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ABSTRACT 
This paper describes Hash-Based Routing (HBR), an ar-
chitecture that enhances Ethernet to support dynamic 
management for multipath networks in scalable datacen-
ters.  This work enhances HBR to support flow ensemble 
management for large-scale networks of arbitrary topolo-
gy.  Ensemble routing eliminates measurement and con-
trol for individual flows and instead manages using sum-
mary data thus providing a unique capability for reactive 
datacenter-wide network management. HBR provides 
seamless interoperability with Ethernet and supports the 
attachment of unmodified L2 hosts and devices including 
FCoE devices within converged fabrics.  Simulation expe-
riments demonstrate efficient multipath routing for a va-
riety of scalable topologies. Optimized routing maintains 
efficiency in the presence of network faults and imple-
ments spatial Quality of Service to dynamically provision 
physical network hardware among co-hosted tenants or 
applications. 

Categories and Subject Descriptors 
C.2.1 Network Architecture and Design 

General Terms 
Design, Management, Performance, Reliability 

Keywords 
Networks, Ethernet, Multipath, Switching, Fault Toler-
ance 

1. INTRODUCTION 
This paper enhances Hash Based Routing (HBR) for data-
center networks [1].  HBR supports cost-effective and 
scalable L2 networks with multipath routing for high bi-
section bandwidth.  While HBR was originally limited to 
fat tree topologies, this paper contributes enhancements 
including an architecture for the static and dynamic man-
agement of arbitrary topology L2 Ethernet networks, and 
experimental results that demonstrate the utility of the 
architecture for scalable fault tolerant networks and 
Quality of Service applications. 

Enhancements to static management analyze irregular 
traffic and irregular network topologies to identify obli-
vious management policies (like Valiant routing [2]) that 
optimize multipath flow for irregular traffic on arbitrary 
unstructured networks. Dynamic management adds major 
qualitative advantages when compared to using over-
provisioned hardware with static management.  Dynamic 

management layered on top of HBR provides unique ca-
pabilities in areas of fault tolerance, online maintenance, 
Quality of Service, and power. 

HBR is a pure network architecture requiring no host or 
end-device modifications.  HBR differs from other multi-
path approaches in that it closely follows and builds on 
layer-two Ethernet’s base architecture while enabling 
adaptive and scalable datacenter-wide routing.  The archi-
tecture provides a fully compatible L2 Ethernet network.  
Legacy Ethernet switches can be attached at the edge of 
the fabric, and L2 host, LAN, and FCoE devices can be 
attached to those switches without special registration.  
Device mobility is supported as in normal L2 networks 
where an L2 timeout or gratuitous L2 broadcast is suffi-
cient to clear stale Ethernet learning cache data. 

Unlike L2 switching, Layer 3 routing exploits IP ad-
dresses structure in harmony with controlled device 
placement.  For example, routing is simplified when de-
vices in one customer’s IP range are on the right side of a 
datacenter while devices in another customer’s range are 
on the left.  For modern datacenters, however, devices are 
often virtualized and dynamically provisioned. Device 
location is not easily controlled and may change frequent-
ly.  This defeats the utility of routing using compressed 
L3 wildcard or range TCAM rules.  

Since L3 addresses have no geographic use, HBR uses L2 
addresses to improve compatibility.  L2 addresses are 
unstructured and not useful in compressed range or wild-
card rules.  Thus, for approaches such as OpenFlow [3] 
that rely on existing TCAMs, compressed rules cannot be 
used and at least one rule (often more) is needed for each 
addressable device, representing a serious problem for 
large datacenters having many virtual devices.  In this 
case, the number of allowed virtual devices depends on 
the number of physical TCAM entries in a switch. 

The HBR architecture is based on two key principles.  
The first principle asserts that centralized out-of-switch 
software provides important advantages over distributed 
in-switch protocols.  This approach follows that of Infini-
Band’s subnet manager [4].  Subnet manager software, 
assisted by components in every switch, allows flexible 
and powerful datacenter-wide control.  The subnet man-
ager simplifies the deployment of new datacenter-wide 
management capabilities.  Switch hardware remains sim-
ple, and complex control is performed by external soft-



ware.  New capabilities evolve by enhancing subnet man-
ager software without complex switch firmware/hardware 
upgrades and without waiting for new industry standard 
distributed protocols that may not provide needed data-
center management solutions. 

The second principle asserts that managing individual 
flows or managing traffic to individual destination devic-
es is too fine grained.  Some approaches manage individ-
ual flows without adequately addressing the needs of da-
tacenters that may include thousands of L2 devices each 
supporting many small and transient flows.  Architectures 
that maintain and update per-flow management state will 
be expensive to implement, and unable to quickly react to 
changing traffic and changing hardware. Architectures are 
needed that dynamically manage large ensembles of tran-
sient and hard to predict flows between end-stations that 
may be virtualized and may move with host migration.  
HBR manages traffic at the granularity of an ensemble.  
Thus, with HBR the size of the management state is inde-
pendent of the number of flows or destination addresses. 

Ensemble routing is defined in a two-tiered hierarchy.  
Injected packets first encounter a routing layer, which 
routes each flow ensemble onto one of multiple routing 
networks providing path diversity.  A switching layer uses 
conventional Ethernet switching within the routing net-
works to direct individual packets to their destinations.  
Routing for flow ensembles is different from conventional 
switching or routing because each ensemble identifies 
flows having diverse sources and destinations, and routing 
must accommodate this diversity.  

The lower level switching layer, used to forward packets 
in each routing network, exploits existing Ethernet learn-
ing and efficiently detects forwarding ports for destination 
addresses.  Per-destination switching information is 
cached and can be dropped and re-learned efficiently us-
ing traditional learning functions.   

A primary advantage of ensemble routing is that only a 
small amount of routing state is needed to control network 
traffic throughout a large datacenter.  This facilitates fast 
reactive management of huge numbers of flows with 
simpler control than is possible for per-flow management.  
Both subnet manager software and the switch hardware 
are simplified.  The manager gathers and processes con-
densed information to determine optimized control set-
tings.  A terse list of control settings is sent back to 
switches to maintain correct and efficient operation.  
Switch hardware maintains a small management state.   

A disadvantage of ensemble routing is that it sacrifices 
fine grained control for individual flows.  This may cause 
some flows to take non-optimal paths.  Our experimental 
results indicate that for large datacenter networks, the 
scalable control advantages of ensemble routing outweigh 
the disadvantages. 

