this is not unexpected.
On the other hand, the same word “the” has much higher
frequency in a chapter on definite and indefinite articles in
any English grammar book and thus should be detected as
unexpected.

Let us denote by Cm a random variable that counts how
many times an m-tuple of the elements of Sw appears in
the same document. Now we would like to calculate the
expected value of the random variable Cm under the assump-
tion that elements from Sw are randomly and independently
placed into N containers.

For m different indexes i1, i2, . . . , im between 1 and K,
i.e. 1 ≤ i1 < i2 < . . . < im ≤ K, let us introduce a random
variable χi1,i2,...,im :{

1 if wi1 , . . . , wim are in the same document,
0 otherwise.

Then by definition of the function Cm we can see that

Cm =
∑

1≤i1<i2<...<im≤K

χi1,i2,...,im ,

and that the expected value E(Cm) is the sum of expected
values of all χi1,i2,...,im :

E(Cm) =
∑

1≤i1<i2<...<im≤K

E(χi1,i2,...,im).

Since χi1,i2,...,im has only values zero and one, the expected
value E(χi1,i2,...,im) is equal to the probability that all
wi1 , . . . , wim belong to the same document, i.e.

E(χi1,i2,...,im) =
1

Nm−1
.

From the above identities we can see that

E(Cm) =

(
K

m

)
· 1

Nm−1
, (1)

where
(
K
m

)
= K!

m!(K−m)! is a binomial coefficient.
Now we are ready to answer the previous question:

If in some document the word w appears m times and
E(Cm) < 1, then this is an unexpected event.

Suppose that the word w appear m or more times in each
of several documents. Is this an expected or or unexpected
event? To answer this question, let us introduce another ran-
dom variable Im that counts number of documents with m or



more appearances of the word w. It should be stressed that
despite some similarity, the random variables Cm and Im are
quite different. For example, Cm can be very large, but Im
is always less or equal N . To calculate the expected value
E(Im) of Im under an assumption that elements from Sw
are randomly and independently placed into N containers
let us introduce a random variable Im,i, 1 ≤ i ≤ N with

Im,i =

{
1 if Di contains w at least m times,
0 otherwise.

Then by definition

Im =

N∑
i=1

Im,i.

Since Im,i has only values zero and one, the expected
value E(Im,i) is equal to the probability that at least m
elements of the set Sw belong to the document Di, i.e.

E(Im,i) =

K∑
j=m

(
K

j

)(
1

N

)j (
1− 1

N

)K−j

.

From the last two identities we have

E(Im) = N ×
K∑
j=m

(
K

j

)(
1

N

)j (
1− 1

N

)K−j

. (2)

We can rewrite (2) as

E(Im) = N × B(m,K, p),

where B(m,K, p) :=
∑K
j=m

(
K
j

)
pj(1− p)K−j is the tail of

binomial distribution and p = 1/N .
Now, if we have several documents with m or more

appearances of the word w and E(Im) < 1, then this is
an unexpected event.

Following [6], we will define E(Cm) from (1) as the
number of false alarms of a m-tuple of the word w and will
use notation NFAT (m,K,N) for the right hand side of (1).
The NFAT of an m-tuple of the word w is the expected
number of times such an m-tuple could have arisen just
by chance. Similar, we will define E(Im) from (2) as the
number of false alarms of documents with m or more ap-
pearances of the word w, and us notation NFAD(m,K,N)
for the right hand side of (2). The NFAD of an the word
w is the expected number of documents with m or more
appearances of the word w that could have arisen just by
chance.

B. Dictionary of Meaningful Words

Let us now describe how to create a dictionary of mean-
ingful words for our set of documents. We will present
algorithms for NFAT . The similar construction is also
applicable to NFAD.

If we observe that the word w appears m times in the same
document, then we define this word as a meaningful word

if and only if its NFAT is smaller than 1. In other words,
if the event of appearing m times has already happened, but
the expected number is less than one, we have a meaningful
event. The set of all meaningful words in a corpus of
documents D1, . . . , DN will be defined as a set of keywords.

Let us now summarize how to generate the set of key-
words KW (D1, . . . , DN ) of a corpus of N documents
D1, . . . , DN of the same or approximately same length:
For all words w from D1, . . . , DN

1) Count the number of times K the word w appears in
D1, . . . , DN .

2) For i from 1 to N
a) count the number of times mi the word w

appears in the document Di;
b) if mi ≥ 1 and

NFAT (mi,K,N) < 1, (3)

then add w to the set KW (D1, . . . , DN ) and
mark w as a meaningful word for Di.

