

Keyword(s):

Abstract:

Ensemble Routing For Datacenter Networks

Mike Schlansker, Yoshio Turner, Jean Tourrilhes, Alan Karp

HP Laboratories
HPL-2010-120

Networks, Ethernet, Multipath, Switching, Fault Tolerance

This paper describes Hash-Based Routing (HBR), an architecture that enhances Ethernet to support
dynamic management for multipath networks in scalable datacenters. This work enhances HBR to support
flow ensemble management for large-scale networks of arbitrary topology. Ensemble routing eliminates
measurement and control for individual flows and instead manages using summary data thus providing a
unique capability for reactive datacenter-wide network management. HBR provides seamless
interoperability with Ethernet and supports the attachment of unmodified L2 hosts and devices including
FCoE devices within converged fabrics. Simulation experiments demonstrate efficient multipath routing for
a variety of scalable topologies. Optimized routing maintains efficiency in the presence of network faults
and implements spatial Quality of Service to dynamically provision physical network hardware among
co-hosted tenants or applications.

External Posting Date: September 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: September 21, 2010 [Fulltext]
To be presented at ANCS, San Diego, CA

Copyright ANCS, 2010

Ensemble Routing For Datacenter Networks

Mike Schlansker Yoshio Turner Jean Tourrilhes Alan Karp

mike_schlansker@hp.com yoshio_turner@hp.com jean.tourrilhes@hp.com alan_karp@hp.com

Hewlett-Packard Laboratories

ABSTRACT
This paper describes Hash-Based Routing (HBR), an ar-
chitecture that enhances Ethernet to support dynamic
management for multipath networks in scalable datacen-
ters. This work enhances HBR to support flow ensemble
management for large-scale networks of arbitrary topolo-
gy. Ensemble routing eliminates measurement and con-
trol for individual flows and instead manages using sum-
mary data thus providing a unique capability for reactive
datacenter-wide network management. HBR provides
seamless interoperability with Ethernet and supports the
attachment of unmodified L2 hosts and devices including
FCoE devices within converged fabrics. Simulation expe-
riments demonstrate efficient multipath routing for a va-
riety of scalable topologies. Optimized routing maintains
efficiency in the presence of network faults and imple-
ments spatial Quality of Service to dynamically provision
physical network hardware among co-hosted tenants or
applications.

Categories and Subject Descriptors
C.2.1 Network Architecture and Design

General Terms
Design, Management, Performance, Reliability

Keywords
Networks, Ethernet, Multipath, Switching, Fault Toler-
ance

1. INTRODUCTION
This paper enhances Hash Based Routing (HBR) for data-
center networks [1]. HBR supports cost-effective and
scalable L2 networks with multipath routing for high bi-
section bandwidth. While HBR was originally limited to
fat tree topologies, this paper contributes enhancements
including an architecture for the static and dynamic man-
agement of arbitrary topology L2 Ethernet networks, and
experimental results that demonstrate the utility of the
architecture for scalable fault tolerant networks and
Quality of Service applications.

Enhancements to static management analyze irregular
traffic and irregular network topologies to identify obli-
vious management policies (like Valiant routing [2]) that
optimize multipath flow for irregular traffic on arbitrary
unstructured networks. Dynamic management adds major
qualitative advantages when compared to using over-
provisioned hardware with static management. Dynamic

management layered on top of HBR provides unique ca-
pabilities in areas of fault tolerance, online maintenance,
Quality of Service, and power.

HBR is a pure network architecture requiring no host or
end-device modifications. HBR differs from other multi-
path approaches in that it closely follows and builds on
layer-two Ethernet’s base architecture while enabling
adaptive and scalable datacenter-wide routing. The archi-
tecture provides a fully compatible L2 Ethernet network.
Legacy Ethernet switches can be attached at the edge of
the fabric, and L2 host, LAN, and FCoE devices can be
attached to those switches without special registration.
Device mobility is supported as in normal L2 networks
where an L2 timeout or gratuitous L2 broadcast is suffi-
cient to clear stale Ethernet learning cache data.

Unlike L2 switching, Layer 3 routing exploits IP ad-
dresses structure in harmony with controlled device
placement. For example, routing is simplified when de-
vices in one customer’s IP range are on the right side of a
datacenter while devices in another customer’s range are
on the left. For modern datacenters, however, devices are
often virtualized and dynamically provisioned. Device
location is not easily controlled and may change frequent-
ly. This defeats the utility of routing using compressed
L3 wildcard or range TCAM rules.

