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Abstract— Storing and analyzing large volume of structured
or unstructured data at the scale of petabytes in applications
such as business intelligence of an enterprise, is a daunting
task. It is therefore desirable to store data in a compressed
form. Compression often is performed using transform methods
that permit capture of details in the data while at the same
time representing it efficiently; wavelet transform is one such
compression technique. Viewing the data as a signal, wavelet
transform involves computing coefficients and selecting a small
subset judiciously to approximate the signal. Because we pick a
subset of the coefficients and not all of them to synthesize the
data, wavelet based compression is inherently lossy. Compression
in the wavelet domain is traditionally done using hard and soft
thresholding techniques and variants thereof. Based on the notion
of “total energy” of a signal, in this paper, we introduce two
new thresholding methods called, level-independent energy and
level-dependent energy thresholding. In particular, our energy-
based thresholding techniques exploit the relationship between
total energy of the signal and wavelet coefficients to obtain
compression to meet pre-specified error tolerances. In addition,
level-dependent energy thresholding aims at determining wavelet
coefficients that carry most “information” at various resolutions
of the wavelet decomposition of the data distribution. Detailed
studies and experiments over noise contaminated synthetic and
TPCH benchmark data sets indicate that energy based thresh-
olding methods yield approximately 100:1 compression with high
reconstruction accuracy. As an application of our compression
techniques, we show that energy-based thresholding methods
improve accuracy of cardinality estimation in databases sub-
stantially over the popular methods based on equi-height and
max-diff histograms as well as over hard, soft and probabilistic
thresholding techniques from the statistics and database litera-
ture.

I. INTRODUCTION

Storing and analyzing large volume of structured or un-
structured data at the scale of petabytes in applications such as
business intelligence of an enterprise, is a challenging task due
to computational, storage and network bandwidth limitations.
One way to tackle this problem is to compress the data while
preserving the properties of the data distribution. The com-
pressed data then can be used as synopsis, for example, during
query optimization in order to generate optimal query plans
and reduce decision latency in real-time business intelligence
applications.

Viewing data as a signal, in this paper, we consider wavelet
based analysis and compression of large volume of enterprise
data. Carefully performed wavelet analysis can model data
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distributions accurately, while providing the flexibility to retain
only relevant information to enable compression. Intuitively,
a wavelet is simply a versatile histogram whose shape and
resolution can deftly be manipulated to obtain good approx-
imations to data via a series of averaging and differencing
operations. Mathematically, a wavelet is nothing but a basis
vector. The elements of basis vector form an orthonormal
system, and typical real-world data can be expressed as a linear
combination of basis elements. The weights used in the linear
combination are known as wavelet coefficients which capture
the degree of association between the basis elements and the
data. The wavelet basis elements are manipulated via dilation
and translation operations and overlaid with data such that
broad global features and minor local details are captured.
Dilation operations produce a hierarchy of levels. Coefficients
computed at each level of the hierarchy are indexed by their
corresponding level.

Our approach to compression begins with the understanding
that the “total energy” of a signal is directly related to its
wavelet coefficients given by the Parseval’s identity [14].
Under some conditions Parseval theorem states that the sum
of squares of a set of data measured at a some discrete points
of a signal, is equal to the sum of squares of its wavelet
coefficients. Since all data is not created equal, some of
the observations are noisy and so, can be eliminated. This
process of elimination is done in wavelet-based compression
via deleting noisy and small coefficients. Thus, in general only
a small number of wavelet coefficients carry “information”
while a preponderant majority hold very little information [24].
This sparse behavior of wavelet transform coding is exploited
to compress data while preserving its basic properties. Because
we pick a proper subset of the coefficients and not all of them
to re-synthesize the data, the wavelet based compression is
inherently lossy. Therefore, the challenge is to pick a small
set of wavelet coefficients to achieve desired level of accuracy,
and this is traditionally done using hard, soft and probabilistic
thresholding techniques.

First, we use the notion of energy, the square of a wavelet
coefficient, cumulative energy, the sum of the energies of
a subset of coefficients, and fotal energy, the sum of the
energies of all the coefficients, to propose new thresholding
methods called, level-independent energy and level-dependent
energy thresholding. Level-independent energy thresholding



picks coefficients after we order them based on their ener-
gies across all levels whereas level-dependent thresholding
picks coefficients in each level separately and then splices
them together. In particular, our energy-based thresholding
techniques exploit the relationship between total energy of
the signal and its corresponding wavelet coefficients to obtain
data compression to meet pre-specified error tolerances, and
in addition, the level-dependent energy thresholding aims at
determining wavelet coefficients that carry most “information”
at each resolution of the data distribution. These techniques are
intuitive, reliable and flexible with good signal reconstruction
properties. Our experiments with real-world enterprise data
shows that a compression as good as 100:1 can be achieved
using energy-based thresholding techniques.

Next, we study wavelet analysis with energy-based thresh-
olding techniques in database applications. Database re-
searchers have demonstrated the capability of wavelets [5],
[6], [15], [17], [16], and one such application of wavelets
is in query optimization. Query optimizers use summaries
because it is untenable to store or scan the entire table during
optimization. Moreover, query optimizers use histograms as
compression and analysis tool to get quick-albeit approximate-
cardinality estimates of certain columns to generate plans
based on a cost model. A histogram, which is simple to
construct, is completely specified by number of bins, right
boundary values and bin frequency. Few bins result in an out
of focus, low resolution image of the true distribution of data,
while many bins result in a grainy and choppy image of the
distribution. Finding the best fitting histogram is tantamount
to density estimation of the data, which is computationally
expensive and impractical. In commercial systems, the equi-
height histogram is constructed with an arbitrary choice of
number bins, and the number of bins is often based on
space limitations which is a major short coming. Also, the
max-diff histogram is used where the bin boundaries are
selected based on arbitrary choice of top k largest differences
in the frequencies of the observations in the attribute-value
distributions. We establish in this paper that a wavelet is
merely a generalized histogram and that contrary to common
myth, it is easy to implement. Furthermore, we argue that
the gain in estimation accuracy of cardinalities outweigh the
additional computational overhead. [This para needs to be
modified to reflect final experimental results.]