If the NFAT is less than ε we say that w is ε-meaningful.
We define a set of ε-keywords as a set of all words with
NFAT < ε, ε < 1. Smaller ε corresponds to more important
words.

In real life examples we can not always have a corpus of
N documents D1, . . . , DN of the same length. Let li denote
the length of the document Di. We have three strategies for
creating a set of keywords in such a case:

• Subdivide the set D1, . . . , DN into several subsets of
approximately equal size documents. Perform analysis
above for each subset separately.

• “Scale” each document to common length l of the
smallest document. More precisely, for any word w we
calculate K as K =

∑N
i=1[mi/l], where [x] denotes an

integer part of a number x and mi counts the number
of appearances of the word w in a document Di. For
each document Di we calculate the NFAT with this K
and the new mi ← [mi/l]. All words with NFAT < 1
comprise a set of keywords.

• We can “glue” all documents D1, . . . , DN into one big
document and perform analysis for one document as
will be described below.

In a case of one document or data stream we can divide
it into the sequence of disjoint and equal size blocks and
perform analysis like for the documents of equal size. Since
such a subdivision can cut topics and is not shift invariant,
the better way is to work with a “moving window”. More
precisely, suppose we are given a document D of the size
L and B is a block size. We define N as [L/B]. For any
word w from D and any windows of consecutive B words
let m count number of w in this windows and K count
number of w in D. If NFAT < 1, then we add w to a set
of keywords and say that w is meaningful in these windows.
In the case of one big document that has been subdivided



into sub-documents or sections, the sizes of such parts are
a natural selection for the sizes of windows.

If we want to create a set of ε-keywords for one document
or for documents of different sizes, we should replace the
inequality NFAT < 1 by an inequality NFAT < ε.

C. Estimating of the number of false alarms

In real examples calculating NFAT (m,K,N) and
NFAD(m,K,N) can be tricky and is not a trivial task.
Numbers m,K and N can be very large and NFAT or
NFAD can be exponentially large or small. Even relatively
small changes in m can results in big fluctuations of NFAT
and NFAD. The correct approach is to work with

− 1

K
logNFAT (m,K,N) (4)

and
− 1

K
logNFAD(m,K,N) (5)

In this case the meaningful events can be
characterized by − 1

K logNFAT (m,K,N) > 0 or
− 1
K logNFAD(m,K,N) > 0.
There are several explanations why we should work with

(4) and (5) . The first is pure mathematical: there is a unified
format for estimations of (4) and (5) (see [6] for precise
statements). For large m,K and N there are several famous
estimations for large deviations and asymptotic behavior of
(5): law of large numbers, large deviation technique and
Central Limit Theorem. In [6, Chapter4, Proposition 4] all
such asymptotic estimates are presented in uniform format.

The second explanations why we should work with (4)
and (5) can be given by statistical physics of random
systems: these quantities represent ‘energy per particle’ or
energy per word in our context. Like in physics where we
can compare energy per particle for different systems of
different size, there is meaning in comparison of (4) and (5)
for different words and documents.

Calculation of (4) usually is not a problem, since NFAT
is a pure product. For (5), there is also a possibility of using
the Monte Carlo method by simulating a Bernoulli process
with p = 1/N , but such calculations are slow for large N
and K.

D. On TF-IDF

The TF-IDF weight (term frequency - inverse document
frequency) is a weight very often used in information
retrieval and text mining. If we are given a collection
of documents D1, . . . , DN and a word w appears in L
documents Di1 , . . . , DiL from the collection, then

IDF (w) = log

(
N

L

)
.

The TF-IDF weight is just ‘redistribution’ of IDF among
Di1 , . . . , DiL according to term frequency of w inside of
Di1 , . . . , DiL .

The TF-IDF weight demonstrates remarkable performance
in many applications, but the IDF part still remains a
mystery. Let us now look at IDF from number of false alarms
point of view.

Consider all documents Di1 , . . . , DiL containing the word
w and combine all of them into one document (the doc-
ument about w) D̃ = Di1 + . . . + DiL . For example, if
w =’cow‘, then D̃ is all about ‘cow’. We now have a new
collection of documents (containers): D̃,Dj1 , . . . , DjN−L

,
where Dj1 , . . . , DjN−L

are documents of the original col-
lection D1, . . . , DN that do not contains the word w. In
general,D̃,Dj1 , . . . , DjN−L

are of different sizes. For this
new collection D̃,Dj1 , . . . , DjN−L

the word w appear only
in D̃, so we should calculate number of false alarms or
‘energy’ ( (4) or (5)) per each appearance of w only for D̃.

