

Keyword(s):

Abstract:



Control Plane Integration for Cloud Services

Sujoy Basu, Sven Graupner, Jim Pruyne, Sharad Singhal

HP Laboratories
HPL-2010-122

Service integration, Service-Oriented Architecture, Model-Driven Architecture, source code annotation,
introspection.

This paper addresses the problem of control plane integration for management and control of cloud
services. Unlike data plane integration, which ensures that services can exchange data during operation,
control plane integration ensures proper configuration of services before their use. Examples of control
plane integration include creating user accounts or establishing profiles in multiple services to allow them
to work together during operation. The heterogeneity of service interfaces in the control plane arises from
the different ways in which services are implemented and the different requirements they have for their use.
Control plane integration is often needed for service bundling and ad-hoc compositions across services,
such as for promotional campaigns that must be developed and deployed rapidly. In this paper, we propose
a developer-centric approach to integration of services on the control plane. Our approach is based on using
Java code annotation, which is introspected at runtime to create rich service models. A multi-layered
architecture allows the rapid modeling, development and implementation of service integration scenarios.
We demonstrate our approach with an example of a promotional campaign that uses two external service
providers.

External Posting Date: September 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: September 21, 2010 [Fulltext]
To be published and presented at ACM/IFIP/USENIX 11th International Middleware Conference, Bangalore, India November 29 -
December 3, 2010.

Copyright ACM/IFIP/USENIX 11th International Middleware Conference, 2010.

 1

Control Plane Integration for Cloud Services

Sujoy Basu, Sven Graupner, Jim Pruyne, Sharad Singhal

Hewlett-Packard Laboratories
1501 Page Mill Rd, Palo Alto, CA 94304

{sujoy.basu, sven.graupner, jim.pruyne, sharad.singhal}@hp.com

ABSTRACT

This paper addresses the problem of control plane integration for

management and control of cloud services. Unlike data plane

integration, which ensures that services can exchange data during

operation, control plane integration ensures proper configuration

of services before their use. Examples of control plane integration

include creating user accounts or establishing profiles in multiple

services to allow them to work together during operation. The

heterogeneity of service interfaces in the control plane arises from

the different ways in which services are implemented and the

different requirements they have for their use. Control plane

integration is often needed for service bundling and ad-hoc

compositions across services, such as for promotional campaigns

that must be developed and deployed rapidly. In this paper, we

propose a developer-centric approach to integration of services on

the control plane. Our approach is based on using Java code

annotation, which is introspected at runtime to create rich service

models. A multi-layered architecture allows the rapid modeling,

development and implementation of service integration scenarios.

We demonstrate our approach with an example of a promotional

campaign that uses two external service providers.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Modules and interfaces,

Object-oriented design methods. D.2.11 [Software Architectures]

Service-oriented architectures (SOA).

General Terms

Design, Standardization, Languages

Keywords
Service integration, Service-Oriented Architecture, Model-Driven

Architecture, source code annotation, introspection.

1. INTRODUCTION
We focus on the domain of telecom service providers, whose

revenues are largely derived from voice or data transmission.

Expanding into new revenue sources by offering new, higher-level

services and addressing new markets is a common objective for

these providers. Typically, telecom service providers partner with

external service providers to deliver value-added services using

bundling, while retaining operations and business support

functions such as help-desks and billing.

To offer a larger portfolio of services, telecom service providers

are increasingly integrating external services provided by software

vendors in a Software-as-a-Service (SaaS) model. Even though

this integration problem has existed for a long time, the

proliferation of ecosystems of cloud services has aggravated the

problem. The number of services that are being integrated has

increased tremendously, and these integrations must be supported

with greater agility. Furthermore, such integration leads to

complexity that is specific to telecom networks. Customers

signing up for external services through their mobile devices must

be provisioned at the selected services. This requires executing

provisioning workflows that connect to the service providers,

create accounts for the users, and initialize their profiles and

service levels. However, customers expect telecom companies to

be the single point of support for services offered through them.