Via detailed and comprehensive experiments over simu-
lated and TPCH benchmark datasets, we demonstrate that
the proposed wavelet-based thresholding methods perform at
least as well as existing lossy compression methods in the
mathematics and the databases literature. In particular, our
experimental results show that the energy-based thresholding
method outperforms hard thresholding, soft thresholding, and
probabilistic thresholding relative to mean square error and
minimum relative error with respect to approximating the orig-
inal data and compression ratios. We tested the performance
of the wavelet based methods to histograms and the max-diff
histograms [22] for cardinality estimation in query optimiza-
tion. Our experiments show that the cardinality estimated due

to energy-based thresholding produce an accuracy in terms of
relative error up to 30 percent for range queries and 25 percent
for point queries. Moreover, for the same accuracy, energy-
based thresholding achieves three times better compression
than hard, soft and probabilistic thresholding. Level-dependent
thresholding approach produces improved reconstruction accu-
racy and better compression ratios, relative to hard, soft, and
energy-based thresholding. It is a promising technique which
can conceivably be applied to data that follows a natural data
hierarchy of levels.

Wavelet based modeling and synopsis in common data and
streaming settings have been well studied and chronicled [10],
[6], [7], [18], [16], [17]. The work in [6], [18] deal with
advancing wavelets as a substitute for the equi-height, max-
diff histograms used as synopsis tools for approximate query
optimization. Most work has been limited to the application
wavelets made up of square waves for modeling the distribu-
tion of the data. The data is condensed to a synopsis by the
thresholding method of selecting the top (largest in magnitude)
few coefficients. The wavelet as a synopsis has been advanced
for analyzing multi-dimensional data and in streaming data
situations [17], [10] as well.

The rest of the paper is organized as follows. In Section 2,
we cover wavelet basics, and in Section 3, we discuss existing
wavelet coefficient thresholding methods and related work
in cardinality estimation in database applications. In Section
4, we discuss energy-based thresholding and level-dependent
thresholding, and provide a mathematical justification and an
algorithm to determine the number of wavelet coefficients
needed to achieve specified reconstruction accuracy. In Section
5, we discuss experimental results comparing hard, soft, prob-
abilistic thresholding and energy-based methods especially in
the context of query optimization in databases. Finally, we
conclude with Section 6.

II. PRELIMINARIES

In this section, we begin by introducing wavelets and its ba-
sic basic building blocks. Next we discuss the Haar wavelets,
and illustrate with an example, its construction, how it is used
to transform the data, how to compute the wavelet coefficients,
and finally, how to use them to reproduce the original data
vector by the inverse transform. Finally, we outline Daubechies
wavelets, another well known wavelet family that generalizes
Haar wavelets.

A. Haar and Daubechies Wavelets

Wavelet analysis of data begins with data n-vector {y;} ;.
Wavelets are merely functions with some special properties
that yield the representation

m 2971

yn(2) = ap(@) + Y > Bisj(x),

j=1 k=0

where m = log, n and {, §; 1} represent the set of wavelet
coefficients, denoted by C. The basic building blocks of
wavelets consist of the father and the mother wavelets denoted
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Fig. 1. The father wavelet ¢(z) is constant over the interval [0, 1] is shown
in 1(a). The mother wavelet 1(x) is given in 1(b). Dilation and translation of
1 (z) are shown in 1(c) and 1(d), respectively. 1(c) is obtained by dividing
Y(z) € [0,1/2) into two pieces and flipping the sign of the second piece.
1(d) is obtained by translating 1(c) by 1/2 unit.

by (z) and 1 (z), respectively. The father wavelet, a constant
function, captures the broad global features in the data and the
mother wavelet, through a series of dilation and translation
operations, captures the details. The dilation operation recur-
sively divides the interval over which ¢ (z) is defined, into
segments of lengths 1/2, 1/4, 1/8, and so on. The translation
operation shifts ¢)(x) by one unit of the interval. (See Figure 1
for an example.) Thus, the wavelet is a new tool to identify
global and local features.

Mathematically, ¢(x) and ¢ (x) for Haar Wavelets are given
by:

fo<z<1
if 2 ¢ (0,1) M

1 ifo<z<1/2
ifl/2<z<1 2)
0  otherwise

In general, the mother wavelet ¢)(x) subscripted by dilation
and translation operations is written as;

Yk =22 2792 —k),j €L, ke€{0,1,2,---,2971},

where the indices j and k track the dilation and translation
parameters, respectively. [What is H matrix in general?
Is there a characteristic function?] Observe that any two
columns of H are mutually orthogonal and that orthogonality
property ensures that H is made up of minimum number of
columns to compute the wavelet transform and its inverse.
As an example, consider the data array consisting four
observations (8, 2, 1, 0). We will represent the data as a linear
combination of Haar wavelet elements and the unknown coef-
ficient vector C. The matrix formulation of linear combination
is written as Y(4x1)=H (4x4)C(4x1), Where Y denotes the data

vector, H is the wavelet matrix and C' is the vector of unknown
coefficients to be determined. Using C', obtained by solving the
linear system, we will show how to reconstruct the data vector
Y using the inverse of the Haar wavelet matrix. Explicitly, the
linear system is given by:

n 1 1 1 0 c1

Y2 _ 1 1 -1 0 Co

Y3 o 1 -1 0 1 C3

Ya 1 -1 0 -1 Cyq
N—— ——

Y H C

The solution to the linear system is C = H ~1Y, and the
resulting coefficient vector C' = (2.75,2.25,3.0,0.50)]. To
reconstruct the original vector, we pre-multiply vector C' with
H matrix, ie., Y = HC.

1 1 1 0 2.75 8
1 1 -1 0 2.25 | 2
1 -1 0 1 3.00 1
1 -1 0 -1 0.50 0

In general, approximation by a Haar wavelet to complex data
distributions requires several dilations and translations, which
in turn leads to computing large number of wavelet coeffi-
cients. However, the Haar wavelet is suitable for modeling
data which is characterized by a slow changes over time. It
has been shown that the top few coefficients minimize the
error relative to the ||Lo|| norm [21], [20] for Haar wavelets.

