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ABSTRACT 

The paper presents decoding positional and color information 
using visual coded patterns for efficient geometric calibration and 
color consistency across multiple cameras.  The patterns are 
generated from an alphabet of basis colors placed in unique 
spatial configurations called ChromaCodes.  The imaged patterns 
are automatically decoded to derive the information needed for 
both geometric and color calibration.  Previous 2-D structured 
patterns are typically designed for obtaining only geometry 
whereas the proposed patterns capture color information as well.  
Moreover, the unique decodability of the codes allows them to 
overcome the problem of pattern visibility in all views and enables 
effective geometric calibration and color consistency with even 
partial and/or occluded view of the pattern.  Experimental results 
demonstrate that a single shot of the pattern is sufficient to 
encapsulate enough information to compute both geometry and 
color across one or more cameras, especially important for real-
time or interactive applications. 

 Index Terms — single shot coded pattern, camera calibration, 
geometric calibration, color consistency, augmented reality 

1. INTRODUCTION 
It is common to use known reference patterns for many camera-
based applications.  For geometric calibration of cameras, such a 
pattern enables solving for and properly modeling various camera 
non-idealities such as lens distortion as well as the relative position 
and orientation of the camera with respect to some world origin. 
Typically, a pattern is comprised of robust, easy to detect features 
(e.g. the intersections of a black/white checkerboard pattern or 
corners of a multi-box pattern) that refer to specific world 
coordinates and are used to solve for the intrinsic and extrinsic 
camera parameters [2, 21].  Because the patterns do not explicitly 
encode positional information with respect to the pattern, they tend 
to be particularly sensitive to occlusions, incomplete visibility (i.e. 
not completely in view), or other violations of spatial coherence.  
Moreover, with cameras in general position with very wide 
baselines, it is likely that the reference pattern will not be 
completely visible in all cameras simultaneously.   

For color calibration, a reference chart (e.g., the Macbeth chart) 
helps in the estimation of the color transformation between the 
color space of the reference to that of the camera(s), often to 
ensure color consistency across devices.  Currently, it is necessary 
for someone to manually identify the squares of the chart.  While 
hypothesis testing may be used to locate each of the squares, issues 
arise when the chart is partially obstructed or out of view. Also, 
while white balancing could be performed by measuring pixel 
values in a black/white checkerboard pattern, only a simple color 
model (i.e. gain and offset for each color) can be estimated. More 
complex color models require more colors in the patterns.  

   In this paper, we present coded patterns that simultaneously 
encode the positional and color information with respect to some 
reference coordinate system.  The patterns are constructed from 
uniquely decodable color codes referred to as ChromaCodes.  
When imaged by one or more cameras, a single shot of such 
pattern can be automatically analyzed to establish the geometric 
mapping and color transformation between the camera and 
reference coordinate systems simultaneously. Moreover, it is 
robust to incomplete visibility and occlusions, thereby reducing 
reliance on spatial coherence. Calibration using ChromaCoded 
patterns is very useful when the camera pose and/or illumination 
change continuously (e.g. in applications such as augmented 
reality), thereby requiring repeated automatic calibration.  It is 
especially important when one wants to measure the color and/or 
illumination at precisely the same location in the scene. 

2. CHROMACODED PATTERNS 
The proposed patterns are formed from a set of C basis colors, 

configured in R x S overlapping codes referred collectively as 
ChromaCodes.  The codes directly encode both positional and 
local color information with respect to a reference coordinate 
system.  By design, every one is unique and quickly decodable, 
with each code appearing at most once in a single pattern. 

One of the primary design parameters is the number of basis 
colors.  As the number of C basis colors increases, so do the 
number of uniquely decodable codes and hence the effective 
resolution of the overall pattern.  However, this increase comes at 
the cost of decreased discriminability and decoding robustness, 
especially for uncalibrated cameras.  Thus, the number of basis 
colors governs the ability of the camera to reliably distinguish 
among the primaries, leading to a tradeoff between accuracy and 
maximum pattern resolution. 