2. Hash Based Routing Architecture 
Previous work [1] on HBR minimized routing state by 
managing flow ensembles.  Packets within a flow are 
mapped to the same ensemble so that each flow is carried 
on a single path that preserves packet order. Pseudoran-
dom hashes identify ensembles, which are mapped to 
physical switch ports to optimize multipath routing in fat 
trees. Symmetric flow identification ensures that bidirec-
tional communications take congruent outbound and reply 
paths preserving Ethernet learning efficiency.  Asymme-
tric HBR is also of interest but not treated here.   

This paper presents hardware architectural enhancements 
to HBR and new software management algorithms to 
manage arbitrary traffic ensembles within arbitrary net-
work topologies. Enhancements shown here identify flow 
ensembles called routing classes that contain hash and 
priority information for multipath and QoS. Routing 
classes now are mapped onto routing VLANs to control 
traffic in complex topologies.  Routing classes are derived 
from packet headers.  Specifically, each flow has an asso-
ciated traffic class and a hash class.  The traffic class 
identifies customers, applications, or traffic types (e.g. 
LAN vs storage) to allow differentiated traffic treatment 
for QoS.  Flows in a single traffic class receive equal fair 
treatment. The hash class supports path diversity within 
each traffic class and identifies an ensemble of flows that 
have the same hash value and follow the same route. 

The routing class is the smallest unit for traffic measure-
ment and control.  Routing classes are identified with a 
routing class id that is formed by concatenating traffic and 
hash class identifiers.  The granularity or the number of 
hash classes that subdivide each traffic class can be ad-
justed by choosing the number of hash output bits that are 
included in the routing class specification.   

HBR uses routing VLANs to navigate networks with arbi-
trary topology. An enhanced HBR switch, first described 
here, is placed at all ingresses to a core multipath net-
work. The switch performs a programmable lookup to 
direct routing classes to VLANs. Routing VLANs draw 
on prior research [5-7]  and exploit existing switch capa-
bilities while preserving customer-visible VLANs at the 
fabric edge (e.g. using VLAN stacking).  Routing VLANs 
are carefully constructed for efficient ensemble routing. 
An HBR edge switch encapsulates packets in a routing 
VLAN. Packets are conventionally forwarded (within the 
routing VLAN) through the network core, and packets are 
decapsulated at the egress.  VLAN encapsulation hides 
routing VLANs from all network devices. HBR efficiency 
is demonstrated below for multiple network topologies. 

2.1 Routing for Fat trees 
Figure 1 shows a folded Clos or fat tree network [8].  Fat 
trees offer many equal length paths between edge switch-
es and simplify multipath control.  Edge uplinks are color 
coded with the top switch to which they connect. A 
routing VLAN is defined for each top switch with its cor-



responding color.  Uplinks can be augmented with paral-
lel links (as Link Aggregation Groups or LAGs) to pro-
vide additional bisection bandwidth.  

 
Figure 1: Fat Tree 

Active load balancing maps routing classes to carefully 
selected VLANs to manage the upward flow of packets.  
A central manager (not shown) continuously measures 
traffic load.  The manager implements a datacenter-wide 
policy, by setting values in ensemble routing tables within 
each switch to control the distribution of traffic across 
VLANs and top switches.  

 
Figure 2: Fat Tree with Faults 

An example that demonstrates flexible management for 
complex and changing network topologies is shown in 
Figure 2 where two failed links are marked with an X.  
Consider the failed uplink on the E3 edge switch.  Traffic 
that exits E3 cannot be routed through port 3. Routing 
VLANs are reprogrammed in reaction to topological 
changes like link failures. An alternative bypass path is 
provided within the reprogrammed VLAN that starts at 
the port 2 uplink, enters the T2 top switch and passes 
through the E2 edge switch and back to the T3 top switch. 
This dark solid red VLAN provides an acyclic network 
and fully flexible communications between downlinks. 

  
Figure 3: Clique Figure 4: HyperX 

An example bypass path has also been constructed to ac-
commodate a failed link between T0 and E0.  This illu-
strates that the network architecture can accommodate 
multiple link failures.  The management changes needed 
to handle faults – setting up new routing VLANs and new 
routing class assignments to routing VLANs – are inde-
pendent of both flows and destination addresses. 

2.2 Routing for Cliques 
Figure 3 shows an example meshing fabric arranged in a 
clique topology that eliminates unnecessary switches and 
hops from fat trees.  This example uses 6 links to directly 
connect 4 switches.  Each physical link is shown as a pair 
of colored (dashed) lines.  Separate colors indicate routing 
VLANs that are carried on each link.  Each VLAN reach-
es all switches.  Direct connect topologies are more com-
plex to manage as controllers balance competing objec-
tives for sending traffic on a shortest path and spreading 
traffic across multiple non-optimal paths. However, these 
networks efficiently scale to large configurations with 
future high port count switches. 

2.3 Routing for HyperX 
Prior work has shown that multidimensional clique net-
works called HyperX [9] efficiently scale.  While harder 
to control than fat trees, these networks use fewer compo-
nents and smaller hop counts.  A 44 HyperX network is 
shown in Figure 4.  Each row is connected as a clique 
(like Fig. 3) to row members and each column is con-
nected as a clique to column members.  Each HBR switch 
provides six uplinks.  Forty eight uplinks (6 in each oval 
clique) connect 9 switches.  Example routing VLANs are 
not illustrated but are constructed using simple algorithms 
(Section 4.2) that facilitate experiments below. 

2.4 Broadcast and Control Traffic 
A network is needed to control switches.  A control 
VLAN is constructed as a conventional spanning tree that 
reaches all Ethernet switches and devices.  This network 
supports control actions such as programming VLANs.  

Broadcasts can disrupt system performance when hosts 
must process and dismiss too many broadcast packets 
such as ARPs needed to discover unknown IP-to-MAC 
address bindings.  Similar L2 Flooding occurs when 
switches have no learning entry for a destination.  As with 
normal Ethernet, HBR broadcast and flood packets are 
encapsulated within a routing VLAN and decapsulated 
from that VLAN like any other packet. While such broad-
casts do propagate through the high bandwidth network 
core, at the edge of the fabric, the broadcast scope is con-
tained within tenant- or application-oriented VLANs.  We 
preserve conventional L2 behavior which limits the scope 
of broadcasts to edge devices within appropriate VLANs. 

3. HBR Switch Architecture 
The HBR switch in Figure 5 is logically divided into four 
layers that separate downlinks from uplinks.  Downlinks 
connect to standard Ethernet devices including hosts, sto-
rage, and switches.  Uplinks interconnect HBR switches 
in a multipath routing fabric and carry packets that are 
encapsulated in routing VLANs. The edge layer is a con-
ventional Ethernet network that connects downlinks to the 
core.  The core is also a conventional Ethernet network 
that interconnects HBR switches and may include con-
ventional (non HBR) switches such as the fat-tree top 



switches.  The core layer uses routing VLANs to direct 
multipath traffic through complex network topologies. 