Haar wavelet approximates data using square wave func-
tions where as Daubchies approximates data using polynomial
functions, and therefore, the latter is a generalization of the
former. Unlike the Haar wavelet, the Daubechies wavelet has
no formal functional representation, but begins with a vector
of four numbers ¢ = (ag,a1,a2,a3) and a mother wavelet
specified by the vector ¢» = (a3, —as, a1, —ap). Note that
@ L 1 because the inner product <, > is zero (to be clear,
the inner product of coefficients of the elements of ¢ and 1) is
zero). Furthermore to compress the constant vector (1,1,1,1)
and the linear vector (1,2,3,4), Daubechies wavelet require
two orthogonality conditions: as — a2 + a; — ag = 1 and
as — 2as + 3a; — 4ag = 1. Finally to together with two more
conditions aias + agas = 1 and ag +ay + az + az = 1,
Daubechies wavelet defines a set of four equations, the solu-
tion of which produces a superior set of wavelet coefficients
to that of Haar wavelet system.

The Daubechies wavelet begins with a father wavelet given
by ¢(x) that is made up of smaller copies of itself. In other
words,

oo

Z arp (22 — k). (3)

k=—o0

p(x) =

The ay’s are called the wavelet coefficients. The correspond-
ing mother wavelet is written as

oo

> (=DFarwp(22 — k). 4)

k=—o0

P(z) =



The mother wavelet coefficients are merely the coefficients
of the father wavelet but appearing in reverse order, de-
noted by aj_j. The father and mother wavelets, ¢(z) and
(x), are chosen such that they satisfy three conditions: (1)
Stability, (2) Convergence, and (3) Orthogonality. To satisty
the stability condition, the father wavelet is chosen such
that ffooo @(z)dz = 1, and by solving this integral, we get
>~ aj = 2. Stability pertains to the finiteness and uniqueness
of the father wavelet. The condition of convergence is needed
to ensure that ¢ (x) is finite. The orthogonality condition is
required to build the minimal set of wavelet basis elements
for data transformation and reconstruction. When restricted to
n-sized data vector, the above integrals reduce to finite sums
between 0 and n. In summary, the four conditions are: [How
did we get (6), (7) and (8)? Can we explain?]

n/2—1

Z ap =2 ®)
k=0

n/2—1
Z (=DFE™ay, =0 (6)
k=0
n/2-1
Z ArAl—2m = 0 (7)
k=0

n/2—1
> aj=2 (8)
k=0

where m = 0,1,2,--- 5 — 1 The solution to (1-4) gives the
coefficient values, aj. While, (5) guarantees stability of the
father wavelet, it does not assure smoothness and conver-
gence. In order to find a smooth solution, we apply Fourier
transform to (3). To achieve a smooth solution, the Fourier
transform % Zi ! age®™ must be zero. Equivalently, the
coefficients a; must satisfy (6). To show othogonality, we
must have, [(3" arp(2z — k))(O- ap(2z — 2m — 1))dz =
Y akag—om [ Pi(2z)dz = 0, for m # 0. This condition
reduces to (7) when the integral equals 1 which we can see is
clearly true for the Haar wavelet.

Next, we will show that the Haar wavelet can be derived
from the Daubechies wavelet. We will pick n = 4 and note that
the same argument holds for any n. For n = 4, Equations 5
and 6 reduce to: ag + a1 = 2, ag — a1 = 0, a% + a% = 2.
The unique solution to the system is given by ag = a; = 1.
Using the values ofay and a;, the father wavelet in Equation 3
becomes, p(x) = ¢(2z) + ¢(2z — 1) and the mother wavelet
in Equation 4 becomes ¢ (z) = ¢(2x) — ¢(2x — 1). It is
easy to verify that ¢ (z) satisfies Equation 1 and ¢ (z) satisfies
Equation 2.

Define level precisely, discuss how to generate interme-
diate approximate coefficients corresponding to levels, and
point out that matrix multiplication gives out the last level
of coefficients directly.

B. Wavelet Thresholding

The wavelet coefficients are the nexus between the data and
the wavelet basis, and they capture the degree of correlation

between them. In many applications, the majority of wavelet
coefficients are negligible in magnitude [2], [10], [11], [19]
and do not contribute to describing the data by the wavelet
transform. Therefore these coefficients can be discarded. The
resulting set {c;}¥_,, k < n produces lossy compression
of the original data. The process of discarding small mag-
nitude coefficients is known as thresholding. Seminal work
on thresholding is due to Donoho and Johnstone [11]. They
proposed two methods known as hard thresholding and soft
thresholding.

Hard Thresholding (HDT): Consider a dataset {y;}?_,. Hard
thresholding selects coefficients based on a thresholding pa-
rameter \. The parameter \ is computed based on the standard
deviation o of the wavelet coefficients at the highest resolution
(first level of decomposition). An estimate of o is given by
6 =" |c;—med(c;)|/0.6745', where med(.) is the median
of the coefficients and n; denotes the number of coefficients
at the first level of decomposition. The threshold is given by

A = 6+/(2logn)/n; see [11] for more details. For every
i <m, if |¢;] < A, then set ¢; = 0.

Soft Thresholding (SFT): Soft thresholding is based on the
attractive idea of wavelet shrinkage [3]. It is similar to hard
thresholding; it sets to zero all those coefficients whose abso-
lute values are smaller than A, and then shrinks coefficients
that exceed A in absolute value towards zero. More precisely,
the shrinking is performed by ¢} = sgn(c;) (¢; — A), where
sgn(.) is the standard signum function. Since A is a sample
estimate of the standard deviation of the noisy coefficients,
(¢; — A) is the “de-noised” values of each of the remaining
coefficients.

The error in reconstruction by HDT tends to be small
but because the thresholding constant A is usually small,
compressibility is not that significant. Even though a strong
theoretical argument underlies its construction, SFT fails both
criteria of reconstruction error and compressibility. Both HDT
and SFT procedures are conservative, and therefore admit
many non-value added coefficients. Finally, in both thresh-
olding methods, A is fixed, which makes them less flexible.

While space-efficient and robust synopsis has been the holy-
grail of wavelet based research, the application of wavelets
to compressing real-world data has not advanced beyond the
Haar wavelet system and basic thresholding methods. The
Daubechies wavelet [2] has proven successful in modeling
complex data distributions, and so is widely used in signal
processing. For data synopsis, HDT and SFT methods have
been used extensively [11]. Moreover, commercial software
systems MATLAB and SAS use HDT and SFT methods.