Therefore, integration of these services must also be done at the

monitoring and management levels at the time they are offered,

allowing the service to be monitored from the telecom network. It

also allows the customer’s usage of the service to be metered and

billed by the telecom company. Another benefit of integrations is

identity management. The customer can have a single sign-on that

works across all subscribed services.

2. CONTROL PLANE INTEGRATION
Service integration technologies typically focus on the messages

exchanged between services. A mediator, proxy, adapter or broker

intercepts messages sent from one service to another and performs

the necessary transformation and coordination tasks. We refer to

this layer of message exchanges as the data plane.

While service integration in the data plane has been widely

explored and a variety of technologies have been developed, there

is another domain of service integration that has not been

addressed prominently. We refer to this domain as control plane.

The control plane addresses the configuration and preparation that

is needed before services can be used and messages can be

exchanged in the data plane. It includes operations such as

creating user accounts, providing accounts with information

profiles about users, or with information such as subscriptions and

payments that are required by the underlying services prior to use.

Similar to the data plane, control plane interfaces and protocols

are heterogeneous, and highly specific to services. Techniques

similar to those used in the data plane for connecting interfaces,

transforming data and coordinating control flows can still be used

for control plane integration. For example, both Web Services

Description Language (WSDL) and Representational State

Transfer (REST) APIs may be present in a single bundling

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Middleware’10, 29 November – 3 December, 2010, Bangalore, India.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

 2

scenario. However, there are additional problems in the control

plane that need to be addressed such as establishing and mapping

of user identities, creation and secure transfer of credentials,

establishing and mapping of user profile information, and the

reliable transfer of funds from sources (in form of payments,

chargeable assets, subscriptions) that are required for paid

services. This makes the problem of control plane integration

different from data plane integration.

Frequently, these control plane tasks are performed manually

during service subscription. However, in the service bundling

scenarios we are considering, this information must be configured

in services for thousands of users. This requires user-specific

information available in the telecom business support systems

(BSS) to be programmatically configured in the bundled services.

Each of the bundled services can have tens of configurable

parameters. Developers need to provide integration with the

services for all the tasks needed by the workflows. As service

logic within individual services evolves, keeping the integration

code in sync can become tedious.

The control and data planes differ in other ways. Performance

(e.g. message latency and throughput) is important in the data

plane while the service is being used. It is of lesser importance in

the control plane since most interactions occur only once before

the service is used. Reliability and security have a high priority

since control plane integration includes the ability to create new

accounts and process payments. Fast development cycles and low

development costs are of higher importance as well, since many

services created by such integration are short lived. For example,

promotional campaigns that only last a few weeks are common.

3. EXAMPLE
We motivate our discussion using an example where a telecom

service provider that offers voice and data plans runs a campaign

to increase subscriptions of its data plan by voice customers. To

advertise its data offerings, the telecom provider bundles its data

service offerings with other services in a promotional campaign.

In this example, two external service providers are used.

Snapfish.com is an online photo publishing and printing site. tele-

coupons.com is a hypothetical service that distributes coupons and

manages financial settlement among vendors for issuing and

redeeming coupons. In the example scenario of the promotional

campaign, the telecom service provider seeks to upgrade its voice-

only service users to data plans. It arranges with the two business

partners a special offer that includes a coupon of $50 redeemable

for new smartphones being offered by the telecom service

provider, and 50 free photo prints at snapfish.com.

In this scenario, the telecom service provider is hosting the

promotional campaign and has business agreements with the

participating business partners. The technical implications are that

logic needs to be defined and implemented in the telecom service

provider’s backend systems to (a) advertise the promotional

campaign to its current voice-only users, (b) connect to the system

where users can chose and upgrade their service plans, and (c)

when an eligible user chooses to upgrade to a data plan, initiate

the interactions on behalf of that user with the two participating

service providers.

While (a) and (b) are traditional internal programming tasks

within the backend of the telecom service provider, (c) expands

the control plane integration into the domains of external partner

services. It also requires the definition and implementation of

integration logic and is hence a substantial development and

integration effort.

We consider the following steps for the scenario:

1. A voice-plan user chooses to upgrade to a data plan. The

backend system detects that condition and triggers the

integration scenario with the external services. This launches

the processes shown in Figure 1.