In a similar fashion, varying the size of the RxS spatial 
configuration leads to a tradeoff between effective spatial 
resolution and robust decoding in the presence of occlusions and 
surface deformations.   At one extreme, the code of size R=S=1 is 

Figure 1.  Example 12x12 pattern consisting of unique 
overlapping 2x2 ChromaCodes made up of four basis colors 

(red (R), green (G), blue (B), black (K)).  1-D sequence 
{R,G,R,B,R,K,G,B,G,K,B,K} (the leftmost column) was used 

to generate the pattern through successive column shifts.



the least affected by pattern deformations, but the pattern 
resolution would be constrained to be equal to the number of basis 
colors and lead to many false positives.  At the other extreme, 
large code dimensions leads to a bigger dictionary of uniquely 
decodable codes, each less likely to occur naturally in the scene.  
However, this advantage comes with increased susceptibility to 
occlusions, surface deformations, and spatial coherence.  

As described, each code in a RxS configuration can take on any 
of C colors, leading to a maximum of CRS possible ChromaCodes.  
One can view the ChromaCoded patterns more generally as 1-
orientable aperiodic C-ary arrays [3], where each valid code 
appears at most once in a given pattern.   Other patterns also 
include the general non-binary perfect and semi-perfect maps [11].  
Here, a set of C basis symbols is considered to create a 
wraparound pattern with unique RxS configurations, enumerating 
every, or almost every, possible configuration.  For odd number of 
basis colors C, there exists a simple pattern construction by taking 
a 1-D C-ary de Bruijn sequence and replicating shifted versions of 
the sequence to form a (CR,CS;R,S) non-binary perfect map [7]. 

For many practical applications, the exact boundaries of the 
ChromaCodes will not be known a priori, and the imaged pattern 
cannot be assumed to be fronto-parallel and rectangular in shape.  
With patterns such as perfect maps, every possible code appears 
exactly once (including wraparound), resulting in configurations 
with adjacent cells of the same basis color.  These configurations 
are more difficult to localize and should be avoided.  Thus, we 
prefer to have codes whose adjacent cells differ in color and thus 
have as many discernable color edges as possible. 

Since we require only a unique set of codes within the pattern 
and do not need properties like periodicity or perfectness, we adopt 
a similar strategy as above to maximize the adjacent cell edges for 
arbitrary C (not just odd).  Instead of using a de Bruijn sequence, 
we start with a 1-D sequence formed by all C(C-1) pairs of basis 
colors; this starting sequence is equivalent to a universal cycle of 
2-permutations from the set of C colors [5].  The initial sequence 
fills the leftmost column (0th column) of the 2-D pattern, and each 
subsequent column is replicated from the previous one, shifted up 
(and wrapped around if necessary) by the column number.  The 
underlying reference coordinate is specified at the center of each 
code, such that any adjacent RxS grouping results in a provably 
unique configuration and with at most two adjacent cells having 
the same basis color in a given code.  We make the following 
observations about this construction: 

Observation 1: The construction guarantees unique overlapping 
RxS codes for 2≤R≤C(C-1) and 2≤S≤C(C-1). 

Observation 2:  The construction guarantees that at least three of 
the four interior color edges in any 2x2 subarray will be 
discernable. 

Observation 3: Wraparound codes along the boundaries are not 
unique.  

Observation 1 comes from noticing that the left two cells of any 
2x2 subarray in the leftmost column will be matched with each 
pair from the universal cycle in succession, thus leading to 
uniqueness for any 2x2.  With each 2x2 subarray unique, it follows 
that a larger subarray will also be unique.  If we label the inter-cell 
boundaries as N,E,S,W, Observation 2 comes from the fact that a) 
there are no repeats in a given column (guaranteeing W and E 
color edges), and b) no two adjacent columns are identical 
(ensuring the N and/or S color edge).  Observation 3 follows from 
the fact that every neighboring pair of the universal cycle is paired 
with every other one within the interior of the pattern. 