Probabilistic Thresholding: Deterministic thresholding, a com-
monly used technique, entails selecting the top k coefficients
for some chosen value of k. The top k coefficients are chosen
after iteratively adding and dropping coefficients until no
significant error in reconstructing the original data is observed.
It has been argued in [23] that optimality of deterministic

IThis constant is chosen carefully for unbiased estimate of o.



thresholding under the mean square error metric does not
guarantee good reconstruction of the individual data values. So
probabilistic thresholding under maximum relative error was
suggested as an alternative. This procedure involves rounding
up or down of individual data points, and by flipping a
coin, it assigns a probability to each coefficient based on its
importance to the reconstruction of individual values to build
a compressed coefficient vector. Probabilistic thresholding
guarantees unbiased estimates of the individual coefficients
but as we show later in Section IV, for real-world data, the
improvement in reconstruction accuracy is inferior to that
of energy-based thresholding under mean square error and
minimum relative error criteria.

III. OUR CONTRIBUTION

[Fix this after the Introduction is fixed.] Both HRT
and SFT weed out coefficients based on a fixed threshold A.
While it is an attractive argument to use a simple threshold,
it turns out that it keeps more coefficients than necessary,
which lowers the ability to compress the data. We will leverage
the cumulative energy of the data captured by the coeffi-
cients to determine the number of coefficients for achieving
data smoothing and better compression ratio. The Parseval’s
identity [14] states that the sum of squares of wavelet
coefficients equals total energy in the data. Since coefficients
which are small in magnitude have little energy, they provide
less information, and so can be discarded. By plotting a graph
of cumulative energy versus the number of coefficients, we
can select a small set of significant coefficients which leads
to substantial compression. This method of thresholding is
motivated by principal components analysis where the choice
of principal components is based on the idea of cumulative
sum of Eigen values.

A. Energy-Based Thresholding

Our approach involves cumulative energy of wavelet co-
efficients to capture information in the n-vector data. The
graphing parameters are given by the set {i,>, ; ¢},
where i < n, and ), _, ci is the cumulative energy up to
the ith coefficient. As an example, for a data vector whose
sample size is 64, approximately 25 coefficients contribute
95% of the total energy. The advantage of the method is that
it gives the flexibility to compromise between accuracy and
space constraints. In addition, it is not dependent on a rigid
thresholding constant. The user can adaptively choose the set
of coefficients that meet dual criteria of space and accuracy.
In contrast, hard and soft thresholding methods cut off of
coefficients based on a threshold determined a priori. We now
state the algorithm for energy-based thresholding.

Algorithm Energy-Based-Thresholding

1) For a given n-vector data, Select a wavelet basis.

2) Obtain the wavelet coefficient set {c;}_; by using the
n-vector data and the chosen wavelet basis.

3) Arrange the wavelet coefficients computed in the de-
scending order of magnitude. Denote the ordered set also

by {c Hiog-

4) Plot the number coefficients as a function of cumulative
energy given by the sum of ordered wavelet coefficients
{e@ bier-

5) Find the point on the y-axis of the graph where the in-
cremental cumulative energy is less than a pre-specified
value.

6) Select the corresponding point on the z-axis. The point
on the z-axis corresponds to number of coefficients
whose cumulative energy contribution is approximately
maximal for rebuilding the original data.

Energy based thresholding is anchored on the idea that
cumulative energies converge to the total energy of a func-
tion and that the consecutive differences in cumulative sums
converge to zero. In other words, a decreasing sequence of
positive numbers bounded below converges to its infimum, that
is zero. This assertion validates discarding coefficients beyond
some number. Theorem 1 below guarantees the convergence
of the differences of cumulative energies (which are always
positive) to its infimum, that is clearly zero.

[Fix the theorem and proof.] '

Zzzleogem ] For 1 < j < m, let AE; = 370, c%j) -
>j=1C(;)> © € {2,---,n}, Then sequence {AFE;}7_; con-
verges to its infimum, inf;(E;).

Proof: 'We prove that if the decreasing sequence {AFE;}
is bounded below, then it is convergent and the limit is
inf,(AE;). Since {AE;} is decreasing, positive and it is
bounded below, by the greatest lower bound property of real
numbers L = inf;(AF;) exists and is finite. For every ¢ > 0,
there exists a AEy < L + ¢, otherwise L + € is the infimum
of {AE;}? , which contradicts that L = inf;(AE;). Since
{AE;) is a decreasing sequence, by Cauchy’s convergence
criterion, for all n > N(e), AE, — L < AEN — L < e.
Hence the limit of the sequence {AE;}! , is given by L =

The theorem justifies the use of energy based thresholding.
When a wavelet transform is applied to data with finite energy,
the corresponding wavelet coefficients set tends to zero.

B. Thresholding Based on Pre-specified accuracy

In many situations, the user wants to know the number of
coefficients needed to meet a pre-specified level of accuracy
(quality of reconstruction). This is helpful to estimate trade-
offs between storage space needed and accuracy of recon-
struction. This is the converse of the problem we looked at
previously, where we picked the number of coefficients that
provided a certain amount of information (cf. 3.0). Towards
this end, we use the Cauchy’s convergence principle and the
monotone convergence theorem from mathematical analysis
[14] to determine number of coefficients required to meet
a specified level of accuracy. Preliminary to outlining the
algorithm to determine coefficients required to attaining certain
accuracy, we outline the mathematical machinery required to
verify our assertions.

Theorem 2: Let {¢g, ¢1,. ..} be orthonormal on I. Assume
that f € L?(I) and suppose that f(z) = > 7 cndn(x).



Then:

1) The series > |c,, | converges and satisfies the inequality
Yoo olenl? < |If?]|- The inequality is known as the
Bessel’s inequality.

2) The equation > oo |c,|? = [[f?|| is known as the
Parseval’s formula.

Holds iff Lim,— || f — sn|| = 0, where {s,} is the sequence
of partial sums defined by s,,(z) = >} _, ckdr(z).

Theorem 3: Let {E;}52, be an increasing series of partial
sums (E; = 22:1 c?) which is real, positive and bounded by
I (f) |I>=M, where || (f) ||* is the total energy of f € L2(I)
and is a real number. The number of {¢;} required to obtain
an accuracy is given by the solution n to the inequality
S B - M| <.