Some packets traverse the edge layer from downlink to 
downlink as a conventional Ethernet switch.  Other pack-
ets are destined for uplinks that traverse the core and par-
ticipate in managed multipath routing.  Uplink-bound 
packets traverse traffic classification and routing layers 
through a special virtual “Uport” that carries packets that 
are destined for the core.  The traffic classification layer 
maps up-bound packets into classes that receive similar 
QoS treatment in the core.  The hash-based routing layer 
distributes up-bound packets into hash classes that sup-
port multipath load balancing.  Traffic class and hash 
class information are combined to identify individual 
routing classes. Routing classes are dynamically mapped 
to routing VLANs to support active management. 

The virtual “Dport” carries downward-bound packets 
destined for the edge.  These packets are decapsulated 
from the routing VLAN and then processed by conven-
tional edge layer switches. 

The HBR switch combines core and edge switch func-
tions into a single switch.  As a result, the switch per-
forms up to two learning actions on a single packet.  Each 
learning action requires the two traditional components:  
using the source address to learn new cache entries, and 
using the destination address to reference previous entries 
that identify destination ports.  

  

Fig. 5: HBR Switch Fig. 6: Header Processing 

3.1 Packet processing flow 
The switch flow diagram for packet header processing is 
shown in Figure 6.  An ingress learning lookup performs 
ingress-side switching. The ingress may be on either the 
core-side or on the edge-side.  The lookup result is an 
egress port that can be a normal port or a special virtual 
destination port (Uport or Dport).  Packets directed to 
normal ports traverse the switch as a conventional switch 
(core or edge), without crossing the routing layer. 

If the ingress learning lookup result is the Uport, it indi-
cates that the packet is up-bound and should enter a 

routing VLAN.  The switch selects a routing VLAN for 
the packet by performing traffic classification, hashing, 
and the routing VLAN lookup.  The packet is then encap-
sulated in the chosen routing VLAN.  A source address 
substitution (for learning only) indicates to subsequent 
egress learning that the packet was seen arriving into the 
routing domain from the Dport. 

Alternatively, the result of the ingress learning lookup 
may be the Dport, indicating that a packet is down-bound 
and exiting a routing VLAN.  The packet is decapsulated 
from the routing VLAN.  A source port substitution indi-
cates to subsequent egress learning that the packet was 
seen arriving from the routing domain on the Uport. 

For packets that enter or exit the routing domain, a second 
egress learning lookup identifies the egress port within the 
resulting VLAN after the domain change.  After this 
second lookup, normal switch processing resumes, and 
the egress port id is used to send the packet across the 
switch’s internal data path to the appropriate port. 

Packets that enter the routing domain emerge from the 
ingress learning lookup with the “Uport” as the virtual 
destination.  For these packets, a route lookup is per-
formed and the packet is encapsulated in the selected 
routing VLAN.  After routing, the packet is again 
processed by the egress learning lookup. 

3.2 Traffic classification 
At the edge of the routing fabric, incoming packets are 
classified into traffic classes.  Traffic classes are flow 
ensembles that receive independent management treat-
ment.  Packets within a single traffic class share identical 
QoS goals across the fabric.  Traffic classification inputs 
include the Ethertype, the customer VLAN, and (if the 
Ethertype type is IP) the protocol field.  The traffic classi-
fication process interfaces high-level service class objec-
tives with low-level features that are defined by the Con-
verged Enhanced Ethernet specification.  CEE defines 
priority and class of service fields that specify differential 
packet treatment and lossy versus lossless flow. 

3.3 Hashing 
Hash classes are identified by applying a hash function to 
packet header fields.  The function is repeatable and the 
re-application of any input produces an identical result.  
For each source address s and each destination address d, 
H(s, d) represents the hash class for every message sent 
from s to d.  This hash may incorporate L2 or higher layer 
information.  Each ordered stream is mapped to a single 
hash class so that the stream traverses a unique path. 

Symmetric hashes have H(s, d) = H(d, s).  Symmetric 
hashes ensure that after a message traverses from a source 
to a destination, the same path is retraced by a reply.  
Symmetric or congruent routes simplify Ethernet learning 
needed to eliminate flooding and help to preserve Ether-
net’s plug-and-play properties.  



This section describes a hash implementation which is 
based on exclusive or logic and is used for our experi-
ments (Section 6).  The hash input is formed using fields 
from the packet header. A hash function “out=H(input)” 
is then used to pseudo-randomly distribute input values to 
output values.  A matrix approach based on bitwise XOR 
and logical AND is used.  Assume that a hash function H 
is applied to S input bits in input vector IN to produce R 
result bits for output vector OUT.  Consider a Boolean 
coefficient matrix C having R rows and S columns.  We 
implement H using the matrix product OUT = CIN 
which is rewritten as:  OUTij= 0jS CijINj for each i, 
0iR.  Here, the product is a simple Boolean AND.  The 
summation is the exclusive or of all product bits.  This 
hash is easily computed with modest hardware. 

3.4 Routing VLAN Lookup 
The routing lookup enforces fabric-wide management 
decisions.  The lookup can be implemented using TCAMs 
in each switch that are set by a subnet manager to control 
packet flow across the fabric.  The lookup key consists of 
the packet’s traffic and hash classes.  A match isolates a 
single routing class and produces a VLAN tag result that 
specifies the selected routing VLAN for that routing class. 

The number of TCAM entries needed for HBR routing is 
estimated as the number of routing classes which is equal 
to the number of traffic classes times the number of hash 
classes in each traffic class.  For example 1024 TCAM 
entries could be used to manage sixteen distinct traffic 
classes in fractional traffic increments of 1 part in 64.  
TCAM hardware allows substantial management flexibili-
ty, and traffic classes need not be managed with equal 
granularity. 

4. Network Management Architecture 
Our traffic management architecture has two layers.  A 
slowly reactive topology planning layer defines logical 
Ethernet networks. Topology planning reacts only to 
changes in the network topology such as link failures.  
Topology planning is implemented using network discov-
ery, which characterizes the current physical fabric, and 
routing VLAN construction, which identifies optimized 
routing networks for traffic management.  

A more highly reactive dynamic management layer as-
signs flow ensembles to routing VLANs. Dynamic man-
agement reacts to changes in traffic patterns or QoS goals.  
Dynamic management is implemented using traffic pro-
jection, which predicts the impact of proposed traffic 
changes based on previous traffic measurements, and 
route optimization, which provides heuristics that identify 
optimized routes for all traffic. 