Since L3 addresses have no geographic use, HBR uses L2
addresses to improve compatibility. L2 addresses are
unstructured and not useful in compressed range or wild-
card rules. Thus, for approaches such as OpenFlow [3]
that rely on existing TCAMs, compressed rules cannot be
used and at least one rule (often more) is needed for each
addressable device, representing a serious problem for
large datacenters having many virtual devices. In this
case, the number of allowed virtual devices depends on
the number of physical TCAM entries in a switch.

The HBR architecture is based on two key principles.
The first principle asserts that centralized out-of-switch
software provides important advantages over distributed
in-switch protocols. This approach follows that of Infini-
Band’s subnet manager [4]. Subnet manager software,
assisted by components in every switch, allows flexible
and powerful datacenter-wide control. The subnet man-
ager simplifies the deployment of new datacenter-wide
management capabilities. Switch hardware remains sim-
ple, and complex control is performed by external soft-

ware. New capabilities evolve by enhancing subnet man-
ager software without complex switch firmware/hardware
upgrades and without waiting for new industry standard
distributed protocols that may not provide needed data-
center management solutions.

The second principle asserts that managing individual
flows or managing traffic to individual destination devic-
es is too fine grained. Some approaches manage individ-
ual flows without adequately addressing the needs of da-
tacenters that may include thousands of L2 devices each
supporting many small and transient flows. Architectures
that maintain and update per-flow management state will
be expensive to implement, and unable to quickly react to
changing traffic and changing hardware. Architectures are
needed that dynamically manage large ensembles of tran-
sient and hard to predict flows between end-stations that
may be virtualized and may move with host migration.
HBR manages traffic at the granularity of an ensemble.
Thus, with HBR the size of the management state is inde-
pendent of the number of flows or destination addresses.

Ensemble routing is defined in a two-tiered hierarchy.
Injected packets first encounter a routing layer, which
routes each flow ensemble onto one of multiple routing
networks providing path diversity. A switching layer uses
conventional Ethernet switching within the routing net-
works to direct individual packets to their destinations.
Routing for flow ensembles is different from conventional
switching or routing because each ensemble identifies
flows having diverse sources and destinations, and routing
must accommodate this diversity.

The lower level switching layer, used to forward packets
in each routing network, exploits existing Ethernet learn-
ing and efficiently detects forwarding ports for destination
addresses. Per-destination switching information is
cached and can be dropped and re-learned efficiently us-
ing traditional learning functions.

A primary advantage of ensemble routing is that only a
small amount of routing state is needed to control network
traffic throughout a large datacenter. This facilitates fast
reactive management of huge numbers of flows with
simpler control than is possible for per-flow management.
Both subnet manager software and the switch hardware
are simplified. The manager gathers and processes con-
densed information to determine optimized control set-
tings. A terse list of control settings is sent back to
switches to maintain correct and efficient operation.
Switch hardware maintains a small management state.

A disadvantage of ensemble routing is that it sacrifices
fine grained control for individual flows. This may cause
some flows to take non-optimal paths. Our experimental
results indicate that for large datacenter networks, the
scalable control advantages of ensemble routing outweigh
the disadvantages.

2. Hash Based Routing Architecture
Previous work [1] on HBR minimized routing state by
managing flow ensembles. Packets within a flow are
mapped to the same ensemble so that each flow is carried
on a single path that preserves packet order. Pseudoran-
dom hashes identify ensembles, which are mapped to
physical switch ports to optimize multipath routing in fat
trees. Symmetric flow identification ensures that bidirec-
tional communications take congruent outbound and reply
paths preserving Ethernet learning efficiency. Asymme-
tric HBR is also of interest but not treated here.

This paper presents hardware architectural enhancements
to HBR and new software management algorithms to
manage arbitrary traffic ensembles within arbitrary net-
work topologies. Enhancements shown here identify flow
ensembles called routing classes that contain hash and
priority information for multipath and QoS. Routing
classes now are mapped onto routing VLANs to control
traffic in complex topologies. Routing classes are derived
from packet headers. Specifically, each flow has an asso-
ciated traffic class and a hash class. The traffic class
identifies customers, applications, or traffic types (e.g.
LAN vs storage) to allow differentiated traffic treatment
for QoS. Flows in a single traffic class receive equal fair
treatment. The hash class supports path diversity within
each traffic class and identifies an ensemble of flows that
have the same hash value and follow the same route.

The routing class is the smallest unit for traffic measure-
ment and control. Routing classes are identified with a
routing class id that is formed by concatenating traffic and
hash class identifiers. The granularity or the number of
hash classes that subdivide each traffic class can be ad-
justed by choosing the number of hash output bits that are
included in the routing class specification.