Proof: Consider a sequence of partial sums {E;}" ;.
Since E,, < M by Bessel’s inequality in Theorem 2, we
have each element in the sequence {F; }7° , is bounded by M.
Since the series converges to M, this means that for n > N
we have |>°" , ¢? — M| < € by the Cauchy convergence
criterion. Since the difference | >, ¢ — M| measures the
error in energy between the finite set of coefficients {c;}7 ,
and M, an error within € is obtained by finding the value of
n, which satisfies the inequality | Y7 ¢? — M| < e. ]

1=1"

Table 7 shows the dependency of degree of compression (num-
ber of coefficients required) versus accuracy. The box below
describes algorithmically, the steps required to determine the
number of coefficients needed to achieve an accuracy of e.
Algorithm Pre-Specified Accuracy
1) Select a wavelet basis for modeling and compressing
{yitic
2) Obtain the wavelet coefficient set {c;}; by applying
the desired wavelet transform
3) Arrange the wavelet coefficients computed at all resolu-
tions in the descending order of magnitude. Denote the
ordered set by {c(;)}i; -
4) Compute the total energy of the data vector
(y1:Y2, -, yn) given by 357 yZ = M
5) Compute the cumulative energies >, ; 0(21,)
6) Choose desired precision/accuracy (€)
7) Find k(e)3| 35, 2 — M| < e
The value k(e) is the number of coefficients required to
achieve an accuracy of e, i.e., one needs to find the value of
k which depends on € such that the inequality is satisfied.
Table 7 is a summary of how wavelet energies can be used
to determine a subset of wavelet coefficients that guarantee
a desired level of accuracy(e). For the illustration, data is
generated according to the Doppler function. For a sample
of size 16, a subset of 9 coefficients (largest in magnitude) is
needed to achieve a reconstruction error of 5%. If the desired
error level is 10%, fewer coefficients equal to 7 are required.
Similarly, for other sample sizes, as precision increases (error
decreases) the number coefficients increases. The same pattern
holds for other members of the Daubechies (DbN) family
wavelets.

C. Level Dependent Thresholding

Thresholding methods in previous sections were based on
computing a threshold after computing all the coefficients at
every resolution. The energy based thresholding too deleted
coefficients based on all the computed coefficients. It has
been observed that even though the original data is highly
correlated, the wavelet coefficients however, exhibit much less
dependence [25]. If the noise in the data is correlated and
the process is stationary (stationarity means, the data moves
around a constant mean), the variance of the coefficients will
depend on the resolution level, but will be a constant within the
resolution level. This phenomenon argues for a level dependent
thresholding approach. In the level dependent thresholding
(LDT) approach, we compute within level total energy and
select coefficients within that level which capture a large
proportion of the information. In the end, we will combine the
surviving coefficients at each level into a single compressed
vector and use that for decompression. Table 7 shows the
performance of level dependent energy based thresholding
(LDT) applied to the noise contaminated Doppler, Bumps,
Quadchirp, and Mishmash functions using the Daubechies
(Db4) basis analyzed at a sample size of 16384 discrete points.
Examining the RC statistic in the last column, the gain in
compression is as high as 2.25 times and accuracy (SSE) is
between 40%-80% due to LDT. Examining the results for
the “Bumps” function, while we sacrifice compression i.e,
RC statistic is (0.40), the gain inaccuracy is 80%! If an
application requires reconstructing vectors at various levels
in a hierarchy: as an example; consider the configuration of
a data center. Topologically, a server has several inlet/outlet
sensors, multiple servers belong to a rack, racks belong to
a zone and multiple zones constitute a data center. Within
that topological architecture, it may be desirable to compress
data at the level in the hierarchy. In that scenario, LDT may
be handy. We are conducting further research in this area, to
exploit the property of de-correlated coefficients across levels
and the practical utility of hierarchical dependent analysis.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the performance of the many
thresholding methods we introduced, proposed and discussed.
The methods include: hard thresholding, soft thresholding, en-
ergy based thresholding, probabilistic thresholding, and level
dependent thresholding, respectively denoted by HRT, SFT
and EBT, GAR, and LDT. We will evaluate the techniques
relative to compression ratio (CR) mean square error (MSE)
and/or minimum relative error (MRE) criteria. The evaluation
environment includes synthetic data generated from six dif-
ferent underlying functions contaminated by Gaussian Noise
[11]. They are respectively, ‘blocks’, ‘bumps’, ‘heavy sine’,
‘doppler’, ‘quadchirp’, and ‘mishmash’ as well as data from
the TPCH benchmark tables used in databases studies. We will
demonstrate the utility of the techniques in cardinality esti-
mation by comparing against the standard compression tech-
niques such as equi-height and max-diff histograms. Please
note that since typical wavelet analysis applies to data whose



size is a power of two such as 4, 16, 64, 128, and so on, our
experimental data consist of vectors whose lengths are powers
of two.

The statistic CR is the compression ratio used to measure
degree of compression is given as,

CR "

- #of coefficients used

, where n is the total number of coefficients.

To measure the quality of reconstruction of the original signal,
we use the mean sum of squares(MSE) criterion given by
L(v; = Y)T(Y; — Y;*) where Y; and Y;* are respectively
the original and the reconstructed data vectors. The symbol T
denotes the transpose of a vector.

The minimum relative error (MRE) statistic also is used to
measure quality of reconstruction of the original signal, is
given as,

S (‘ﬁji]gl), where S is a sanity bound, typically chosen to
be the 10*" percentile of the distribution of the data.

The measures MSE and MRE give us an idea about the
accuracy of reconstruction. An estimate of the accuracy of
reconstruction is obtained by computing the difference be-
tween the original data (Y) and a version of it obtained after
applying a thresholding technique. We also measure, "Energy”
measured in % units is given by

k
PE _ Zi:l 612
- E’!L C2
i=1"1

In the following, we will discuss the results of the experi-
ments in detail. Figure 2 consists of graphs corresponding to
the six Gaussian noise contaminated distributions.

x 100,k < n

Method n #of | % Energy | MSE CR
Coeffs. Used
HRT 1024 62 100.0 0.0000 | 16.52
SFT 1024 62 100.0 0.0000 | 16.52
EBT 1024 54 99.90 0.0030 | 18.96
HRT 16384 103 100.0 0.0000 | 159.1
SFT 16384 103 100.0 0.0000 | 159.1
EBT 16384 76 99.90 0.0020 | 215.6
HRT | 32768 112 100.0 0.0000 | 292.6
SFT 32768 112 100.0 0.0000 | 292.6
EBT | 32768 76 99.9 0.0030 | 431.2
HRT | 65536 117 100.0 0.0000 | 560.1
SFT 65536 117 100.0 0.0000 | 560.1
EBT | 65536 76 99.90 0.0000 | 862.3
Fig. 3. Comparison of the thresholding methods using the Haar wavelet

analyzing blocks distribution.