Dynamic datacenter-wide active management is imple-
mented using a subnet manager.  Our current subnet man-
ager is a central controller that sends and receives simple 
commands to observe and control switches.  The switches 
interpret control messages and perform low-level man-

agement actions.  The subnet manager executes a man-
agement cycle loop that collects per-hash-class data from 
each switch, computes an optimized fabric-wide man-
agement policy and downloads management instructions 
to all switches. 

The centralized manager may appear to impose a perfor-
mance bottleneck for reactive management action. How-
ever, due to efficiencies that result from the use of sum-
mary per-routing-class data, experiments [10] have shown 
that centralized management can provide between 10 and 
100 datacenter-wide management operations per second 
without undue communication or computation needs. Dis-
tributed subnet managers are also of interest but have not 
yet been designed. 

Many routing architectures use oblivious (e.g. Valiant) 
routing to support multipath.  Not only does this work 
extend oblivious routing to non-uniform traffic and topol-
ogies, we  dynamically exploit slow time varying changes 
in traffic that arise from the provisioning of new custom-
ers or the initiation of new applications.  We show that 
exploiting such non-uniformities enhances efficiency. 

4.1 Network Discovery  
Networks may have regular or irregular topology and 
must accommodate switch and link failures that occur 
within large scale datacenters. Network discovery lays the 
physical foundation for topology planning.  As compo-
nents are brought on-line or taken off-line or fail, network 
discovery provides an up-to-date physical map of availa-
ble switches and their connectivity. 

4.2 Routing VLAN Construction 
Routing VLAN construction identifies a current set of 
routing VLANs used to manage traffic across the discov-
ered topology.  Routing VLANs support multipath load 
balancing, and traffic isolation or differential traffic ser-
vice.  Each routing VLAN reaches every edge switch and 
is capable of transporting packets to any destination. 

VLAN construction builds each routing VLAN from a 
seed that identifies a root switch.  A VLAN is grown as a 
tree where each switch is reached by a shortest path from 
the seed.  The algorithm progressively identifies neighbor 
switches with increasing radius from the root.  Hop-count 
ties are broken by favoring links that host fewer VLANs, 
and using bisection bandwidth heuristics.  After a VLAN 
is constructed, a use count is incremented on links that are 
traversed by the VLAN to discourage growth of new 
VLANs across previously used links. 

Seeds are placed to increase path diversity, and more than 
one seed may be added for a single switch. For experi-
ments below, one seed is placed on each top switch for 
the fat tree.  For cliques and HyperX, one seed is placed 
in each edge switch.  Routing VLAN construction cannot 
occur at the full dynamic management rate of 10 to 100 
operations per second.  While VLAN-finding algorithms 



use simple and fast heuristics, setting up a new VLAN 
still requires time-consuming fabric-wide administration. 

4.3 Traffic Projection 
We solve two key traffic projection problems.  First, how 
can we decrease measurement complexity by reducing the 
number of measurements needed?  Second, how can we 
estimate the effects of proposed changes in the routing 
plan by projecting observed measurements from a pre-
viously used routing network to a candidate routing net-
work that has a different topology?  We developed tech-
niques based on linear algebra to solve both problems and 
experimentally demonstrated their effectiveness. 

Consider the modeling of interior traffic within networks 
such as those of Figures 2, 3, and 4.  In this discussion, 
traffic that enters and exits at the same edge switch is ig-
nored and not measured.  Important traffic is summarized 
as traffic that passes from one edge switch to another 
through the fabric.  Edge switches have downlinks which 
are attached to end-station devices.   We do not measure 
individual flows or all interior traffic for optimization.  
Instead, we use measurement probes that can, in principle, 
be placed anywhere in the fabric.  Each measurement 
probe accumulates traffic amounts within each routing 
class without providing direct information about source-
to-destination traffic.  Our current measurement probes 
exactly measure observed per-port and per-routing class 
traffic, and no sampling error is modeled. 

For cliques like Figure 3, probes can be strategically 
placed to reduce measurement complexity.  Key resource 
bottlenecks are uplinks that limit aggregate bisection 
bandwidth.  For N switches, direct monitoring of all up-
links would require N×(N-1)/2 measurement probes.  For 
such networks, we show that the use of a much smaller 
number of probes allows excellent results.  

For experiments below, bidirectional probes are strategi-
cally placed at fabric ingresses.  Each edge switch meas-
ures traffic passing through the Uport inside the switch 
connecting downlinks and uplinks. Thus, inputs to route 
optimization are restricted to two values (up-bound and 
down-bound) for each hash classes and for each edge 
switch.  While control may benefit from more detailed 
measurements in some cases, the use of ingress/egress 
measurements provides a compromise between measure-
ment complexity and traffic estimation accuracy. In fact, 
for full cliques, we have observed that the use of N in-
gress/egress probes produces identical results to the 
placement of N×(N-1)/2 probes on all internal links. 

For a given network, let E be the number of edge switch-
es.  Input traffic is characterized by an input vector T of 
length E2.  T provides a simple linearization of a two-
dimensional traffic matrix.  Let fi,j represent the value of a 
traffic flow from ingress switch i to egress switch j.  
Then, for every i and j, the corresponding element of T is 
found at index k=i+E×j.  The input represented by this i to 
j flow is modeled by a flow vector T that is all zeros ex-

cept for a single non-zero value at index k: Tk=fi,j.  For 
any ensemble e of flows, we use linear superposition to 
define an input vector T(e) that characterizes traffic 
among diverse sources and destinations by summing the 
flow vectors for elementary flows. 

For each VLAN v, a Measurement Projection matrix 
MP(v) characterizes the network’s measurement response 
to a given input.  MP(v) is used to project the effect of an 
input traffic load onto the measurement links.  MP(v) has 
a number of rows equal to the number of measurement 
links times two (for ingress & egress) and a number of 
columns equal to E2 (for traffic ingress-egress pairs). 

Consider input traffic consisting of a unit of flow from 
ingress index i to egress index j.  The traffic matrix index 
is again written so its k’th column (k=i+E×j) specifies the 
result of flow from i to j.  This input stimulus is applied to 
a network using some routing VLAN v.  The traffic path 
taken for this input can be determined by tracing the 
unique path from ingress i to egress j through VLAN v.  
For column k of MP, and for each measurement link r, the 
value for MP(v)r,k is one if the path from i to j traverses 
measurement link r and zero otherwise.  This process uses 
the known VLAN topology to determine the column of 
the measurement matrix for i-to-j traffic flow.  The 
process is repeated with a distinct input stimulus for each 
of the i,j traffic pairs to determine all matrix columns. 