Using an adaptive window size or ‘moving window’, (4)
and (5) become

− 1

K
log

((
K

K

)
1

Ñ

)
,

i.e.

K − 1

K
· log Ñ , where Ñ =

∑N
i=1 |Di|
|D̃|

. (6)

If all documents D1, . . . , DN are of the same size, then
(6) becomes

K − 1

K
· IDF (w),

and for large K is almost equal to IDF (w). But for the case
of documents of different lengths (which is more realistic)
our calculation suggest that more appropriate should be
adaptive IDF:

AIDF (w) :=
K − 1

K
· log

∑N
i=1 |Di|
|D̃|

, (7)

where K is term count of the word w in all documents, |D̃|
is the total length of documents containing w and

∑N
i=1 |Di|

is the total length of all documents in the collection.

III. EXPERIMENTAL RESULTS

In this section we present some numerical results for State
of the Union Addresses from 1790 till 2009 (data set from
[7]) and for the 20Newsgroups data set [8].

It is important to emphasize that we do not perform any
essential pre-processing of documents, such as stop word
filtering, lemmatization, part of speech analysis, and others.
We simply down-case all words and remove all punctuation
characters.



A. State of the Union Addresses

The performance of the proposed algorithm was studied
on a relatively large corpus of documents. To illustrate
the results, following [5], we selected the set of all U.S.
Presidential State of the Union Addresses, 1790-2009 [7].
This is a very rich data set that can be viewed as a corpus
of documents, as a data stream with natural timestamps, or
as one big document with many sections.

For the first experiment, the data is analyzed as a collec-
tion of N = 219 individual addresses. The number of words
in these documents vary dramatically, as shown in Figure 2
by the solid line.
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Figure 2. Document lengths in hundreds of words is shown by the
solid line; the document average length is equal to 7602.4 and the sample
deviation is 5499.7.

As expected, the extraction of meaningful or
ε−meaningful words using formula (3) from the corpus
of different length documents performs well for the near-
average length documents. The manual examination of the
extracted keywords reveals that

• all stop words have disappeared;
• meaningful words relate to/define the corresponding

document topic very well;
• the ten most meaningful words with the smallest NFA

follow historical events in union addresses.
For example, five of the most meaningful words extracted
from the speeches of the current and former presidents are

Obama, 2009: lending, know, why, plan, restart;
Bush, 2008: iraq, empower, alqaeda, terrorists, extremists;
Clinton, 1993: jobs, deficit, investment, plan, care.
However, the results for the document outliers are not

satisfactory. Only a few meaningful words or none are
extracted for the small documents. Almost all words are
extracted as meaningful for the very large documents. In

documents with size more than 19K words even the classical
stop word “the” was identified as meaningful.

To address the problem of the variable document length
different strategies were applied to the set of all Union
Addresses: moving window, scaling to average and adapting
window size described in Section II. The results are dramati-
cally improved for outliers in all cases. The best results from
our point of view are achieved using an adaptive window size
for each document, i.e. we calculate (3) for each document
with the same K and mi but with N = L/|Di| with L being
the total size of all documents and |Di| is the size of the
document Di. The numbers of meaningful words (ε = 1)
extracted for the corresponding documents are shown by
the dashed line in Figure 2. A remarkable agreement with
document sizes is observed.

Our results are consistent with the existing classical algo-
rithm [5]. For example, using a moving window approach,
the most meaningful words extracted for The Great De-
pression period from 1929 till 1933 are: “loan”, “stabilize”,
“reorganization”, “banks”, “relief” and “democracy”, whilst
the most important words extracted by [5] are “relief”,
“depression”, “recovery”, “banks” and “democracy”.

Let us now look at the famous Zipf’s law for natural
languages. Zipf’s law states that given some corpus of doc-
uments, the frequency of any word is inversely proportional
to some power γ of its rank in the frequency table, i.e.
frequency(rank)≈const/rankγ . Zipf’s law is mostly easily
observed by plotting the data on a log-log graph, with the
axes being log(rank order) and log(frequency). The data
conform to Zipf’s law to extend the plot is linear. Usually
Zipf’s law is valid for the upper portion of the log-log curve
and not valid for the tail.