We thus have a simple pattern construction to form a C(C-
1)xC(C-1) pattern (J=I=C(C-1)) out of the total CRS possible codes 
that maximizes the number of discernable inter-cell color edges.  
Smaller patterns are obtained by cropping a subwindow of the full 
pattern.  Figure 1 shows an example 12x12 pattern of overlapping 
2x2 codes using four basis colors (red (R), green (G), blue (B), and 
black (K)) generated by the 1-D sequence 
{R,G,R,B,R,K,G,B,G,K,B,K} (i.e. C=4 and R=S=2).  The result is a 
11x11 rectangular array such that any adjacent 2x2 grouping 
results in a unique configuration and with at most two adjacent 
cells having the same basis color in a given code. 

The ChromaCoded patterns bears similarity to other patterns 
derived from de Bruijn sequences.  Much of the previous work has 
focused on using these as structured light patterns to solve the 
correspondence problem and recover 3-D shape [1].  “One-shot” 
techniques fall predominantly into two camps:  The first camp uses 
1-D colored stripes generated by de Bruijn sequences for dynamic 
3-D shape recovery; for example, Zhang et al. [20] use a 5-ary de 
Bruijn sequence of order 3 to encode the 1-D planes from a 
calibrated set up.  3-D shape is then obtained by solving for ray-
plane intersections.  

The second camp constructs 2-D patterns from distinct colored 
dots based on perfect maps or M-arrays [14].  For example, 
Morano et al. [12] created pseudo-random color patterns that 
maximizes hamming distance using a brute force technique. Claes 
and Bruyninckx [6] construct a 6-ary 3x3 de Bruijn pattern for 
visual servoing a robotic arm.  With a slightly different take, Salvi 
et al. [13] used equally spaced horizontal and vertical slits using 3-
ary de Bruijn sequences of order 3 for each orientation to encode 
geometric information at their intersections. 

In contrast, the proposed ChromaCodes are formed by a grid of 
adjacent cells, without requiring equal spacing and enabling 
reasonable code density in a single pattern for a given spatial 
resolution.  ChromaCodes and their code design are more resilient 
to spatial deformations and occlusions.  In addition to encoding 
positional information, the colors of the cells may also be used for 
estimating local color information of the scene.  The codes are 
designed to easily detected, and the pattern leads to a simple 
construction method for any C, R, S. 

3. PATTERN ANALYSIS AND DECODING 
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Figure 2.  Analysis and decoding workflow



Pr(j+1,i) 

reference space 

camera space 

)1;,(ˆ ijPc

)2;,(ˆ ijPc

)1;,2(ˆ ijPc 

)2;,2(ˆ ijPc )1;,1(ˆ ijPc 
)3;,2(ˆ ijPc 

Pr(j,i) Pr(j+2,i) 

Figure 3.  Candidate edges in reference and camera 
spaces for the dynamic programming framework. 

By design, the ChromaCoded patterns encapsulate the 
correspondence mapping, as well as the appropriate color 
transformation, between a camera space and the reference space. 
When captured by one or more cameras, these patterns may be 
quickly decoded to robustly and accurately identify the camera 
space points and hence locate the ChromaCoded pattern in a single 
pass.  As shown in Figure 2, the entire workflow for the decoding 
process for each camera image consists of corner detection, basis 
color classification, corner validation, and decoding optimization.  
In order to ensure that the pattern is always detected, the decoding 
process starts off with a simple detector/classifier such that there 
are many candidate points for the pattern. Each subsequent step 
imposes a different prior knowledge about the pattern and uses it 
to filter out the candidate points. 

3.1. Corner detection 
The first step is to detect salient corners in the image.  A color-
based extension of the Harris corner detector [19] is used to more 
robustly locate all relevant corners in the image.  Non-maximal 
suppression and local clustered filtering are performed to further 
improve robustness.  Only the top 10% of candidate corners are 
retained.  At this stage, it is more important to capture all relevant 
corners even if there are a large number of false positives. 