HBR uses routing VLANs to navigate networks with arbi-
trary topology. An enhanced HBR switch, first described
here, is placed at all ingresses to a core multipath net-
work. The switch performs a programmable lookup to
direct routing classes to VLANs. Routing VLANs draw
on prior research [5-7] and exploit existing switch capa-
bilities while preserving customer-visible VLANs at the
fabric edge (e.g. using VLAN stacking). Routing VLANs
are carefully constructed for efficient ensemble routing.
An HBR edge switch encapsulates packets in a routing
VLAN. Packets are conventionally forwarded (within the
routing VLAN) through the network core, and packets are
decapsulated at the egress. VLAN encapsulation hides
routing VLANs from all network devices. HBR efficiency
is demonstrated below for multiple network topologies.

2.1 Routing for Fat trees
Figure 1 shows a folded Clos or fat tree network [8]. Fat
trees offer many equal length paths between edge switch-
es and simplify multipath control. Edge uplinks are color
coded with the top switch to which they connect. A
routing VLAN is defined for each top switch with its cor-

responding color. Uplinks can be augmented with paral-
lel links (as Link Aggregation Groups or LAGs) to pro-
vide additional bisection bandwidth.

Figure 1: Fat Tree

Active load balancing maps routing classes to carefully
selected VLANs to manage the upward flow of packets.
A central manager (not shown) continuously measures
traffic load. The manager implements a datacenter-wide
policy, by setting values in ensemble routing tables within
each switch to control the distribution of traffic across
VLANs and top switches.

Figure 2: Fat Tree with Faults

An example that demonstrates flexible management for
complex and changing network topologies is shown in
Figure 2 where two failed links are marked with an X.
Consider the failed uplink on the E3 edge switch. Traffic
that exits E3 cannot be routed through port 3. Routing
VLANs are reprogrammed in reaction to topological
changes like link failures. An alternative bypass path is
provided within the reprogrammed VLAN that starts at
the port 2 uplink, enters the T2 top switch and passes
through the E2 edge switch and back to the T3 top switch.
This dark solid red VLAN provides an acyclic network
and fully flexible communications between downlinks.

Figure 3: Clique Figure 4: HyperX

An example bypass path has also been constructed to ac-
commodate a failed link between T0 and E0. This illu-
strates that the network architecture can accommodate
multiple link failures. The management changes needed
to handle faults – setting up new routing VLANs and new
routing class assignments to routing VLANs – are inde-
pendent of both flows and destination addresses.

2.2 Routing for Cliques
Figure 3 shows an example meshing fabric arranged in a
clique topology that eliminates unnecessary switches and
hops from fat trees. This example uses 6 links to directly
connect 4 switches. Each physical link is shown as a pair
of colored (dashed) lines. Separate colors indicate routing
VLANs that are carried on each link. Each VLAN reach-
es all switches. Direct connect topologies are more com-
plex to manage as controllers balance competing objec-
tives for sending traffic on a shortest path and spreading
traffic across multiple non-optimal paths. However, these
networks efficiently scale to large configurations with
future high port count switches.

2.3 Routing for HyperX
Prior work has shown that multidimensional clique net-
works called HyperX [9] efficiently scale. While harder
to control than fat trees, these networks use fewer compo-
nents and smaller hop counts. A 44 HyperX network is
shown in Figure 4. Each row is connected as a clique
(like Fig. 3) to row members and each column is con-
nected as a clique to column members. Each HBR switch
provides six uplinks. Forty eight uplinks (6 in each oval
clique) connect 9 switches. Example routing VLANs are
not illustrated but are constructed using simple algorithms
(Section 4.2) that facilitate experiments below.

2.4 Broadcast and Control Traffic
A network is needed to control switches. A control
VLAN is constructed as a conventional spanning tree that
reaches all Ethernet switches and devices. This network
supports control actions such as programming VLANs.

Broadcasts can disrupt system performance when hosts
must process and dismiss too many broadcast packets
such as ARPs needed to discover unknown IP-to-MAC
address bindings. Similar L2 Flooding occurs when
switches have no learning entry for a destination. As with
normal Ethernet, HBR broadcast and flood packets are
encapsulated within a routing VLAN and decapsulated
from that VLAN like any other packet. While such broad-
casts do propagate through the high bandwidth network
core, at the edge of the fabric, the broadcast scope is con-
tained within tenant- or application-oriented VLANs. We
preserve conventional L2 behavior which limits the scope
of broadcasts to edge devices within appropriate VLANs.