For all words in the Presidential State of the Union
Address we plot rank of a word and the total number of
the word’s occurrences in log-log coordinates, as shown in
Figure 3.

Let us look into Zipf’s law for only the meaningful words
of this corpus (ε = 1). We plot the rank of a meaningful
word and the total number of the word’s occurrences in log-
log coordinates, as shown in Figure 4. We still can observe
Zipf’s law, although the curve becomes smoother and the
power γ becomes smaller.

If we increase the level of meaningfulness (i.e. decrease
the ε), then the curve becomes even smoother and conforms
to Zipf’s law with smaller and smaller γ. This is exactly
what we should expect from good feature extraction and
dimension reduction: to decrease the number of features and
to decorrelate data.

For two sets S1 and S2 let us use as a measure of
their similarity the number of common elements divided
by the number of elements in their union: W (S1, S2) =
|S1

⋂
S2|/|S1

⋃
S2|. After extracting meaningful words we

can look into similarity of the Union Addresses by calcu-
lating similarity W for their sets of keywords. Then, for



Figure 3.

Figure 4.

example, the Barack Obama, 2009 speech is most similar
to the George H.W. Bush, 1992 speech with the similarity
W ≈ 0.132 and the following meaningful words in common:
set([’everyone’, ’tax’, ’tonight’, ’i’m’, ’down’, ’taxpayer’,
’reform’, ’health’, ’you’, ’tell’, ’economy’, ’jobs’, ’get’,
’plan’, ’put’, ’wont’, ’short-term’, ’long-term’, ’times’,
’chamber’, ’asked’, ’know’]).

The George W. Bush, 2008 speech is mostly similar to his
2006 speech (which is very reasonable) with the similarity
W ≈ 0.16 and the following meaningful words in common:
set([’terrorists’, ’lebanon’, ’al-qaeda’, ’fellow’, ’tonight’,
’americans’, ’technology’, ’enemies’, ’terrorist’, ’pales-
tinian’, ’fight’, ’iraqi’, ’iraq’, ’terror’, ’we’, ’iran’, ’america’,
’attacks’, ’iraqis’, ’coalition’, ’fighting’, ’compete’]).

From all the Presidential State of the Union Addresses, the
most similar are William J. Clinton 1997 speech and 1998
speech. Their similarity is W ≈ 0.220339 and the following
meaningful words in common:
set([’help’, ’family’, ’century’, ’move’, ’community’,
’tonight’, ’schools’, ’finish’, ’college’, ’welfare’, ’go’, ’fam-
ilies’, ’education’, ’children’, ’lifetime’, ’row’, ’chemi-
cal’, ’21st’, ’thank’, ’workers’, ’off’, ’environment’, ’start’,
’lets’, ’nato’, ’build’, ’internet’, ’parents’, ’you’, ’biparti-
san’, ’pass’, ’across’, ’do’, ’we’, ’global’, ’jobs’, ’students’,
’thousand’, ’scientists’, ’job’, ’leadership’, ’every’, ’know’,
’child’, ’communities’, ’dont’, ’america’, ’lady’, ’cancer’,
’worlds’, ’school’, ’join’, ’vice’, ’challenge’, ’proud’, ’ask’,
’together’, ’keep’, ’balanced’, ’chamber’, ’teachers’, ’lose’,
’americans’, ’medical’, ’first’]).

B. 20Newsgroups

In this subsection of the article some numerical results for
the 20 Newsgroup data set [8] will be presented. This data
set consists of 20000 messages taken from 20Newsgroups.
Each group contains one thousand Usenet articles. Ap-
proximately 4% of the articles are cross-posted. Our only
preprocessing was removing words with length ≤ 2. For
defining meaningful words we use NFAT and consider each
group as separate container. In Figure 5, group lengths (total
number of words) in tens of words is shown by the blue
line and the number of different words in each group is
shown by the green line. The highest peak in group lengths
corresponds to the group ‘talk.politics.mideast’, and the
highest peak in the number of different words corresponds
to the group ‘comp.os.ms-windows.misc’.

Figure 5.

After creating meaningful words for each group based on
NFAT with ε = 1 and removing non-meaningful words
from each group, the new group lengths (total number of



meaningful words) in tens of words is shown by the blue line
in Figure 6. The number of different meaningful words in
each group is shown by the green line on the same Figure 6.

Figure 6.