2. As part of these interactions, the telecom service provider

opens an account for the user at tele-coupons.com (if such an

account is not already present) and creates a coupon of $50

for the purchase of a new smartphone. The login credentials

are passed back to the user who then can obtain the coupon

from the tele-coupons.com site and redeem it with an eligible

purchase at a participating retailer. The financial settlement

of the coupon payments between the issuer (telecom service

provider) and the retailer where the coupon is redeemed is

managed by the tele-coupons.com service.

3. Similarly, an account is created for the user in Snapfish.com

and preloaded with the equivalent of 50 photo prints.

The user’s root identity is determined by the telecom service

provider. Information on existing accounts at the participating

services is retrieved from the business support system (BSS). In

this example, we ignore corner cases where users have existing

accounts unknown to the telecom service provider.

Information about new accounts created on behalf of users is

communicated back to users through the telecom service

provider’s portal. The user can then click the provided URLs and

log into the services using the credentials provided by the telecom

service provider.

Figure 1 shows the interactions that take place between the

telecom service provider and the two external service providers.

The telecom service provider is shown on the left in the Figure

and the two external services tele-coupons.com (S1) and

snapfish.com (S2) are shown on the right.

The flow inside the telecom service provider’s environment shows

the use of two highlighted integration building blocks for

implementing the interaction logic for adding users and depositing

funds into user accounts (one pair used for each external service).

Those building blocks are offered as libraries to the service

integration developer to help assemble more complex integration

scenarios from simpler integration building blocks. The two

building blocks encapsulate the actual service invocation through

service adapters. In addition, they encapsulate the handling of a

simple error case. In case of error, a state is reached in which an

error handling method can be invoked which in turn can result in

a retry attempt of the operation or in another failure which,

according to the logic shown in Figure 1, leads to the abortion of

the overall operation for a particular user.

Next, we describe an architecture that enables such integration to

be performed rapidly.

4. SERVICE INTEGRATION PLATFORM
We address the specific needs of control plane integration with a

dedicated service control plane integration platform. It is also

referred to as service integration platform in the rest of this paper.

The diagram in Figure 2 shows the architecture of the service

 3

Figure 1: Service integration logic for example scenario.

control plane integration platform. The figure shows four service

instances on the left representing external services Si (S1 – S4 in

the Figure) as they may exist in the cloud (e.g. tele-coupons.com

or snapfish.com as used in the example in section 3). Each service

Si provides control plane interfaces CPIi through which control

plane operations can be performed (shown as interface symbols

with horizontal fill pattern, connected by dashed interaction lines

with service adapters).

Each service is accompanied by a service model mi for service Si.

Service models (defined in more detail in Section 5) represent

control surfaces available for the service and are created and

maintained by specialized service model providers that act as

registries. Service model providers smpj provide service model

interfaces SMIj,i for each service model mi through which control

operations can be performed (shown as interface symbols with

vertical fill pattern and green interaction lines). Service model

providers are web services through which service models are

accessible. Each service model is accessible through a distinct

URL. For example, while the service snapfish.com may not

provide an explicit service model, a hypothetical model provider

Servicemodels.com may offer a service model for it using the

URL //servicemodels.com/snapfish.

Figure 2: Service Control Plane Integration Environment.

The reason for separating services from service model providers is

that most existing cloud services currently do not provide service

models for control-plane operations of their services. One service

model provider can host service models for multiple services and

create and maintain them as a commercial operation. The Figure

shows models m1 – m3 provided by a service model provider

while m4 is provided by the service S4 itself. In this case, the

service must offer the service model interface SMI4. Service

model providers share an event and RPC messaging layer with the

service integration platform through which only service model

information is accessed and exchanged.

The layers of the service integration platform are shown on the

right hand side of Figure 2. The architecture builds on a shared

event and RPC messaging layer with the service model providers.

An abstraction of a Federated Model Store Layer is established

as the next layer above. Since service model providers themselves

are services in the cloud, access to models in the service

integration platform occurs by fetching copies of service model mi

and storing locally inside the federated model store layer as m’i.