3. HBR Switch Architecture
The HBR switch in Figure 5 is logically divided into four
layers that separate downlinks from uplinks. Downlinks
connect to standard Ethernet devices including hosts, sto-
rage, and switches. Uplinks interconnect HBR switches
in a multipath routing fabric and carry packets that are
encapsulated in routing VLANs. The edge layer is a con-
ventional Ethernet network that connects downlinks to the
core. The core is also a conventional Ethernet network
that interconnects HBR switches and may include con-
ventional (non HBR) switches such as the fat-tree top

switches. The core layer uses routing VLANs to direct
multipath traffic through complex network topologies.

Some packets traverse the edge layer from downlink to
downlink as a conventional Ethernet switch. Other pack-
ets are destined for uplinks that traverse the core and par-
ticipate in managed multipath routing. Uplink-bound
packets traverse traffic classification and routing layers
through a special virtual “Uport” that carries packets that
are destined for the core. The traffic classification layer
maps up-bound packets into classes that receive similar
QoS treatment in the core. The hash-based routing layer
distributes up-bound packets into hash classes that sup-
port multipath load balancing. Traffic class and hash
class information are combined to identify individual
routing classes. Routing classes are dynamically mapped
to routing VLANs to support active management.

The virtual “Dport” carries downward-bound packets
destined for the edge. These packets are decapsulated
from the routing VLAN and then processed by conven-
tional edge layer switches.

The HBR switch combines core and edge switch func-
tions into a single switch. As a result, the switch per-
forms up to two learning actions on a single packet. Each
learning action requires the two traditional components:
using the source address to learn new cache entries, and
using the destination address to reference previous entries
that identify destination ports.

Fig. 5: HBR Switch Fig. 6: Header Processing

3.1 Packet processing flow
The switch flow diagram for packet header processing is
shown in Figure 6. An ingress learning lookup performs
ingress-side switching. The ingress may be on either the
core-side or on the edge-side. The lookup result is an
egress port that can be a normal port or a special virtual
destination port (Uport or Dport). Packets directed to
normal ports traverse the switch as a conventional switch
(core or edge), without crossing the routing layer.

If the ingress learning lookup result is the Uport, it indi-
cates that the packet is up-bound and should enter a

routing VLAN. The switch selects a routing VLAN for
the packet by performing traffic classification, hashing,
and the routing VLAN lookup. The packet is then encap-
sulated in the chosen routing VLAN. A source address
substitution (for learning only) indicates to subsequent
egress learning that the packet was seen arriving into the
routing domain from the Dport.

Alternatively, the result of the ingress learning lookup
may be the Dport, indicating that a packet is down-bound
and exiting a routing VLAN. The packet is decapsulated
from the routing VLAN. A source port substitution indi-
cates to subsequent egress learning that the packet was
seen arriving from the routing domain on the Uport.

For packets that enter or exit the routing domain, a second
egress learning lookup identifies the egress port within the
resulting VLAN after the domain change. After this
second lookup, normal switch processing resumes, and
the egress port id is used to send the packet across the
switch’s internal data path to the appropriate port.

Packets that enter the routing domain emerge from the
ingress learning lookup with the “Uport” as the virtual
destination. For these packets, a route lookup is per-
formed and the packet is encapsulated in the selected
routing VLAN. After routing, the packet is again
processed by the egress learning lookup.

3.2 Traffic classification
At the edge of the routing fabric, incoming packets are
classified into traffic classes. Traffic classes are flow
ensembles that receive independent management treat-
ment. Packets within a single traffic class share identical
QoS goals across the fabric. Traffic classification inputs
include the Ethertype, the customer VLAN, and (if the
Ethertype type is IP) the protocol field. The traffic classi-
fication process interfaces high-level service class objec-
tives with low-level features that are defined by the Con-
verged Enhanced Ethernet specification. CEE defines
priority and class of service fields that specify differential
packet treatment and lossy versus lossless flow.

3.3 Hashing
Hash classes are identified by applying a hash function to
packet header fields. The function is repeatable and the
re-application of any input produces an identical result.
For each source address s and each destination address d,
H(s, d) represents the hash class for every message sent
from s to d. This hash may incorporate L2 or higher layer
information. Each ordered stream is mapped to a single
hash class so that the stream traverses a unique path.

Symmetric hashes have H(s, d) = H(d, s). Symmetric
hashes ensure that after a message traverses from a source
to a destination, the same path is retraced by a reply.
Symmetric or congruent routes simplify Ethernet learning
needed to eliminate flooding and help to preserve Ether-
net’s plug-and-play properties.