Let us now look into Zipf’s law for 20Newsgroups. We
plot the rank of a word and the total number of the word’s
occurrences in log-log coordinates, as shown in Figure 7,
and we also plot the rank of a meaningful word and the total
number of the word’s occurrences in log-log coordinates, as
shown in Figure 8. As we can see, meaningful words also
follow Zipf’s law very closely.

Figure 7.

Similar to the State of the Union Addresses, let us
calculate the similarity of groups by calculating W for the
corresponding sets of meaningful words. We will index the
groups by integer i = 0, . . . , 19 and denote the ith group
by Gr[i]; for example, Gr[3] = ‘comp.sys.ibm.pc.hardware’,

Figure 8.

as shown on the Table I. The similarity matrix W is a
20 × 20-matrix and is too big to reproduce in the article.
So, we show in the Table I most similar and most non-
similar groups for each group, together with the correspond-
ing measure of similarity W . For example, the group ‘
comp.windows.x’ (index=5) is most similar to the group
Gr[1]=‘ comp.graphics’ with similarity=0.038, and most
non-similar with the group Gr[19]=‘talk.religion.misc’ with
similarity=0.0012. As we can see, our feature extraction
approach produces very natural measures of similarity for
the 20Newsgroups.

Let us now investigate how sets of meaningful words
change with the number of articles inside groups. Let us
create so called mini-20Newsgroups by selecting randomly
10% of articles in each group.In the mini-20Newsgroups
there are 100 articles in each group.We have used for our
numerical experiments the mini-20Newsgroups from [8].
After performing meaningful words extraction from the
mini-20Newsgroup with NFAT and ε = 1, let us plot
together the number of meaningful words in each group of
original 20Newsgroups, the number of meaningful words
in each group of mini-20Newsgroup and the number of
common meaningful words for these two data set. The
results are shown in Figure 9.

As we can see, a large proportion of meaningful words
survives when we ten times increase the number of articles,
i.e. when we go from mini to full 20Newsgroup data: red
and green lines are remarkably coherent.

Let us now check how all these meaningful words perform
in classification tasks. We would like to have a classifier for
finding appropriate newsgroup for a new message. Using
10% of news as training set we have created 20 sets of
meaningful words, MW [i], i = 0, . . . , 19. Let us introduce
the simplest possible classifier C from messages to the



Table I
AN EXAMPLE OF GROUP SIMILARITIES

Index News Groups Highest Lowest
Similarity Similarity

0 alt.atheism Gr[19], 0.12 Gr[2], 0.0022

1 comp.graphics Gr[5], 0.038 Gr[15], 0.0023

2 comp.os.ms-windows.misc Gr[3], 0.0197 Gr[15], 0.0023

3 comp.sys.ibm.pc.hardware Gr[4], 0.041 Gr[17], 0.0024

4 comp.sys.mac.hardware Gr[3], 0.041 Gr[17], 0.0023

5 comp.windows.x Gr[1], 0.038 Gr[19], 0.0012

6 misc.forsale Gr[12], 0.03 Gr[0], 0.0024

7 rec.autos Gr[8], 0.035 Gr[15], 0.0025

8 rec.motorcycles Gr[7], 0.035 Gr[2], 0.0033

9 rec.sport.baseball Gr[10], 0.036 Gr[19], 0.0043

10 rec.sport.hockey Gr[9], 0.036 Gr[15], 0.0028

11 sci.crypt Gr[16], 0.016 Gr[2], 0.0025

12 sci.electronics Gr[6], 0.030 Gr[17], 0.0028

13 sci.med Gr[12], 0.012 Gr[2], 0.0035

14 sci.space Gr[12], 0.016 Gr[2], 0.0045

15 soc.religion.christian Gr[19], 0.044 Gr[2], 0.0014

16 talk.politics.guns Gr[18], 0.042 Gr[2], 0.0021

17 talk.politics.mideast Gr[18], 0.022 Gr[2], 0.0018

18 talk.politics.misc Gr[19], 0.043 Gr[5], 0.0017

19 talk.religion.misc Gr[0], 0.120 Gr[5], 0.0012

Figure 9.

set of 20Newsgroups. For a message M let us denote by
set(M) the set of all different words in M . Then C(M) is
a group with largest number of words in set(M)

⋂
MW [i].