The columns in Figures 3-5 are the following: column 1
is the thresholding method applied, Column 2 is the sample
size, column 3 is the number of coefficients retained after
applying thresholding, column 4 is the % energy used, Column
6 is the mean square error (MSE) and Column 7 is the
compression ratio (CR). In Figures 3-4 we summarize the

Method n # of | % Energy | MSE CR
Coeffs. Used
HRT 1024 420 99.97 0.0003 | 2.44
SFT 1024 420 97.35 0.0020 | 2.44
EBT 1024 305 99.90 0.0010 3.36
HRT 16384 | 5253 100.0 0.0000 | 3.12
SFT 16384 | 5253 99.91 0.0000 | 3.12
EBT 16384 436 99.90 0.0010 | 37.58
HRT 32768 | 10096 100.0 0.0000 | 3.25
SFT 32768 | 10096 100.0 0.0000 | 3.25
EBT 32768 437 96.90 0.0010 | 74.98
HRT 65536 | 19415 100.0 0.0000 | 3.38
SFT 65536 | 19415 100.0 0.0000 | 3.38
EBT 65536 436 96.89 0.0010 | 150.31
Fig. 4. Comparison of the thresholding methods using the Haar wavelet

analyzing doppler distribution.

Method n # of % Energy | MSE CR
Coeffs. Used
HRT 1024 543 100.00 0.0000 1.89
SFT 1024 543 99.36 0.0000 1.89
EBT 1024 398 99.42 0.0400 | 2.57
HRT 16384 559 100.00 0.0000 | 29.31
SFT 16384 559 99.65 0.0000 | 29.31
EBT 16384 398 98.96 0.0000 | 41.17
HRT 32768 565 100.00 0.0000 | 58.00
SFT 32768 565 99.74 0.0000 | 58.00
EBT 32768 398 98.96 0.0000 | 82.33
HRT 65536 570 100.00 0.0000 | 114.96
SFT 65536 570 99.81 0.0000 | 114.98
EBT 65536 570 98.82 0.0000 | 164.66
Fig. 5. Comparison of the thresholding methods using the Db4 wavelet

analyzing doppler distribution.

relative performance of the HRT, SFT and EBT procedures
in conjunction with the Haar wavelet over the “blocks,” and
“doppler” distributions. An examination of Figure 3 reveals
that the energy based thresholding produces compression ratios
as high as 800:1, while its mean square error is as low
as those of HRT and SFT. From Figure 2, we notice that
the “blocks,” signal is relatively slowly changing. The Haar
wavelet, which approximates the data by a set of square-
waves(boxes) is suitable and hence the compression ratio
and MSE are excellent. Figure 4 are the results due to
the application of the Haar wavelet to the “doppler” data.
Approximation by Haar, results in satisfactory compression
ratio and MSE, but we will show that the fit can be improved
by a suitably chosen higer order Daubechies wavelet. This is
because the signal is rapidly changing and approximation by a
higher order (polynomial) wavelet is more appropriate. Figure
5 summarizes the results of applying Daubechies (Db4) to the
“doppler signal. Comparing Figures 4 and 5, It is quite evident
that the Db4 wavelet provides a better fit than Haar both in
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Fig. 2. The six functions contaminated by Gaussian noise.
terms of compression ratio as well as MSE. The illustration " Data | % Accuracy C# Oé MSE | MRE | CR
suggests the importance of proper selection of a wavelet basis T05¢ | TP 7 2(;62 6s a1 [ 145
in fitting to data distributions. Finally, the highlight of our 4096 | TPCH 2% 2526 | 2651 | 130 | 1.62
experimental study is that EBT outperforms HRT and SFT 4096 | TPCH 4% 2176 | 26.72 | 129 | 1.88
thresholding substantially without sacrificing reconstruction 4096 | TPCH 6% 1946 | 2690 | 1.28 | 2.10
accuracy. This is a step forward as EBT enables higher levels 4096 | TPCH 8% 1767 | 27.09 | 127 | 2.32
of compression, while maintaining fidelity to the original data. 342079668 %Egg 110(;? 212672029 %;i igg %ii
In the following, we compare hard, soft and energy based | 32768 | TPCH 2% 20332 | 26.92 | 1.31 | 1.61
thresholding against the probabilistic thresholding (GAR). 32768 | TPCH 4% 17482 | 27.12 | 1.30 | 1.87
. . 32768 | TPCH 6% 15593 | 27.30 | 1.29 | 2.10
For the comparative analysis, we have chosen the TPCH 32768 | TPCH 3% 14152 | 2748 | 128 | 232
benchmark data. We used the attribute (line item part key) 32768 | TPCH 10% 12894 | 2764 | 127 | 254
for analysis. The summary columns in Figure 6 are: column 131072 | TPCH 1% 90846 | 2697 | 1.32 | 1.44
1 is the sample size, columns 2-5 are the coefficients retained g}gg; ¥ggg igv %g%z ;Z(Z)g }2(1) }g;
after thresholdmg,. columns (6-9) capture the respect}ve mean 131072 | TPeH 6‘7;) 62502 | 3745 | 120 | 210
square errors. In Figure 7, we tabulated the mean relative errors 131072 | TPCH 3% 56788 | 27.62 | 128 | 231
incolumns (6-9), and columns 1-5 being the same as those in 131072 | TPCH 10% 52096 | 27.79 | 127 | 2.52
Figure 6.
Fig. 8. Relationship between number of coefficients required and accuracy

Figure 6 compares the procedures in terms of the MSE
criterion. Figure 7 compares the estimates in terms of the
MRE criterion. The data analyzed over different sample sizes
of the attribute values, demonstrates superior performance of
HRT, SFT, and EBT procedures compared to GAR. The HRT,
SFT, and EBT produce mean squared errors comparable to one
other, while the MSE due to GAR is worse by a magnitude
of at least 2x. Since, it was argued that the MSE crterion
as an overall metric does not estimate the individual data
values and MRE is a suitable alternative measure [?], we
compared the four procedures relative to the MRE statistic.
Figure 7 is summarizes the results. Again, HRT, SFT, and EBT
outperform GAR. While HRT, SFT, and EBt are comparable,
probabilistic thresholding (GAR) on the average is worse by a
magnitude of at least 2x. The compression ratios relative to the
four methods are not reported for space considerations. But a
quick look at columns 1 and (2-5) and (performing necessary
ratio calculations) shows that HRT, SFT, and EBT result in
higher compression rates compared to GAR. Comparisons
among HRT, SFT, and EBT reveals that HRT and SFT produce

of reconstruction using “Line item Part key” column from TPCH.

lower mean square errors then EBT. Since we chose to
retain coefficients that account for 90% of the energy for
compression due to EBT, it is less accurate. We can increase
the accuracy due to EBT by adding coefficients that account
for more energy. This enables more accurate reconstruction,
but there will be a proportional reduction in compressibility.
In the following discussion, we will show the relationship
between accuracy and compressibility, summarized succinctly
in Figure 8.