This section describes a hash implementation which is
based on exclusive or logic and is used for our experi-
ments (Section 6). The hash input is formed using fields
from the packet header. A hash function “out=H(input)”
is then used to pseudo-randomly distribute input values to
output values. A matrix approach based on bitwise XOR
and logical AND is used. Assume that a hash function H
is applied to S input bits in input vector IN to produce R
result bits for output vector OUT. Consider a Boolean
coefficient matrix C having R rows and S columns. We
implement H using the matrix product OUT = CIN
which is rewritten as: OUTij= 0jS CijINj for each i,
0iR. Here, the product is a simple Boolean AND. The
summation is the exclusive or of all product bits. This
hash is easily computed with modest hardware.

3.4 Routing VLAN Lookup
The routing lookup enforces fabric-wide management
decisions. The lookup can be implemented using TCAMs
in each switch that are set by a subnet manager to control
packet flow across the fabric. The lookup key consists of
the packet’s traffic and hash classes. A match isolates a
single routing class and produces a VLAN tag result that
specifies the selected routing VLAN for that routing class.

The number of TCAM entries needed for HBR routing is
estimated as the number of routing classes which is equal
to the number of traffic classes times the number of hash
classes in each traffic class. For example 1024 TCAM
entries could be used to manage sixteen distinct traffic
classes in fractional traffic increments of 1 part in 64.
TCAM hardware allows substantial management flexibili-
ty, and traffic classes need not be managed with equal
granularity.

4. Network Management Architecture
Our traffic management architecture has two layers. A
slowly reactive topology planning layer defines logical
Ethernet networks. Topology planning reacts only to
changes in the network topology such as link failures.
Topology planning is implemented using network discov-
ery, which characterizes the current physical fabric, and
routing VLAN construction, which identifies optimized
routing networks for traffic management.

A more highly reactive dynamic management layer as-
signs flow ensembles to routing VLANs. Dynamic man-
agement reacts to changes in traffic patterns or QoS goals.
Dynamic management is implemented using traffic pro-
jection, which predicts the impact of proposed traffic
changes based on previous traffic measurements, and
route optimization, which provides heuristics that identify
optimized routes for all traffic.

Dynamic datacenter-wide active management is imple-
mented using a subnet manager. Our current subnet man-
ager is a central controller that sends and receives simple
commands to observe and control switches. The switches
interpret control messages and perform low-level man-

agement actions. The subnet manager executes a man-
agement cycle loop that collects per-hash-class data from
each switch, computes an optimized fabric-wide man-
agement policy and downloads management instructions
to all switches.

The centralized manager may appear to impose a perfor-
mance bottleneck for reactive management action. How-
ever, due to efficiencies that result from the use of sum-
mary per-routing-class data, experiments [10] have shown
that centralized management can provide between 10 and
100 datacenter-wide management operations per second
without undue communication or computation needs. Dis-
tributed subnet managers are also of interest but have not
yet been designed.

Many routing architectures use oblivious (e.g. Valiant)
routing to support multipath. Not only does this work
extend oblivious routing to non-uniform traffic and topol-
ogies, we dynamically exploit slow time varying changes
in traffic that arise from the provisioning of new custom-
ers or the initiation of new applications. We show that
exploiting such non-uniformities enhances efficiency.

4.1 Network Discovery
Networks may have regular or irregular topology and
must accommodate switch and link failures that occur
within large scale datacenters. Network discovery lays the
physical foundation for topology planning. As compo-
nents are brought on-line or taken off-line or fail, network
discovery provides an up-to-date physical map of availa-
ble switches and their connectivity.

4.2 Routing VLAN Construction
Routing VLAN construction identifies a current set of
routing VLANs used to manage traffic across the discov-
ered topology. Routing VLANs support multipath load
balancing, and traffic isolation or differential traffic ser-
vice. Each routing VLAN reaches every edge switch and
is capable of transporting packets to any destination.

VLAN construction builds each routing VLAN from a
seed that identifies a root switch. A VLAN is grown as a
tree where each switch is reached by a shortest path from
the seed. The algorithm progressively identifies neighbor
switches with increasing radius from the root. Hop-count
ties are broken by favoring links that host fewer VLANs,
and using bisection bandwidth heuristics. After a VLAN
is constructed, a use count is incremented on links that are
traversed by the VLAN to discourage growth of new
VLANs across previously used links.

Seeds are placed to increase path diversity, and more than
one seed may be added for a single switch. For experi-
ments below, one seed is placed on each top switch for
the fat tree. For cliques and HyperX, one seed is placed
in each edge switch. Routing VLAN construction cannot
occur at the full dynamic management rate of 10 to 100
operations per second. While VLAN-finding algorithms

use simple and fast heuristics, setting up a new VLAN
still requires time-consuming fabric-wide administration.