An event-based consistency mechanism is implemented in the

federated model store layer that allows service model instances

m’i to initiate update operations on service models mi in the

service model providers. Service model providers maintain event

distribution lists through which other service model instances m”i

in other service integration stacks can subscribe to model update

events. Service model update events caught in the federated model

store layer can also be passed to higher layers in the service

integration platform and trigger effects in response to model

update events that were received from other service model

instances.

The next layer is the Service Model Introspection Layer, which

allows queries and updates in local service models m’i. In case of

updates, they are passed back to the service model provider from

which they were initially obtained. The layer is integrated with the

programming environment of the service adapter layer. In a java

failure

failure

ok

ok

S1.addUser(UserInfo ui)

S1.deposit(UserInfo ui, Asset a1)

failure

ok

S2.addUser(UserInfo ui)

failure

ok

S2.deposit(UserInfo ui, Asset a2)

trigger(UserInfo ui)

handle error

S1: tele-coupons.com

 S2: snapfish.com

Telecom service provider

failure success

retry

retry

retry

retry

abort

abort

abort

trigger

handle error

abort

Integration
Building Block
IBB.AddUser

Integration
Building Block
IBB.Deposit

Service Model Provider(s)

Messaging Layer

Service Model Introspection Layer

Service Adapter Layer

Event / RPC Layer (service model access)

Service Integration Modules

campgn.sim S1 S2 S4 S3

m1 m2 m3 m4

Federated Model Store Layer

Services Si and

Service Control Plane Interface, CPIi for Si
Service Model Interface, SMIj,i for Si
Unified Service Interface, USIi for Si

Service Integration Platform

m1’ m2’ m3’ m4’

smpj,i

A2 A3 A4 A1

 4

implementation, classes and java objects are automatically

generated for type and instance information respectively, from

service models. Many programming environments support classes,

objects and introspection today. We favored this style over

traditional access through query interfaces such as SQL or JDBC

due to the better embedding in programming languages.

Models are used by the Service Adapter Layer. Adapters Ai

connect to the actual control plane interfaces offered by services.

Some cloud services provide programmable interface for that

purpose, but typically each is unique and offers a different

programming paradigm. Adapters encapsulate this heterogeneity

and unify service control plane interactions as operations that are

performed on service models through the programming

environment. Changes to service models in turn trigger adapter

invocations that are passed to the service control plane interfaces

CPIi. Service model operations are exposed through the unified

service interfaces USIi to the next-higher layer of service

integration modules (USIi are shown in the figure with blue

interface symbols for adapters Ai).

The layer of Service Integration Modules contains modules that

connect service adapters with logic for certain service integration

tasks. Figure 2 shows one module named campgn.sim with

connections to three adapters A1, A2 and A4 as they are needed for

the promotional campaign in the example in section 3. Integration

modules are comprised of logic (code, workflows) using the

unified service interfaces USIi of the adapters.

The advantage of a layered architecture is the introduction of

abstractions (messages, events, federated service models, adapters,

and service integration modules). It also allows the separation of

concerns. Three main roles can be distinguished that participate in

the service integration development.

First, service model developers concentrate on designing and

providing current models of relevant services in the cloud. The

richness of these models must allow the control plane integration

scenarios and enable adapters to be build based on the

information in the models.

Second, service adapter developers create reusable service

adapters based on service models, reducing the scale of building

integration adapters between n services from O(n2) to O(n). Only

one adapter needs to be built per service based on the service

model. The main task here is to develop the specific

implementation that establishes the connection with the service

control plane interfaces CPIi. In case services already offer service

interfaces (e.g. WSDL or REST-based), adapter development can

be simple. More advanced technologies must be applied when

services do not provide programmatic interfaces. In those cases,

user interface recording and replay-scripting techniques [18] can

be used for building adapters.

The third is the role of the service integration developer with the

responsibility of creating specific service integration modules

such as the one for the promotional campaign in the example.

Service integration developers primarily use service adapters with

their unified service interfaces. The heterogeneity of underlying

service control plane interfaces is hidden inside adapters allowing

the integration developers to concentrate on the integration logic.

For this, conventional programming (e.g. in Java) can be used as

well as business process or workflow-based development. The

result is a service integration module (.sim).