After a measurement projection matrix is computed, we 
see that for any flow ensemble e and VLAN v, the equa-
tion M=MP(v)×T(e) projects this traffic ensemble onto a 
measurement vector M when that traffic is carried by 
VLAN v.  This measurement vector defines the collective 
measurement probe usage by all members of the T(e) 
flow ensemble. 

A key problem is that no direct measurements are availa-
ble for source-to-destination flows (i.e., T(e) is not 
known), because that would require complex source and 
destination MAC address processing which our architec-
ture obviates.  However, a pseudo inverse of the mea-
surement projection matrices can be used to indirectly 
estimate input traffic from measurements.  We use Singu-
lar Value Decomposition (SVD) to compute these pseudo 
inverses.  For each VLAN v, and its corresponding MP(v) 
measurement projection matrix, the MP+(v) pseudo-
inverse matrix is calculated. 

For each routing class c, we observe a measurement vec-
tor M(c) for the set of measurement ports.  This vector 
measures (samples) the amount of class c traffic that tra-
versed each measured port over a prior time epoch.  A 
known VLAN, v(c) was used to carry routing class c dur-
ing the measurement period.  We estimate the input traffic 
for each routing class c as: T(c) = MP+(v(c))×M(c). 

For each VLAN v a Resource Projection matrix RP(v) is 
defined much like the Measurement Projection matrix and 
is used to project input traffic onto link resources.  The 



resource links represent networking bottlenecks for which 
traffic is to be minimized.  The value for RP(v)r,k is one if 
the path from i to j traverses a resource link r when routed 
through VLAN v, else the entry is zero.  There are two 
unidirectional resource links for each bidirectional physi-
cal link.  For each routing class c, given the input traffic 
estimate calculated above, and the known VLAN v that 
was used to route class c, we can estimate the load on 
resource links as R(c)=RP(v)×T(c). 

For example, we use these estimates for the family of 
cliques shown in Figure 3. We use edge measurements to 
estimate interior traffic where no direct measurements are 
taken.  For each routing class, our current approach meas-
ures 2E values corresponding to up-bound (ingress) and 
down-bound (egress) traffic crossing the routing layer 
within each switch.  Using these measurements we calcu-
late projected traffic for E×(E-1) interior link resources. 

To perform traffic optimization, we use traffic measure-
ments from a prior routing VLAN v to estimate expected 
traffic within a new VLAN w.  This is a key component 
of any optimization procedure that relocates flow ensem-
bles within generalized network topologies to improve 
routing.  Consider a routing class c that was carried with a 
known VLAN over a prior time epoch.  A measurement 
vector M(c) taken for traffic on a prior VLAN v cannot be 
used directly to predict traffic that would occur when 
routed to a new VLAN w.  Difficulties arise when VLAN 
topologies differ, as traffic flow patterns and hop counts 
change with each new routing VLAN choice. 

 
Figure 7:  Traffic Projection Overview 

Projections are again performed using linear algebra. For 
each traffic class c and prior VLAN v, we first estimate 
the input traffic as:  T(c) = MP+(v)×M(c).  We then 
project estimated input traffic onto link resources using a 
new routing VLAN w using:  R=RP(w)×T(c).  For the fat 
tree and clique networks (Figures 2-3), experiments show 
that these cross VLAN projections are nearly precise.  For 
all networks tested, these projections provide sufficient 
accuracy to greatly improve overall routing efficiency. 

Figure 7 shows an overview of the traffic projection 
process.  An input measurement vector that was derived 
during the measurement time epoch is processed using the 
Measurement Projection matrix inverse for VLAN v to 

yield the estimated traffic vector.  The estimated traffic 
vector is then processed using the Resource Projection 
matrix for the proposed new VLAN w to find the resource 
estimate used in the subsequent route optimization.  

4.4 Route Optimization 
Route optimization provides reactive management as it 
uses measurements, from a prior time epoch, to calculate 
optimized routing controls for the next time epoch, and 
then sets those controls throughout the fabric.  Dynamic 
routing provides a foundation not only for efficient net-
work operation but also for correct operation in the pres-
ence of faults, power management, or on-line network 
maintenance.  Traffic can be dynamically directed away 
from or toward arbitrary regions of the fabric as needed. 

Our architecture optimizes multipath traffic for changing 
traffic load and changing resource availability.  Prior to 
load balancing, each traffic class is allocated a fixed ca-
pacity on each physical link that is provisioned for that 
class.  This allocation accommodates fault tolerance, 
power, and QoS status and may indicate full, partial, or no 
link availability.  A link’s class capacity indicates the 
amount of the link’s bandwidth that is to be provided to 
that class.  When an entire link is dedicated to one traffic 
class the class capacity is the total link capacity.  Alterna-
tively, the link capacity may be divided among traffic 
classes.  After resources are allocated, the load balancer 
maximizes throughput and minimizes congestion sepa-
rately for each traffic class and within the resource alloca-
tions for that traffic class. 

The load balancer is given a set of routing VLANs that 
provide path diversity across available links.  Each traffic 
class can be divided into a number of routing classes and 
each routing class may be placed on any routing VLAN.  
The load balancing heuristic uses a greedy optimization 
placing one routing class at a time.  As each routing class 
is placed on a routing VLAN, a cost function is mini-
mized to move traffic away from high congestion links 
and toward low congestion links.  At each step, the next 
routing class is placed on a routing VLAN that minimizes 
the cumulative cost for carrying all previously placed 
traffic plus traffic in the new routing class.  A projected 
cost is calculated for each candidate routing VLAN, and a 
minimal cost VLAN is selected.  Routing for a traffic 
class completes after the last routing class within that traf-
fic class is placed.  The process is repeated for each class.  

An example cost function minimizes the sum of the data 
transmission times squared on each link.  This non-linear 
cost function places a heavy penalty on congested links 
and efficiently distributes traffic across multiple paths.  
The transmission time is calculated as the link load within 
the traffic class divided by the link’s allocated class ca-
pacity.  Link loads are calculated using sample port mea-
surements from the prior time epoch and the traffic pro-
jections as described in Section 4.3. 



5. Network Management Applications 
HBR is designed to manage millions of flows on very 
large networks and does not attempt to perform individual 
flow management.  Instead, measurement and manage-
ment units are flow ensembles rather than single flows.  
The computational complexity for HBR control algo-
rithms was described in greater detail in [10] and scales 
for very large datacenters. Because information is highly 
compressed, CPU and communications needs for mea-
surement, optimization and control can be performed at 
reaction rates of about ten times per second across data-
centers having tens or hundreds of thousands of hosts. 