If there are several groups with the same largest number
of words in set(M)

⋂
MW [i], then we select as C(M) a

group with smallest index. In the case when all intersections
set(M)

⋂
MW [i] are empty, we will mark a message M as

‘unclassifiable’.
The results of applying this classifier to the remaining

90% of 20Newsgroups can be represented by the classifi-
cation confusion matrix CCM (Figure 10). For calculating
this matrix we used 18000 messages from 20Newsgroups
excluding the training set.
CCM is a 20× 20 integer value matrix with CCM(i, j)

is the number of messages from ith group classified into jth
group. For ideal classifier CCM is a diagonal matrix.

Figure 10. Classification confusion matrix, where CCM(i, j) is the
number of messages from the ith group classified into the jth group

REMARK: In each row of the CCM , the sum of its
elements is equal to 900, which is the number of messages
in each group. The exception is the row corresponding to
the group “soc.religion.christian”, where the sum is equal
to 897, because 3 messages from this group remained
unclassified, their intersection with the set of meaningful
words in each group was empty.

It is also useful to check the classifier performance on
the training set itself to validate our approach for selecting
meaningful words. The classification confusion matrix for
the training set only is shown in Figure 11.

We now calculate the precision, recall and accuracy of
our classifier for each of 20 groups.
Precision for ith group is defined as

P (i) =
CCM(i, i)∑
j CCM(i, j)

.

Recall for ith group is defined as

R(i) =
CCM(i, i)∑
j CCM(j, i)

.

Accuracy for ith group is defined as harmonic mean of
precision and recall

A(i) =
2P (i)R(i)

P (i) +R(i)
.



Figure 11. Classification confusion matrix for the training set with data
presented as in Figure 10

Table II
PRECISION, RECALL AND ACCURACY

News Groups Precision Recall Accuracy

alt.atheism 0.71 0.8331 0.7667

comp.graphics 0.8256 0.5251 0.6419

comp.os.ms-windows.misc 0.4389 0.9229 0.5949

comp.sys.ibm.pc.hardware 0.78 0.6756 0.7241

comp.sys.mac.hardware 0.7389 0.8504 0.7907

comp.windows.x 0.8122 0.6362 0.7135

misc.forsale 0.8833 0.6925 0.7764

rec.autos 0.7889 0.9103 0.8452

rec.motorcycles 0.8956 0.9516 0.9227

rec.sport.baseball 0.9256 0.9423 0.9339

rec.sport.hockey 0.9711 0.9001 0.9343

sci.crypt 0.9033 0.961 0.9312

sci.electronics 0.6667 0.9091 0.7692

sci.med 0.8667 0.9319 0.8981

sci.space 0.8922 0.9209 0.9063

soc.religion.christian 0.9922 0.7325 0.8428

talk.politics.guns 0.8633 0.852 0.8576

talk.politics.mideast 0.9522 0.8899 0.92

talk.politics.misc 0.69 0.7657 0.7259

talk.religion.misc 0.4977 0.6677 0.5703

The results for the precision, recall and accuracy of our
classifier for each of 20 groups is shown in the Table II.

As we can see from the Table II, this simple classifier
performs impressively well for the most of news groups, thus
illustrating the success of NFAT for selecting meaningful
features. The smallest accuracy of around 57% has been

observed for the group ‘talk.religion.misc’. From the classi-
fication confusion matrix CCM (Figure 10), we can see that
many articles from ‘talk.religion.misc’ have been classified
as belonging to ‘alt.atheism’, ‘ soc.religion.christian’ or
‘talk.politics.misc’ groups.

IV. CONCLUSION AND FUTURE WORK

In this article, the problem of automatic keyword and
feature extraction in unstructured data is investigated using
image processing ideas and especially the Helmholtz princi-
ple. We define a new measure of keywords meaningfulness
with good performance on different types of documents.
We expect that our approach may not only establish fruitful
connections between the fields of Computer Vision, Image
Processing and Information Retrieval, but may also assist
with the deeper understanding of existing algorithms like
TF-IDF.

In TF-IDF it is preferable to create a stop word list,
and remove the stop word before computing the vector
representation [1]. In our approach, the stop words are
removed automatically. It would be very interesting to study
the vector model for text mining based with − log(NFA) as
a weighting function. Even the simplest classifier based on
meaningful events performs well.

One of the main objectives in [6] is to develop parameter
free edge detections based on maximal meaningfulness.
Similarly, algorithms in data mining should have as few
parameters as possible – ideally none. Developing a similar
approach to the keyword and feature extraction, i.e. defining
the maximal time or space interval for a word to stay
meaningful, is an exciting and important problem. It would
also be interesting to understand the relationship between
the NFA and [5].
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