A layered architecture enables the separation of concerns and

allows tasks being performed by different roles.

5. SERVICE MODELS
Service descriptions typically contain a location where a service

can be accessed, along with an interface description which lists

operations of the service along with their input and output

parameters. This interface description for web services may be in

the Web Services Description Language (WSDL) or may be in

text format for REST-style services. However, interfaces do not

provide adequate description of service behavior. While various

annotation schemes for modeling service behavior are possible

with WSDL, our approach has been based on the convergence of

the principles of Service-Oriented Architecture (SOA) with those

of Model-Driven Architecture (MDA). The service models

exposed to the Services Integration Platform form the formal

representation of the operations, state, associated entities, and

meta-data information that capture all service behavior needed for

integration.

Models defined as descriptions that are maintained separately

have a serious problem in practice—as services are modified and

evolved over time, the documents containing these descriptions

are often not maintained in synchronization with the service logic.

This causes developers, who rely on the documentation to make

mistakes that require additional debugging and testing. At a

minimum, additional effort is necessary in the development

process to maintain both the code and the documentation. In our

framework, annotations co-exist with the service logic within Java

source and class files. When a particular service is started, the

runtime system introspects the code and auto-generates the

corresponding service model.

We use rich model descriptions that are based on the Common

Information Model (CIM) [19], which is an object-oriented

framework standardized by DMTF [20]. CIM is widely used in

systems management software. To make CIM more developer-

friendly, we introduced extensions to the CIM models that allow

classes to be declared as interface classes. Any class declaration

can then include such classes with the standard semantics of

interface classes.

Figure 3 shows the CIM meta-model as defined by DMTF,

extended to include interfaces. Note that it allows classes defined

in the resulting models to have model elements such as properties

and operations, as well as meta-data information in the form of

qualifiers. Subtyping for the purpose of overriding properties and

operations is allowed. Unlike standard UML models [21],

references to other classes are restricted to association classes.

Models capture the dynamic state of service instances in the

runtime system. This allows models to be exchanged and operated

upon by the different layers of the service integration platform

described in Section 3.1. However, it would make the work of the

service adapter developers harder if they had to update these

models as the service logic evolves. Hence, the approach taken in

our service integration platform is the generation of these models

at runtime based on code introspection. This ensures that the

generated models are in sync with the code for the service logic.

Service model developers bootstrap the process of generating

annotated Java code by writing the model in DMTF’s Managed

Object Format (MOF) [22] as shown in Figure 4 for class

describing coupons in our earlier example.

 5

Name: string

Named Element

Property

Value: variant

Qualifier

Reference

Class

Association Indication Interface

Method

Trigger

Schema

0..*

0..1

Property Override

0..*
0..1

Method Override

0..1

0..*Supertype

0..*

Method

Domain

0..*
Property

Domain

0..*

1
Range

1
2..*

1

0..*

0..*

1..*
Element Trigger

1

0..*

Characteristics

Figure 3: Meta-model used for creating models

A code generator uses the model to generate annotated Java stubs.

The service adapter developers then add service logic within the

code stubs. This is illustrated in the code segment in Figure 5,

which shows the annotated Java class generated from the MOF

definition for the Coupon class. The service logic within the

setCouponNumber method has been added by the adapter

developers. Note that the developers are not restricted to

generating code from MOF definitions. They can also modify

 [Version("1.0"),SuperClassVersion("1.0"),Provider("telecom.svc.coupon")]
class SIE_Coupon : SSP_Entity {
 SINT32 CouponNumber;
 [Write, ValueMap{ “Issued", "Redeemed", “Invalid”}]
 STRING CouponStatus;
 [Description("Initialize coupon number exactly once to a positive value.")]
 BOOLEAN setCouponNumber(SINT32 couponNumber);
};

Figure 4: CIM/MOF class representation for SIE_Coupon.

both the class definitions and the annotations directly in Java, e.g.,

to add other operations and make them available in the model

using @Export annotations. The introspection of the developers’

code at runtime results in data exchanges among the service

model providers. DMTF’s CIM-XML [11], the XML-based

serialization format, is used in these data exchanges, over HTTP.