It is expected that datacenters have complex static and 
time varying characteristics that shape ensemble traffic.  
Changing traffic arises from application deployments, 
host virtual machine deployments, storage deployments 
(NAS or SAN), or other administrative actions that effect 
ensemble traffic across many flows.  Virtualization conso-
lidates virtual machines (VMs) onto a smaller shared pool 
of physical hosts and dynamically live-migrates VMs to 
enhance efficiency. This again introduces slow traffic 
changes that will be measured and exploited by HBR. 

HBR also accommodates changing network infrastruc-
ture.  Networks may be incrementally modified as hard-
ware is added or removed from service.  Online mainten-
ance allows modifications while system operation contin-
ues.  Switches are upgraded or replaced without network 
interruption.  Faults may occur that disable switches or 
links.  Power management detects low utilization and 
powers down gear to minimize operational and environ-
mental costs.  All these activities benefit from a dynamic 
manager that detects and reacts to infrastructure changes. 

Four network management applications have been devel-
oped for HBR and tested under simulation: multipath load 
balancing, fault tolerance, QoS management and power 
management.  All rely on the measurement and projection 
techniques described above.  The first three are demon-
strated in experiments below.  Power management is left 
for future work. 

6. Experimental Results 
Experiments are shown for multipath load balancing, fault 
tolerance, and Quality of Service.  A custom simulator 
was required to model unique characteristics of the HBR 
architecture.  A key goal is to understand the behavior of 
large-scale networks that incorporate novel hardware 
elements.  It was impossible to actually build representa-
tive network hardware within a small research project.  
Conventional packet-by-packet simulators cannot model 
large networks with many flows.  Thus, new simulation 
techniques were needed to model behaviors of interest 
while scaling to adequate size. 

We built a flow-level simulation that models network 
topology, link bandwidths, the placement of flows, and 
the competition of flows for bottleneck links.  The simula-

tion models fair progress among competing flows. It ad-
vances the progress of each flow as time progresses and 
as traffic and management controls change.  Flows that 
share bottleneck links are limited to fair and shared 
progress across those links.  Congestion loss and TCP 
dynamics are not modeled.  Instead, our simulations 
measure the throughput capability of the managed net-
work fabric. 

6.1 Load balancing and Fault Tolerance 
HBR switches support the rapid redirection of datacenter 
traffic.  When the subnet manager becomes aware of a 
failed switch or link, traffic can be quickly redirected to 
VLANs that do not use failed components.  While the 
network continues to operate, new routing VLANs can be 
constructed to mitigate the effects of lost components, and 
traffic then can be directed to newly constructed VLANs.   

Instead of modeling this dynamic behavior, our fault to-
lerance experiments evaluate aggregate network band-
width after topology planning and dynamic optimization 
are complete.  For each experiment, faults are randomly 
injected.  Then, a heuristic optimizes VLANs for the faul-
ty network, and dynamic load balancing optimizes per-
formance for the given traffic and topology.  Results are 
reported after topology discovery, VLAN formation and 
route optimization are complete. 

Our fault tolerance experiments use randomly selected 
flows to define synthetic applications.  Communication 
requirements for each application are defined by a fixed 
ratio of flow rates, which are determined by the applica-
tion, and must be preserved.  For example, in map-reduce-
style queries, each processing cycle contains a shuffle 
communication among nodes.  Given a placement of 
nodes in the fabric, this defines relative flow rates within 
the fabric.  The role of network optimization is to maxim-
ize application progress by uniformly accelerating all 
flows within the application.  The rate at which flows 
progress is limited by link bottlenecks that are identified 
by the simulator.  Flows are scaled in ratio to a maximal 
flow rate that can be jointly satisfied by the network as 
limited by these bottlenecks.  This results in an aggregate 
bandwidth across all flows delivered by the network. 

The experiments use two traffic pattern workloads.  A 
traffic pattern with a smaller number of large flows 
represents elephant flows that sparsely populate a traffic 
matrix having spatial hot spots.  A pattern with a much 
larger number of smaller flows represents mice flows 
having a densely populated traffic matrix without signifi-
cant hot spots.  Hosts are evenly distributed around each 
fabric, and flows are randomly generated between hosts.  
Many non-uniform traffic patterns have also been mod-
eled, and they show compromise behaviors between these 
mice and elephant extremes. 

Results using three policies are reported.  The spanning 
tree policy (“ST”) uses a single spanning tree VLAN to 
carry traffic.  The random traffic policy (“Rnd”) uses a 



round robin assignment of hash classes to routing 
VLANs.  The Rnd policy is oblivious to measured data 
and shares some characteristics with Valiant routing [2].  
Unlike Valiant routing, our random routing has been 
adapted to support arbitrary and faulty fabrics.  The 
Symmetric policy (“Sym”) uses best effort heuristics for 
symmetric routing where round-trip traffic takes a single 
path.  It is known that asymmetric routing policies (not 
reported here) will yield superior results [10].  For the fat 
tree and clique experiments a bound (“B”) is provided 
that, for each flow pattern, identifies a worst case ingress 
or egress bottleneck at some edge switch.  From this bot-
tleneck, we calculate a bound on overall throughput. 

For symmetric routing, in a first time epoch the input traf-
fic pattern is initially routed using the random routing 
policy.  Port traffic is measured over this time epoch.  
These measurements are used as the basis for the Sym 
optimization in which dynamic load balancing is applied 
to calculate an optimized Sym policy for a subsequent 
epoch.  Traffic is re-routed using the Sym policy, and 
performance results are reported after optimization. 

Our experiments show the effects of injecting link failures 
into each of the fabrics.  Each experiment begins with a 
fault-free fabric and randomly injects faults on uplinks 
within the routing fabric.  Each experiment progressively 
adds a new fault to previous faults until the maximum 
number of faults is achieved.  Routing VLANs are recon-
structed after each new fault is injected to avoid broken 
links.  Rare experiments that bifurcate the fabric cannot 
be completed and are ignored.  Multiple randomly chosen 
experiments are averaged to produce final results (100 
trials for fat tree and clique, 40 trials for HyperX). 
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Figure 8 – Faulty Fat-tree Performance 

Figure 8 shows the performance of a fat tree (Figure 1) 
with eight edge switches and four top switches.  Faults are 
sequentially injected among 32 10Gbps uplinks.  One 
hundred independent trials are averaged to provide each 
data point.  The fabric is managed using 512 hash classes. 
Aggregate throughput is plotted in Gigabits per second, 
and performance is shown for the bound (B), symmetric 
(Sym), random (Rnd), and spanning tree (ST) policies. 