4.3 Traffic Projection
We solve two key traffic projection problems. First, how
can we decrease measurement complexity by reducing the
number of measurements needed? Second, how can we
estimate the effects of proposed changes in the routing
plan by projecting observed measurements from a pre-
viously used routing network to a candidate routing net-
work that has a different topology? We developed tech-
niques based on linear algebra to solve both problems and
experimentally demonstrated their effectiveness.

Consider the modeling of interior traffic within networks
such as those of Figures 2, 3, and 4. In this discussion,
traffic that enters and exits at the same edge switch is ig-
nored and not measured. Important traffic is summarized
as traffic that passes from one edge switch to another
through the fabric. Edge switches have downlinks which
are attached to end-station devices. We do not measure
individual flows or all interior traffic for optimization.
Instead, we use measurement probes that can, in principle,
be placed anywhere in the fabric. Each measurement
probe accumulates traffic amounts within each routing
class without providing direct information about source-
to-destination traffic. Our current measurement probes
exactly measure observed per-port and per-routing class
traffic, and no sampling error is modeled.

For cliques like Figure 3, probes can be strategically
placed to reduce measurement complexity. Key resource
bottlenecks are uplinks that limit aggregate bisection
bandwidth. For N switches, direct monitoring of all up-
links would require N×(N-1)/2 measurement probes. For
such networks, we show that the use of a much smaller
number of probes allows excellent results.

For experiments below, bidirectional probes are strategi-
cally placed at fabric ingresses. Each edge switch meas-
ures traffic passing through the Uport inside the switch
connecting downlinks and uplinks. Thus, inputs to route
optimization are restricted to two values (up-bound and
down-bound) for each hash classes and for each edge
switch. While control may benefit from more detailed
measurements in some cases, the use of ingress/egress
measurements provides a compromise between measure-
ment complexity and traffic estimation accuracy. In fact,
for full cliques, we have observed that the use of N in-
gress/egress probes produces identical results to the
placement of N×(N-1)/2 probes on all internal links.

For a given network, let E be the number of edge switch-
es. Input traffic is characterized by an input vector T of
length E2. T provides a simple linearization of a two-
dimensional traffic matrix. Let fi,j represent the value of a
traffic flow from ingress switch i to egress switch j.
Then, for every i and j, the corresponding element of T is
found at index k=i+E×j. The input represented by this i to
j flow is modeled by a flow vector T that is all zeros ex-

cept for a single non-zero value at index k: Tk=fi,j. For
any ensemble e of flows, we use linear superposition to
define an input vector T(e) that characterizes traffic
among diverse sources and destinations by summing the
flow vectors for elementary flows.

For each VLAN v, a Measurement Projection matrix
MP(v) characterizes the network’s measurement response
to a given input. MP(v) is used to project the effect of an
input traffic load onto the measurement links. MP(v) has
a number of rows equal to the number of measurement
links times two (for ingress & egress) and a number of
columns equal to E2 (for traffic ingress-egress pairs).

Consider input traffic consisting of a unit of flow from
ingress index i to egress index j. The traffic matrix index
is again written so its k’th column (k=i+E×j) specifies the
result of flow from i to j. This input stimulus is applied to
a network using some routing VLAN v. The traffic path
taken for this input can be determined by tracing the
unique path from ingress i to egress j through VLAN v.
For column k of MP, and for each measurement link r, the
value for MP(v)r,k is one if the path from i to j traverses
measurement link r and zero otherwise. This process uses
the known VLAN topology to determine the column of
the measurement matrix for i-to-j traffic flow. The
process is repeated with a distinct input stimulus for each
of the i,j traffic pairs to determine all matrix columns.

After a measurement projection matrix is computed, we
see that for any flow ensemble e and VLAN v, the equa-
tion M=MP(v)×T(e) projects this traffic ensemble onto a
measurement vector M when that traffic is carried by
VLAN v. This measurement vector defines the collective
measurement probe usage by all members of the T(e)
flow ensemble.

A key problem is that no direct measurements are availa-
ble for source-to-destination flows (i.e., T(e) is not
known), because that would require complex source and
destination MAC address processing which our architec-
ture obviates. However, a pseudo inverse of the mea-
surement projection matrices can be used to indirectly
estimate input traffic from measurements. We use Singu-
lar Value Decomposition (SVD) to compute these pseudo
inverses. For each VLAN v, and its corresponding MP(v)
measurement projection matrix, the MP+(v) pseudo-
inverse matrix is calculated.

For each routing class c, we observe a measurement vec-
tor M(c) for the set of measurement ports. This vector
measures (samples) the amount of class c traffic that tra-
versed each measured port over a prior time epoch. A
known VLAN, v(c) was used to carry routing class c dur-
ing the measurement period. We estimate the input traffic
for each routing class c as: T(c) = MP+(v(c))×M(c).