The @ExportClass annotation implies that this Coupon class

should be exported by the runtime to the Federated Model Store

Layer. Parameters in this annotation provide optional information

to the runtime system such as the version of this class and the

schema within which this model resides. Since the model creator

inherited from the abstract class SSP_Entity in the definition of

SIE_Coupon, the generated class in Java inherits all properties

and operations from BaseEntity which is defined by the platform

run-time and corresponds to the model SSP_Entity. This class

allows other services to receive notifications when changes are

made to an instance of SIE_ Coupon. The @Export annotation is

attached to attributes and operations that the runtime makes

available through the model representation. The @Param

annotation allows names to be assigned to the parameters in the

exported model operations. The method signatures of

getCouponNumber() and getCouponStatus() lead the runtime

system to conclude that CouponNumber and CouponStatus are

attributes that can be read from the model. Our implementation

conforms to the CIM specification; hence the presence of a

―setCouponStatus()‖ method, with return type void, indicates that

the CouponStatus property is writable by service clients. The

method signature of the ―setCouponNumber()‖ method, however,

leads the runtime system to conclude that it is an operation on the

@ExportClass(classVersion="1.0", schema = "SIE")
public class Coupon extends BaseEntity {

public enum Status {Issued, Redeemed, Invalid} ;
private Status couponStatus;
private int couponNumber = 0;

@Export
public Status getCouponStatus(){
 return couponStatus;
}

@Export
public void setCouponStatus (
 @Param(name="CouponStatus") Status couponStatus){
 this.couponStatus = couponStatus;
}

@Export
public int getCouponNumber(){
 return couponNumber;
}

@Export("Description(\"Initialize coupon number exactly once to a positive
value.\")")
public boolean setCouponNumber(
 @Param(name="couponNumber") int couponNumber) {
 if ((this.couponNumber == 0) && (couponNumber > 0)) {
 this.couponNumber = couponNumber ;
 return true;
 }
 return false;
}
}

Figure 5: Generated stub code for service model.

model and not an operation for writing the CouponNumber

property. This is because its return type is Boolean rather than

void. The CouponNumber property in the model is not writable,

and must be updated only through this operation, which allows

the service logic to be enforced.

The service adapter developer can focus on the service logic, and

can depend on the runtime system of the service integration

platform [9] for event and message handling, and for service

discovery, communication and version management. The burden

of maintaining service models is minimized. The runtime system

verifies that the model versions are compatible across services

[10]. The extension of abstract classes in the development

environment allows the developer to override standard service

operations, such as subscription to model events, as needed.

6. RELATED WORK
Service providers today offer mostly services that are used

individually and in isolation. Integration of services remains

difficult, mainly due to the lack of programmable interfaces,

although this is improving. Even where programmable interfaces

exist, their variety and heterogeneity require adapters to be built

that translate messages from one service to another. A number of

platforms have been developed providing message brokerage

capabilities in the data plane. CORBA [1, 2] and DCE [3] were

early platforms that emerged before XML and web services. E-

speak was one of the first early message broker platforms for web

services [4]. Our work focuses on the control plane, and is

orthogonal to techniques for message brokerage in the data plane.

 6

Later, service integration progressed towards control flow

coordination with various service orchestration and composition

languages and frameworks. WSCI [5] and BPEL [6] are

examples. Domain-specific process integration frameworks

emerged for e-business such as ebXML [7] and RosettaNet [8].

Data translation and data transformation was addressed e.g. in the

XML tool set with XPath, XQuery and XSLT. The eclipse ATL

environment allows implementing powerful grammar-driven data

transformations [12]. Our future work will address the generation

of composition logic for service integration scenarios, and will

address this part of the related work.

Integration of cloud services has been addressed recently by

several companies. Bungee Connect [13] allows application

developers to integrate web services with enterprise applications

and data services being built using various technologies. Since it

is targeted at developers, it is assumed that developers will

understand the different technologies needed to integrate services.