First, we discuss fault-free fabric performance. Mice ex-
periments inject 10000 randomly selected uniform flows 

into the fabric.  Each hash class specifies a single routing 
VLAN for about 19.5 mice.  Optimized symmetric per-
formance for 10000 uniformly distributed mice 
(Sym10000) yields about 300 Gb/s of aggregate band-
width.  This corresponds to using 30 of 32 available up-
links.  The optimized performance for mice is about four 
times higher than spanning tree (as expected with 4 top 
switches).  When mice are randomly routed (Rnd10000) 
we see that for unbroken fabrics this approach is also 
nearly optimal and implements a form of Valiant routing 
for uniform traffic on a symmetric fat-tree network.  This 
demonstrates efficient scalable throughput when the num-
ber of flows greatly exceeds the number of hash classes.  
Here, both Sym10000 and Rnd10000 approach the 
B10000 bound.  Of course, this performance level is typi-
cally unrealistic as traffic is rarely this uniform. 

Elephant experiments inject 200 randomly selected large 
flows into the fabric.  In this experiment most elephants 
reside alone in a hash class and can be individually ma-
naged by HBR.  Elephants cannot achieve the highest 
performance levels due to non-uniformities in traffic that 
prevent co-equal link saturation.  For Sym, elephant man-
agement achieves near optimal B200 performance. 
Rnd200 is unable to match this efficiency with such un-
even traffic. 

As faults are incrementally injected into the fabric, all 
approaches suffer lost performance, but Sym10000 and 
Sym200 are efficient and remain close to known bounds.  
While sym falls off monotonically it delivers performance 
that is consistent with diminished hardware availability.  
Rnd is not nearly as effective as it routes with no aware-
ness of broken fabric asymmetries.  Spanning tree is less 
affected by new faults as it always uses 11 links irrespec-
tive of the number of faulty links. 
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Figure 9 – Faulty Clique Performance 

Figure 9 plots experiments for an eight node clique simi-
lar to Figure 3.  Cliques can be more efficient than fat 
trees as they reduce the average hop count, but they are 
more difficult to optimize as conflicting goals for mini-
mizing hops and spreading congestion across non-
minimal paths must be balanced. 



For Symmetric optimization (Sym10000) with no faults, 
results show excellent speedup over spanning tree 
(ST10000) but are not close to bounds (B10000).  And, 
for uniform mice, Rnd10000 is similar in performance to 
Sym10000.  When many flows map to one routing class, a 
single VLAN carries all flows in the class.  If each VLAN 
is a height-1 tree rooted at one of the eight edge switches, 
then simple arguments indicate that, for a large sample of 
random flows, about ¼ of the flows take one hop (those 
that begin or end on the root switch) and ¾ of the flows 
need two hops.  Due to the higher average hop count for 
uniform mice, we do not expect optimal results.  For 
mice, the average hop count for Sym10000 was measured 
at 1.56 (not plotted) which is lower than the measured hop 
count for Rnd10000 at 1.75 and Span also 1.75.  Sym 
lowers the hop count by exploiting small non-uniformities 
in 10000 flows to enhance performance over random.  
Asymmetric optimization has the potential to decrease 
this hop count and improve efficiency. 

As faults are injected, Sym10000 provides consistent but 
decreasing performance and now provides good gains 
over Rnd10000 which is unable to rebalance traffic to 
accommodate broken links in the fabric. 

The small number of elephant flows yields a larger band-
width improvement as Sym200 does a better job of man-
aging 200 flows with the 500 available hash classes.  
Sym200 now easily outperforms Rnd200 as it achieves a 
measured average hop count of 1.2 versus 1.75 for Rnd. 
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Figure 10 

Figure 10 shows results for a 5 by 5 HyperX similar to 
Figure 4. The unbroken 5 by 5 HyperX has 100 uplinks.  
Each switch connects to 8 uplinks.  Four uplinks connect 
to switches in the same row, and four uplinks connect to 
switches in the same column.  Elephants are modeled 
using 800 flows for this larger fabric while 20000 flows 
model mice.  Tight bounds are more difficult to establish 
so we introduce an estimator called scaled spanning tree 
(SST).  For each experiment, SST is calculated by scaling 
the measured spanning tree performance by the ratio of 
total non-faulty links divided by spanning tree links (e.g. 
for zero faults: times 100/24).  Each additional fault de-
creases the available non-faulty links by one and incre-
mentally decreases this ratio.  Thus, we might be satisfied 

if we could simply add links, beyond the spanning tree 
links, and achieve performance that is proportional to the 
number of links deployed. 

For mice with no faults, Sym20000 is 7.9 times faster 
than spanning tree and 1.98 times scaled spanning tree 
(SST20000).  The average hop count for fault-free mice 
with Sym is 2.69 while the hop count with Rnd is 3.02 
(not shown in plot). As faults are added, performance is 
incrementally lost in a graceful manner. 

Again elephant management produces superior results as 
flows are often managed in separate hash classes allowing 
lower hop counts.  Sym for elephants is 10.2 times faster 
than spanning tree and over 2.4 times faster than scaled 
spanning tree (SST800).  The average hop count for fault-
free elephants with Sym is 1.99 while the hop count with 
Rnd is 3.02.  Hop counts can be reduced and efficiency 
can be increased using asymmetric ensemble routing.  
However, this will add to management and Ethernet 
learning complexity. 

6.2 Multipath Spatial QoS 
The HBR architecture can be used to support multi-path 
spatial QoS within datacenters.  Using spatial QoS, high 
priority traffic is isolated to dedicated physical lanes gua-
ranteeing protected bandwidth.  Spatial QoS is intended to 
be used in conjunction with more traditional link schedul-
ing techniques such as DiffServ [11-12].  When a high 
priority tenant fails to utilize assigned bandwidth, physi-
cal resources can be reallocated to lower priority uses.  A 
high priority tenant reclaims resources through the simple 
act of sending more traffic.  As the subnet manager de-
tects additional traffic, it quickly moves lower priority 
traffic away from protected paths to support the additional 
high priority traffic. 

We implemented a Quality of Service manager that provi-
sions datacenter network bandwidth to multiple traffic 
classes using a spatial allocation of network resources.  
Traffic classes are identified by the customer VLAN on 
which packets arrive.  Our example dynamically allocates 
bisection bandwidth within a fat tree by provisioning mul-
tiple top switches, or slices of top switches, to traffic 
classes.  The example network has 5 top switches with 48 
ports each.  Each top switch is connected to 16 edge 
switches through three separate links.  Links are managed 
as separate resources and not as a LAG.  Thus, each top 
switch can be divided into three slices, where each slice 
provides one dedicated link for all edge switches.  The 
network can be provisioned as fifteen separate top-switch 
slices with no shared links. 

The spatial QoS manager implements both a static and a 
dynamic policy.  The static policy partitions a datacenter 
using fixed QoS ratios that describe relative traffic 
amounts allowed for each traffic class.  Each class is sep-
arately held to its static QoS restriction. 