3.2. Basis color classification 
Every camera image pixel is classified to one or more of the basis 
colors.  To support uncalibrated cameras with possibly arbitrary 
color shifts or spectral response, we opt for three parallel color 
classifiers where the false negatives for each classifier may be 
minimized. Each camera pixel is classified to be at most three 
colors, one from each complementary set {(red (R), green (G), 
blue (B)), (black (K), white (W)), (cyan (C), magenta (M), 
yellow(Y))}. Dividing the symbols into complementary sets allows 
us to have many basis colors while minimizing the false negatives 
during this classification stage.  Determining which 
complementary set the pixel belongs to would be done in a later 
stage (decoding optimization) with the use of spatial structure of 
the ChromaCoded pattern.  Additional classifiers may be added 
when using more basis colors.  

3.3. Corner validation 
The list of points returned by the corner detector may consist of 
many false positives and thus needs to be pruned.  We combine the 
results of the previous two stages to validate the corners with 
respect to the pattern.  Since a valid corner point should lie at the 
intersection of four basis colors, we analyze a 3x3 patch with 
respect to the corner point and determine whether the majority of 
each quadrant consists of a single basis color.  Corner points that 
have four valid quadrants are compared to the list of approved 
ChromaCodes for further pruning.   This step leads to a list of 

candidate corner points that correspond to a possibly valid code in 
the reference pattern.  These camera space corner points are then 
added as the possible candidates for their corresponding 
ChromaCode coordinate. 

3.4. Decoding optimization 
The final step is to prune the existing corners and identify actual 
ChromaCodes in the scene.  Each ChromaCode coordinate may be 
assigned possibly many candidate camera space corner points.  At 
most only one such corner point can actually correspond to the 
ChromaCode coordinate.  As such, this step needs to be robust to 
possibly spurious points that happen to decode to a valid 
ChromaCode as well as handle possible occlusions and non-planar 
deformations of the pattern. 

We employ a dynamic program along each row to leverage the 
spatial relationship of the entire pattern and optimize the pruning 
and identifying process.  The candidate points between adjacent 
ChromaCode coordinates are examined.  An additional candidate 
placeholder is added to signify an occluded point.  Instead of 
optimizing point positions directly, we enforce constraints with the 
edge segments to better exploit edge connectivity along a given 
row in the pattern.  Edge nodes are formed between every 
combination of candidate points in adjacent coordinates, including 
the “occluded” placeholder. 

We notate the underlying JxI reference grid coordinates as 
Pr(j,i)=(xji,yji), indexed by j=1…J, i=1…I.  Similarly, we define 
the corresponding points in the camera space as Pc(j,i)=(uji,vji) 
(Figure 3). Also, denote Er(j,i) as the edge segment connecting 
reference points Pr(j,i) and Pr(j+1,i), i.e. Er(j,i)={Pr(j,i),Pr(j+1,i)}.   
Likewise, denote Ec(j,i)={Pc(j,i),Pc(j+1,i)} be the corresponding 
edge segment in the camera space.  We define Ec(j,i;m,n) as the 

edge segment connecting candidate camera points );,(ˆ mijPc  and 

);,1(ˆ nijPc  , i.e.  );,1(ˆ),;,(ˆ),;,( nijPmijPnmijE ccc  .  The 

segment length and orientation 
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are recorded.  Edges with nearly zero lengths (i.e. d(j,i;m,n)<ε) are 
discarded. Each edge node is assigned an initial cost Co(j,i;m,n) 
based on the likelihood of forming an edge that borders the two 
basis colors; as seen in Figure 4, points are sampled just above and 
below the edge and compared to the expected basis colors.  