Figure 8, shows the relationship between compressibility
and accuracy and the ability of EBT to let the experimenter
control accuracy and compressibility. Accuracy again pertains
to the gap between the original data and the data vector
reconstructed after compression. Column 1 consists of the
sample size of the data vector, column 2 refers to the source of
the attribute values, column 3 is the accuracy desired, column



n # of # of # of # of MSE(HRT) | MSE(SFT) | MSE(EBT) | MSE(GAR)
Coeffs(HRT) | Coeffs(SFT) | Coeffs(EBT) | Coeffs(GAR)
4096 3890 3890 2052 4012 26.28 26.47 26.81 53.21
8192 7893 7893 4110 8090 26.52 26.66 27.06 58.73
16384 15905 15905 8184 16110 26.51 26.60 27.04 63.22
32768 32103 32103 16467 32748 26.68 26.75 27.21 68.10
65536 64594 64594 33032 65536 26.77 21.86 27.29 72.72
131072 129623 129623 66013 130011 26.84 26.88 27.37 77.49
Fig. 6. Comparison of the thresholding methods using the Db4 wavelet analyzing Doppler distribution.
n # of # of # of # of MRE(HRT) | MRE(SFT) | MRE(EBT) | MRE(GAR)
Coeffs(HRT) | Coeffs(SFT) | Coeffs(EBT) | Coeffs(GAR)
4096 3890 3890 2052 4012 1.31 1.31 1.33 2.08
8192 7893 7893 4110 8090 1.32 1.34 1.36 2.16
16384 15905 15905 8184 16110 1.33 1.35 1.36 2.25
32768 32103 32103 16467 32748 1.33 1.35 1.37 2.32
65536 64594 64594 33032 65536 1.33 1.36 1.37 2.38
131072 129623 129623 66013 130011 1.33 1.33 1.39 2.43
Fig. 7. Comparison if the thresholding methods using the Db4 wavelet analyzing Doppler distribution.

4 is the number of coefficients required to meet the specified
accuracy (column 3), Columns 5 and 6 are the MSE and
MRE respectively, and column 7 is the CR statistic. It is clear
from the data that as the gap between the true vector and
reconstructed vector widens, accuracy (col 3) decreases, and
compressibility (CR)given in column 6 increases. The main
point of the table is to demonstrate that EBT gives the user
the flexibility to evaluate trade-off between compressibility
(storage) and accuracy . If space requirements is a constraint,
one can see its effect on accuracy and chose that combination
of accuracy and compresibility that meets requirements. Notice
that as CR increases, the statistics MSE and MRE increase as
well.

In the following subsection, section, we will apply the
disparate techniques to the cardinality estimation problem. A
typical cardinality estimation scenario consists of estimating
the number of tuples (observations) from a random sample of
tuples drawn from a column of a database table. Cardinality
is simply the count of the number of tuples in column of
a database table. Estimating occurrences of specific tuple is
known as a point query, and estimating the number of tuples
occurring within an interval is known as a range query.

A. Wavelets vs Histograms for Cardinality Estimation

In the previous sections, we presented ways to compress
data and saw EBT as a viable method alternative to hard
thresholding,soft thresholding, and probabilistic thresholding.
In database applications, especially in query optimization,
synopses of some specific columns of the tables are stored.
These synopses are used by the optimizer at compile-time to
generate optimal query plans. The query plan is based on a
cost model relative to run-time execution. Needless to say, an
accurate synopsis of the attributes of interest is imperative.
Common synopsis methods are histograms. A variety of
histogram techniques are in vogue. In commercial database
systems, the equi-height and max-diff histograms are used.

While the equi-height and max-diff histograms are simple
to implement, they do not produce satisfactory cardinality
estimates when the distributions are complex, which lead to
poor query plans.

We compared the performance of wavelet thresholding to
equi-height histograms using data drawn from the six dis-
tributions(Figure 2). We begin with a set of range queries
a <X <b, where X is a sample from one of the six distri-
butions (Figure 2). We compare the true cardinality (the actual
occurrence of tuples between the two limits) and the estimated
cardinalities from the four methods. The performance was
evaluated relative to the absolute relative error (RE) criterion.
The relative error is defined as: % x 100, where C and C
are the true and estimated cardinalities respectively. Figure 9
captures the comparison of the wavelet based compression to
the equi-height histogram. Column 1 is the distribution of data
used, column 2 is the sample size of the data vector, column
3 is the actual cardinality (actual number of tuples within the
chosen range), columns 4-8 are the estimated cardinalities by
the equi-height, and the wavelet methods, columns 9-12 are the
relative errors. Column 5 (wavelet) is the estimated cardinality
when no thresholding is applied.

Examining the table, it is clear that wavelets based cardi-
nality estimation is in general better at estimating the car-
dinalities than the equi-height histogram. Observe that the
error in estimation due to equi-height histogram is as high
as 75%. The three wavelet methods perform well except
the soft thresholding method in some instances. We may be
reminded that the performance of EBT can be adjusted to
improve estimation accuracy by decreasing the the amount of
thresholding. We did not report the degree of compression
due to space considerations, but the degree of compression
achieved by EBT is significantly larger, in excess of 100%
compared to the competing procedures. For this analysis, the
number of bins for the histogram was set to /n , where
n is the sample size. Note that we are not reporting the