Figure 11 shows the achieved bandwidth as a function of 
time in seconds when three traffic classes (green, orange, 
and blue) compete for a shared bandwidth with respective 
QoS fractions: .6, .33, and .07.  The three traffic classes 
generate input flow requests that vary as a function of 
time.  The green class (QoS=.6) ramps up requests to peak 
levels at times 78 and 130.  Peak green traffic levels of 
1.5 terabit/s are fully satisfied on a dedicated network (not 
shown).  For class orange (QoS=.33) similar peak traffic 
levels are requested at times 26, and 78.  The blue 
(QoS=.07) class steadily submits requests at a high rate of 
about 1.8 terabit/s but is identified as a low-priority best 
effort task which might use excess bandwidth opportunis-
tically.  We show in Figure 11 that with static manage-
ment each traffic class is held closely to QoS ratios allow-
ing flexible partitioning of a datacenter network that can-
not jointly satisfy all requests.  The sum of all satisfied 
requests is plotted as TOT.  A static policy necessarily 
leaves much bandwidth unused as TOT separates widely 
from the total bisection bandwidth BB.  HBR scales to 
large datacenters with many short-lived flows.  In this 
example, datacenter-wide software dynamically manages 
47,000 new flows per second from 5280 hosts at one 
second management intervals.   
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Figure 11 - Static QoS 

 
Figure 12 - Dynamic QoS 

Dynamic QoS (Figure 12) exploits bandwidth variation in 
the three traffic classes.  The manager detects when a 
class is not using its full QoS share and opportunistically 
borrows bandwidth from over-provisioned classes.  
Bandwidth is loaned to under-provisioned classes that can 
temporarily use bandwidth that exceeds their QoS share.  

In Figure 12, the blue low-priority task makes good 
progress as it receives bandwidth that greatly exceeds its 
QoS ratio during green and orange idle periods. At time 
130, all three classes request high bandwidth, and the 
manager enforces static QoS ratios that saturate the net-
work. 

Under a dynamic policy, total network usage (TOT) is 
greatly enhanced.  Since the network has no direct me-
chanism to determine per-class bandwidth needs, total 
usage cannot always sum to the bisection bandwidth 
(BB).  Traffic classes must be allocated surplus band-
width to indirectly detect whether more per-class band-
width is needed. 

7. Related Work 
There has been extensive research on designing efficient 
network topologies for scalable clusters or datacenters [8-
9, 13-14].  Randomized routing has been used to load 
balance traffic across multiple routes.  Valiant routing [2] 
was developed as a means for load balancing traffic using 
paths through random intermediate switches.  However, 
this work does not support Ethernet. 

The InfiniBand, Quadrics, and Myrinet [15] networks  
have been used for high-end applications needing high 
bandwidth communications.  When these networks are 
used with Ethernet, conversions are required between 
network standards, and separate administrative expertise 
is required for both networks. 

A number of Ethernet architectures have been developed 
to support specific network topologies.  The Portland ar-
chitecture [16] uses a structured internal address to navi-
gate fat-trees.  VL2 [17] uses Layer 3 encapsulation and 
Valiant routing to navigate fat trees.  Both approaches are 
optimized to one topology, suffer L2 Ethernet limitations 
(e.g. no FCoE support) as they rely on L3 ARP, and do 
not address dynamic traffic management. 

TRILL is a next generation standard that defines distri-
buted protocols for shortest path routing in multipath net-
works.  This ambitious effort addresses both enterprise 
and datacenter needs and features interoperability with 
conventional switches and routers.  In contrast HBR fo-
cuses more narrowly on simpler techniques for dynamic 
datacenter management.  The MOOSE network [18] re-
writes MAC addresses at the edge of the fabric as a spe-
cialized address that is used in a shortest path routing pro-
tocol.  Again, MOOSE relies on layer 3 ARP traffic to 
establish MOOSE addresses and does not address dynam-
ic traffic management. 

VLANs have been used to encapsulate traffic to support 
scalable routing in prior efforts [5-7].  This work does not 
optimize for non-uniform fabrics, for non-uniform traffic, 
or for time varying traffic. Scalability using randomized 
path selection has been incorporated into real Ethernet 
products [19], but dynamic routing and complex topolo-
gies are not supported. 
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Centralized subnet manager software [4] has been devel-
oped for InfiniBand and has demonstrated the viability of 
centrally controlled multipath managers for datacenter 
fabrics.  However, current subnet managers are designed 
for the InfiniBand network architecture and are not very 
reactive to changes in traffic. 

Multipath routing has been described for IP routing in an 
RFC from the IETF [20-21].  This work is for higher net-
work layers and not appropriate for L2. 

The Open Flow architecture [3, 22-23] routes packets 
based on flow specifications that can include both source 
and destination information.  Per-flow routing based on 
flow source and destination pairs presents great difficul-
ties for dynamic routing.  For networks having a large 
number of end stations (E), providing routing resources 
for up to E2 address pairs can be expensive.  These ap-
proaches suffer dramatic performance loss when the 
number of active flows exceeds the number of routing 
table entries or when flows arrive and depart at a rate that 
cannot be processed by a central controller. 

Measurement techniques have been developed that use 
sparsely placed network measurements to estimate actual 
network traffic [24].  This work, like ours, uses linear 
algebra and Singular Value Decomposition but does not 
address traffic optimization in datacenters. 

8. Conclusions 
This paper describes and evaluates the Hash-Based 
Routing (HBR) architecture for datacenter Ethernet fa-
brics.  The architecture is unique as it incrementally 
builds on standard Ethernet while providing a combina-
tion of advantages that are unmatched by other approach-
es including: scalability, flexibility of topology, dynamic 
management and interoperability with traditional Ether-
net.  Ethernet switch enhancements are modest and added 
as an enhancement to commodity switches.  Arbitrary 
topologies and faulty fabrics are easily accommodated.  
The management state size is highly compressed to facili-
tate reactive management of very large fabrics.  Multipath 
traffic optimization is performed within the fabric and 
without host or device modifications.  Conventional L2 
Ethernet switches and devices are attached at the fabric 
edge and are recognized using traditional L2 techniques. 

Techniques for ensemble management have been devel-
oped to allow a reduced number of measurements and a 
reduced routing state size that is independent of the num-
ber of devices or flows.  Measurement techniques do not 
require tracking of individual flows and do not require 
sampling data on all links in the fabric.  Reactive optimi-
zation heuristics significantly enhance efficiency.  Simu-
lations validate the architecture for a range of attractive 
scalable topologies in the presence of multiple faults.  
While simulations cannot accurately model future work-
loads, they do prove the efficiency of the architecture for 
a broad range of topologies and traffic conditions. 
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