Cast Iron Systems [14] specializes in integration of cloud and on-

premise services. The company builds integration templates that

can be configured in their graphical designer. Cast Iron Systems

focuses on major cloud services from Google, Salesforce,

NetSuite, etc. These solutions are geared towards enterprise

customers, while we have proposed a solution for the telecom

service provider market.

Integration of services has also been covered in the research

community [15, 16, 17]. Our work is distinct in its focus on the

annotation of Java code by the developer, and generation of the

model at runtime by introspection.

7. CONCLUSION
We have proposed a developer-centric approach to integration of

services on the control plane. Our innovative approach is based

on annotation of Java code maintained by the developer, which is

introspected at runtime to generate the model that captures the

dynamic state of the service. The annotation process ensures that

the service models remain in sync with the service logic.

Integration is driven at runtime by an event-notification layer that

informs subscribed services to the changes in the modeled state of

a service.

We are currently in the process of delivering our implementation

as a capability in a HP product. Developers are integrating the

first set of services based on our approach. This can lead to a case

study in future. Our research is focused on generating the

composition logic for service integration scenarios based on

declarative descriptions of valid execution states.

8. REFERENCES

[1] Siegel, J. 1999. CORBA 3 Fundamentals and Programming.

ISBN 0471295183, John Wiley and Sons, New York, NY.

[2] Object Management Group. 2008. Documents Associated

with CORBA, 3.1: http://www.omg.org/spec/CORBA/3.1.

[3] The Open Group. OSF Distributed Computing Environment

Download Page. http://www.opengroup.org/dce/download.

[4] Hewlett-Packard Company. 2001. E-speak Specification.

Available: http://www.hpl.hp.com/techreports/2001/HPL-

2001-138.pdf.

[5] W3C. 2002. Web Service Choreography Interface (WSCI)

1.0. Available: http://www.w3.org/TR/wsci.

[6] OASIS. Web Services Business Process Execution Language

Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-

specification-draft.html.

[7] OASIS. ebXML Specifications: http://www.ebxml.org/

specs/index.htm.

[8] RosettaNet: http://www.rosettanet.org.

[9] Srinivasmurthy, V. et. al. Web2Exchange: AModel-Based

Service Transformation and Integration Environment. In

Proceedings of the IEEE International Conference of

Services Computing, 2009.

[10] Karin Becker, Andre Lopes, Dejan S. Milojicic, Jim Pruyne,

Sharad Singhal: Automatically Determining Compatibility of

Evolving Services. ICWS 2008: 161-168.

[11] DMTF, WBEM: CIM-XML, http://www.dmtf.org/

standards/wbem/CIM-XML .

[12] eclipse ATL: http://www.eclipse.org/atl.

[13] Bungee Connect. Bungee Connect is Platform as a Service.

http://www.bungeeconnect.com.

[14] Cast Iron Systems, An IBM Company:

http://www.castiron.com.

[15] Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad,

H.R. and Toumani, F. 2005. Developing Adapters for Web

Services Integration. CAiSE 2005,

DOI=http://dx.doi.org/10.1007/b136788 pages 415-429.

[16] Zhang, L., Zhou, N., Chee, Y., Jalaldeen, A., Ponnalagu,

K.,Sindhgatta, R. R., Arsanjani, A., and Bernardini, F.,

SOMAME: a platform for the model-driven design of SOA

solutions, IBM Systems. Journal, vol 47, pp. 397-413, July

2008.

[17] Kim, W., Graupner, S., Sahai, A., et.al.: Web-E-Speak:

Facilitating Web-Based E-Services, IEEE Multimedia, ISSN

1070-986X, Vol. 9, No. 1, pp. 43-55, Jan/Mar 2002.

[18] Bergman, R., et.al. A visual tool for rapid integration of

enterprise software applications. HP Technical Report,

http://www.hpl.hp.com/techreports/2010/HPL-2010-29.html

[19] Distributed Management Task Force (DMTF), Common

Information Model (CIM), http://www.dmtf.org/standards/

cim.

[20] Distributed Management Task Force (DMTF),

http://www.dmtf.org.

[21] Object Management Group (OMG), Unified Modeling

Language (UML).

[22] DMTF: Managed Object Format (MOF),

http://www.dmtf.org/education/mof.