For each VLAN v a Resource Projection matrix RP(v) is
defined much like the Measurement Projection matrix and
is used to project input traffic onto link resources. The

resource links represent networking bottlenecks for which
traffic is to be minimized. The value for RP(v)r,k is one if
the path from i to j traverses a resource link r when routed
through VLAN v, else the entry is zero. There are two
unidirectional resource links for each bidirectional physi-
cal link. For each routing class c, given the input traffic
estimate calculated above, and the known VLAN v that
was used to route class c, we can estimate the load on
resource links as R(c)=RP(v)×T(c).

For example, we use these estimates for the family of
cliques shown in Figure 3. We use edge measurements to
estimate interior traffic where no direct measurements are
taken. For each routing class, our current approach meas-
ures 2E values corresponding to up-bound (ingress) and
down-bound (egress) traffic crossing the routing layer
within each switch. Using these measurements we calcu-
late projected traffic for E×(E-1) interior link resources.

To perform traffic optimization, we use traffic measure-
ments from a prior routing VLAN v to estimate expected
traffic within a new VLAN w. This is a key component
of any optimization procedure that relocates flow ensem-
bles within generalized network topologies to improve
routing. Consider a routing class c that was carried with a
known VLAN over a prior time epoch. A measurement
vector M(c) taken for traffic on a prior VLAN v cannot be
used directly to predict traffic that would occur when
routed to a new VLAN w. Difficulties arise when VLAN
topologies differ, as traffic flow patterns and hop counts
change with each new routing VLAN choice.

Figure 7: Traffic Projection Overview

Projections are again performed using linear algebra. For
each traffic class c and prior VLAN v, we first estimate
the input traffic as: T(c) = MP+(v)×M(c). We then
project estimated input traffic onto link resources using a
new routing VLAN w using: R=RP(w)×T(c). For the fat
tree and clique networks (Figures 2-3), experiments show
that these cross VLAN projections are nearly precise. For
all networks tested, these projections provide sufficient
accuracy to greatly improve overall routing efficiency.

Figure 7 shows an overview of the traffic projection
process. An input measurement vector that was derived
during the measurement time epoch is processed using the
Measurement Projection matrix inverse for VLAN v to

yield the estimated traffic vector. The estimated traffic
vector is then processed using the Resource Projection
matrix for the proposed new VLAN w to find the resource
estimate used in the subsequent route optimization.

4.4 Route Optimization
Route optimization provides reactive management as it
uses measurements, from a prior time epoch, to calculate
optimized routing controls for the next time epoch, and
then sets those controls throughout the fabric. Dynamic
routing provides a foundation not only for efficient net-
work operation but also for correct operation in the pres-
ence of faults, power management, or on-line network
maintenance. Traffic can be dynamically directed away
from or toward arbitrary regions of the fabric as needed.

Our architecture optimizes multipath traffic for changing
traffic load and changing resource availability. Prior to
load balancing, each traffic class is allocated a fixed ca-
pacity on each physical link that is provisioned for that
class. This allocation accommodates fault tolerance,
power, and QoS status and may indicate full, partial, or no
link availability. A link’s class capacity indicates the
amount of the link’s bandwidth that is to be provided to
that class. When an entire link is dedicated to one traffic
class the class capacity is the total link capacity. Alterna-
tively, the link capacity may be divided among traffic
classes. After resources are allocated, the load balancer
maximizes throughput and minimizes congestion sepa-
rately for each traffic class and within the resource alloca-
tions for that traffic class.

The load balancer is given a set of routing VLANs that
provide path diversity across available links. Each traffic
class can be divided into a number of routing classes and
each routing class may be placed on any routing VLAN.
The load balancing heuristic uses a greedy optimization
placing one routing class at a time. As each routing class
is placed on a routing VLAN, a cost function is mini-
mized to move traffic away from high congestion links
and toward low congestion links. At each step, the next
routing class is placed on a routing VLAN that minimizes
the cumulative cost for carrying all previously placed
traffic plus traffic in the new routing class. A projected
cost is calculated for each candidate routing VLAN, and a
minimal cost VLAN is selected. Routing for a traffic
class completes after the last routing class within that traf-
fic class is placed. The process is repeated for each class.

An example cost function minimizes the sum of the data
transmission times squared on each link. This non-linear
cost function places a heavy penalty on congested links
and efficiently distributes traffic across multiple paths.
The transmission time is calculated as the link load within
the traffic class divided by the link’s allocated class ca-
pacity. Link loads are calculated using sample port mea-
surements from the prior time epoch and the traffic pro-
jections as described in Section 4.3.