Dist n Actual EQH | Wavelet | HRT | SFT | EBT | RE(EQH) | RE(HRT) | RE(SFT) | RE(EBT)
Cardinality
Blocks 16384 1310 1024 1310 1268 1241 1308 21.83% 3.21% 5.27% 0.15%
Bumps 16384 171 211 171 168 164 168 23.39% 1.75% 4.09% 1.75%
Heavy-Sine | 16384 277 486 277 288 256 278 75.45% 3.97% 7.58% 0.36%
Doppler 16384 455 470 455 456 448 456 3.30% 0.22% 1.54% 0.22%
Quadchirp | 16384 572 577 572 579 709 573 0.87% 1.22% 23.95% 0.17%
Mishmash 16384 563 586 563 566 544 564 4.09% 0.53% 3.37% 0.18%
Blocks 32768 32113 32128 32818 32113 | 32113 | 32110 0.05% 0.00% 0.00% 0.01%
Bumps 32768 32188 32256 | 32188 32183 | 32183 | 32186 0.21% 0.02% 0.02% 0.01%
Heavy-Sine | 32768 | 32116 | 32111 | 31116 | 32116 | 32116 | 32118 | 0.02% 0.00% | 000% | 0.01%
Doppler 32768 32117 32128 | 32117 32120 | 32122 | 32123 0.03% 0.01% 0.02% 0.02%
Quadchirp | 32768 32111 32237 32111 32114 | 32118 | 32122 0.39% 0.01% 0.02% 0.03%
Mishmash | 32768 32274 32263 32274 | 32275 | 32355 | 32274 0.03% 0.00% 0.25% 0.00%
Fig. 9. Cardinality estimate from the four procedures for large samples.
relative error corresponding to the wavelet procedure with no | Method n Distibution | # of | MSE | CR
thresholding in the table as it produces perfect reconstruction. Coeffs.

Continuing, we evaluated the performance of HRT, SFT, HRT 16334 Doppler 404 0.27 | 40.55
EBT, GAR, Equi-height histogram (EQH), and Max-Diff his- SFT 16384 | Doppler 404 0.27 | 40.55
togram (MDF) using the TPCH benchmark data. The attribute LDT 16384 Doppler 228 0.17 | 71.86
value is the column (line item part key). The results are HRT | 16384 | Quadchirp | 9143 | 120 | L1.79
summarized in Table 10. SFT 16384 | Quadchirp 9143 1.19 | 1.79

Table above summarizes cardinality estimates in response LDT | 16384 | Quadchirp | 4085 | 0.50 | 4.01
to a point query. Clearly, the performance of EBT is much HRT 16384 Bumps 609 7.85 | 26.90
superior to all the competing procedures in terms of the SFT 16334 Bumps 609 7.85 | 26.90
relative error (RE) metric. The performance of probabilistic LDT 16384 Bumps 1526 | 6.30 | 10.74
thresholding (GAR) produces inaccurate estimates of the true HRT 16384 | Mishmash | 15258 | 3.42 | 1.07
cardinality. The max-diff and equi-height histograms compete SFT 16384 | Mishmash | 15258 | 3.35 | 1.07
well with the wavelet based thresholding, but EBT results LDT 16384 | Mishmash | 11217 | 2.54 | 1.46
in more accurate estimates. Based on the results, we can HRT 16384 TPCH 16031 0.00 1.07
argue in favor of wavelets in conjunction with hard, soft, and SFT 16384 TPCH 16032 | 0.01 | 1.07
energy based thresholding as an alternative to histogram based LDT 16384 TPCH 14399 | 0.00 | 1.46
Synopsis. HRT 32768 TPCH 32270 | 0.00 | 1.02

In the next section, we will summarize some results pertain- SFT 32768 TPCH 32270 | 0.01 1.02
ing to the idea of level dependent thresholding we advanced LDT 32768 TPCH 21083 | 0.02 | 1.55
in section 3.1. HRT 131072 TPCH 129988 | 0.00 | 1.01

SFT 131072 TPCH 129988 | 0.00 | 1.01
B. Level Dependent Thresholding LDT 131072 TPCH 129759 | 0.00 1.09
Fig. 11.  Comparison of Hard, Soft and Level Dependent using the Db4

Level dependent thresholding is rooted in the idea that
wavelet coefficients obtained at each level of decomposition
are independent of their cousins at other levels. This asser-
tion argues for thresholding at every level of decomposition.
Figure 11 compares HRT and SFT thresholding procedures
against energy based level dependent method denoted by LDT.
Columns in Figure 11, capture the method applied, the sample
size of the data vector (n), the data distribution, the number
of coefficients used, the statistics MSE, and CR respectively.

Examining the table, clearly the LDT method outperforms
both HRT, and SFT methods. The compression ratio (CR) and
the mean square error (MSE) due to LDT are significantly
better. As the sample size becomes large, compression due to
LDT is less significant. The MSE due to LDT is low and is
less than or equal to those of HRT and SFT. This is especially
true for smaller sample sizes. Level dependent thresholding
is a promising technique and we will study its applications in

wavelet over Doppler, Quadchirp and Mishmash and TPCH using Db4

query optimization and other business intelligence applications
and report findings in a future paper.

V. CONCLUSION

In conclusion, the argument for using energy based wavelet
based methods as a tool for compression as well as application
in query optimization is compelling. We attempted to demon-
strate how the technology of wavelets in itself can be improved
by the introduction of the novel energy based thresholding,
and level dependent thresholding. The introduction of higher
order wavelets of Daubechies hold great promise for data
characterization and subsequent compression. Their potential
for application in cardinality estimation in the context of
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Dist n Actual EQH MDF GAR HRT SFT EBT RE(EQH) RE(MDF) RE(GAR) RE(HRT) RE(SFT) RE(EBT)
Cardinality

TPCH 1024 110 112 116 98 112 83 109 1.82% 5.45% 10.91% 1.82% 24.55% 0.92%

TPCH 16384 1670 1638 1631 1516 1634 1710 1632 1.92% 2.34% 9.22% 2.16% 2.40% 2.33%

TPCH 32768 3356 3277 3412 3703 3303 3454 3299 2.35% 1.67% 10.34% 1.58% 2.92% 1.73%

TPCH 65536 6660 6554 6563 8945 6495 6847 6643 1.59% 1.46% 34.31% 2.48% 2.81% 0.26%

TPCH 131072 13138 13107 13162 16121 13136 13513 13149 0.24% 0.18% 22.71% 0.02% 2.85% 0.08%

Fig. 10. Cardinality estimate from the six procedures for large samples.

approximate query processing is also promising. Cardinality
estimation is key in BI intelligence environments because
of the multitude of query mixed workloads. So efficient
data management via compression and analysis is desirable
to reduce run time execution of queries to improve query
throughput.
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