The dynamic program finds the minimum cost solution through 
the candidate edges.  The cost C(j,i;m,n,o,p) of connecting edge 

Figure 4.  Computing likelihood of being the correct 
color edge. 
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segment Ec(j,i;m,n) and Ec(j+1,i;o,p) is given by 
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where ),;,1(),;,(),,,;,( poijdnmijdponmijd   is the 

edge length difference, Cdist∆d penalizes for large differences in 
edge lengths (the pattern edges are assumed to be roughly similar), 

),;,1(),;,(),,,;,( poijnmijponmij    is the edge 

orientation difference, Cangle∆θ penalizes for large differences in 
orientation (the edges along a given row are assumed to be locally 
linear), and Coccl penalizes if selecting an occluded placeholder (is 
zero otherwise). To ensure edge connectivity, only n=o cases are 
considered. Suppose 

jig
  represents the set of candidate edge 

segments for Ec(j,i;m,n).  A given solution path G through the data 
incurs a cost 

x
xigixCGT );,()(
 .  Thus, the dynamic program 

finds the path G that minimizes T(G).   Additional processing may 
be used to prune invalid candidate edges and discard outliers.  In 
the end, we obtain the point correspondences between coordinates 
Pr(j,i) in the ChromaCoded reference grid and their counterparts 
Pc(j,i) in the camera image(s). 

4. EXPERIMENTAL RESULTS 
In this section, we describe various experiments using up to four 
heterogeneous cameras (labeled A to D) to demonstrate the 
effectiveness of the proposed ChromaCoded patterns.  Without 
loss of generality, coded patterns with R=S=2 and varying number 
of basis colors are considered.  In a first series of experiments, 
ChromaCodes may be used to automatically identify robust 
features for camera calibration.  Since the focus of the approach is 
on the automatic detection and decoding of the pattern features and 
not on the actual calibration algorithm, the experiments assume a 

fixed calibration methodology (in this case, Bouguet’s MATLAB 
Camera Calibration toolbox [2]).  Reprojection error is used as a 
relative measure of the accuracy for the set of feature points.  

We compare the results for different 9x9 (cropped) patterns, 
wherein each cell of the pattern measures 22mm x 22mm and the 
printed pattern is matted onto a flat surface.  In each case, the four 
heterogeneous cameras capture a total of six different views of 
each pattern. The feature points are automatically computed and 
serve as direct input for camera calibration.  The features are then 
refined to subpixel accuracy based on initial results and the 
reprojection error is finally computed.  Regardless of the number 
of frames used, the error is roughly around 0.25 pixels, suggesting 
good calibration accuracy using any of the patterns.  We find these 
results to be comparable in accuracy to manually selecting features 
on a similarly sized checkerboard pattern [17]. The error does not 
decrease with additional frames because we believe it falls within 
the accuracy of the subpixel interpolation. 

A second series of experiments validate that ChromaCodes 
perform well in the presence of occlusions.  To examine the 
performance as a function of visibility, an LCD monitor is used to 
display each of the four patterns, with a portion of the pattern 
obscured and the remaining points used for camera calibration.  As 
seen in Figure 5, the overall reprojection error is somewhat higher 
but suggests good calibration performance even with close to 50% 
of the points obstructed. 

In addition to geometric calibration, ChromaCodes can 
simultaneously improve the color consistency across multiple 
cameras. The proposed codes directly encapsulate the color 
information of the scene.  Feature points are automatically decoded 
and used to solve for the intrinsics of each camera. We model the 
inter-camera color transformation as a 3x4 affine matrix, and solve 
using linear least squares with the center colors of each cell after 
gamma correction.  Camera C is selected as the target color space 
and the other cameras are transformed to it.  Table 1 illustrates the 
RMS component color pixel error before and after applying the 
estimated color transformation.  Note the significant improvement 
in using the patterns for color consistency across all the frames.  

Figure 6 illustrates some of the calibration and color results.  
Two representative frames from cameras C and D are shown in 
Figures 6(a) and (b); note the wide baseline and severe color 

Table 1.  RMS error (pixel) of the feature point 
colors before and after applying the estimated 

color transformation to camera C.

Pattern\Camera A B D

RGBK 14.577 2.88 11.7453 2.63 17.6316 8.84
RGBKW 19.6786 3.86 26.9602 6.96 14.8948 2.82

RGBKCMY 19.0233 3.95 17.3272 4.51 14.617 1.49
RGBKWCMY 28.9973 6.56 23.3144 6.40 21.3142 3.79

Figure 6.  Representative results for camera calibration and color consistency: Original images from (a) camera 
C and (b) camera D; (c) undistorted image after calibration; (d) resulting image after color correction. 

(a) (b) (c) (d) 

Figure 5.  Camera calibration performance (in terms of RMS 
reprojection error) of different ChromaCoded patterns as a 

function of pattern visibility (percentage).



differences.  Figure 6(c) shows the result of using the computed 
geometric parameters to undistort the image.  Here, the barrel 
distortion from camera D has been automatically corrected.  Figure 
6(d) shows the color corrected result.  Note how consistent the 
result is compared with the reference camera shown in Figure 6(a). 

The proposed ChromaCoded patterns can also be used for 
automatic content insertion, especially important for real-time 
augmented reality applications.  A coded pattern is used to define 
the region to be replaced, instead of segmenting objects through 
Chroma Keying [15] or computational matting [10, 16].  For each 
camera, the desired content undergoes a geometric and color 
transformation to bring the content to the camera’s space (see 
Figure 7). By design, the pattern and its decoding are not restricted 
to non-planar surfaces.  However, we assume a planar pattern to 
simplify real-time warping and solve for the homography using 
linear least squares with outlier rejection using the pairwise 
correspondences. Each measured camera color is related to its 
expected reference color by a 3x4 affine color transformation 
matrix, computed using linear least squares with the color of local 
neighborhoods around the centroids of each warped cell. Points 
that deviate significantly from the predicted color are masked off 
and are considered to be occluders, thereby creating an occlusion 
mask as a byproduct. 

The proposed approach currently runs unoptimized at about 5-
10 fps, thus approaching real-time video rates.  Figure 8 shows an 
example for two cameras capturing a moving pattern.  The top row 
shows the captured images.  The next row demonstrates the results 
of texture mapping an input image using just the computed 
geometric mapping. The following row demonstrates incorporating 
the computed color transformation.  Notice how well the two 

inserted images blend with their respective camera’s color space.  
The final row incorporates the computed occlusion mask to give a 
reasonable approximation of preserving depth ordering. 

Figures 9 and 10 highlight the clear benefits of using the 
proposed ChromaCoded patterns.  As shown in the top row of 
Figure 9, much of the pattern is oblique to the camera and 
offscreen in both cases.  The unique pattern encoding allows 
robust recovery of the necessary geometry and color 
transformations to properly insert the content (bottom row of 
Figure 9).  Similarly, Figure 10 demonstrates the approach’s 
automatic responsiveness to global brightness changes.  Unlike 
tracking frame corners [9] or conventional patterns for augmented 
reality [8], ChromaCodes does not require full visibility or 
planarity.  In contrast to scene-dependent natural images [18], it is 
more resilient to occlusions and better suited for simultaneous 
color recovery with its uniformly distributed codes.  Figure 11 
shows additional frames from a video sequence using 
ChromaCoded patterns for seamless content insertion. 

5. CONCLUSIONS 
We have presented coded patterns designed to efficiently encode 
both geometric and color information.  The result is the ability to 
use a single pattern to quickly solve geometric calibration as well 
as color consistency across multiple cameras.  The advantage of 

camera image reference pattern

warped centroid sampling
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occlusion mask 

Figure 7.  Framework for computing geometry 
and color transformations. 

Warp H-1 Compute Color C
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Figure 8.  Example of automatic content insertion: (a) 
original camera images; (b) applying only geometric warps; 
(c) correcting for color; (d) factoring in the occlusion mask.



using ChromaCodes comes from its simple construction, the 
addition of color information, as well as improved resilience to 
partial visibility and occlusions.  Co-located positional and color 
information helps for interactive applications like augmented 
reality when the camera pose and/or illumination frequently 
change.  We are currently investigating the use of ChromaCoded 
patterns for these and other applications.  
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Figure 10.  Automatically inserted content responding 
to global brightness changes. 

Figure 9.  Automatically inserted content in the presence of 
oblique angles and partial pattern visibility.



 

 

Figure 11.  Representative frames of a video sequence with automatically inserted content 
using ChromaCoded patterns. 