5. Network Management Applications
HBR is designed to manage millions of flows on very
large networks and does not attempt to perform individual
flow management. Instead, measurement and manage-
ment units are flow ensembles rather than single flows.
The computational complexity for HBR control algo-
rithms was described in greater detail in [10] and scales
for very large datacenters. Because information is highly
compressed, CPU and communications needs for mea-
surement, optimization and control can be performed at
reaction rates of about ten times per second across data-
centers having tens or hundreds of thousands of hosts.

It is expected that datacenters have complex static and
time varying characteristics that shape ensemble traffic.
Changing traffic arises from application deployments,
host virtual machine deployments, storage deployments
(NAS or SAN), or other administrative actions that effect
ensemble traffic across many flows. Virtualization conso-
lidates virtual machines (VMs) onto a smaller shared pool
of physical hosts and dynamically live-migrates VMs to
enhance efficiency. This again introduces slow traffic
changes that will be measured and exploited by HBR.

HBR also accommodates changing network infrastruc-
ture. Networks may be incrementally modified as hard-
ware is added or removed from service. Online mainten-
ance allows modifications while system operation contin-
ues. Switches are upgraded or replaced without network
interruption. Faults may occur that disable switches or
links. Power management detects low utilization and
powers down gear to minimize operational and environ-
mental costs. All these activities benefit from a dynamic
manager that detects and reacts to infrastructure changes.

Four network management applications have been devel-
oped for HBR and tested under simulation: multipath load
balancing, fault tolerance, QoS management and power
management. All rely on the measurement and projection
techniques described above. The first three are demon-
strated in experiments below. Power management is left
for future work.

6. Experimental Results
Experiments are shown for multipath load balancing, fault
tolerance, and Quality of Service. A custom simulator
was required to model unique characteristics of the HBR
architecture. A key goal is to understand the behavior of
large-scale networks that incorporate novel hardware
elements. It was impossible to actually build representa-
tive network hardware within a small research project.
Conventional packet-by-packet simulators cannot model
large networks with many flows. Thus, new simulation
techniques were needed to model behaviors of interest
while scaling to adequate size.

We built a flow-level simulation that models network
topology, link bandwidths, the placement of flows, and
the competition of flows for bottleneck links. The simula-

tion models fair progress among competing flows. It ad-
vances the progress of each flow as time progresses and
as traffic and management controls change. Flows that
share bottleneck links are limited to fair and shared
progress across those links. Congestion loss and TCP
dynamics are not modeled. Instead, our simulations
measure the throughput capability of the managed net-
work fabric.

6.1 Load balancing and Fault Tolerance
HBR switches support the rapid redirection of datacenter
traffic. When the subnet manager becomes aware of a
failed switch or link, traffic can be quickly redirected to
VLANs that do not use failed components. While the
network continues to operate, new routing VLANs can be
constructed to mitigate the effects of lost components, and
traffic then can be directed to newly constructed VLANs.

Instead of modeling this dynamic behavior, our fault to-
lerance experiments evaluate aggregate network band-
width after topology planning and dynamic optimization
are complete. For each experiment, faults are randomly
injected. Then, a heuristic optimizes VLANs for the faul-
ty network, and dynamic load balancing optimizes per-
formance for the given traffic and topology. Results are
reported after topology discovery, VLAN formation and
route optimization are complete.

Our fault tolerance experiments use randomly selected
flows to define synthetic applications. Communication
requirements for each application are defined by a fixed
ratio of flow rates, which are determined by the applica-
tion, and must be preserved. For example, in map-reduce-
style queries, each processing cycle contains a shuffle
communication among nodes. Given a placement of
nodes in the fabric, this defines relative flow rates within
the fabric. The role of network optimization is to maxim-
ize application progress by uniformly accelerating all
flows within the application. The rate at which flows
progress is limited by link bottlenecks that are identified
by the simulator. Flows are scaled in ratio to a maximal
flow rate that can be jointly satisfied by the network as
limited by these bottlenecks. This results in an aggregate
bandwidth across all flows delivered by the network.

The experiments use two traffic pattern workloads. A
traffic pattern with a smaller number of large flows
represents elephant flows that sparsely populate a traffic
matrix having spatial hot spots. A pattern with a much
larger number of smaller flows represents mice flows
having a densely populated traffic matrix without signifi-
cant hot spots. Hosts are evenly distributed around each
fabric, and flows are randomly generated between hosts.
Many non-uniform traffic patterns have also been mod-
eled, and they show compromise behaviors between these
mice and elephant extremes.

Results using three policies are reported. The spanning
tree policy (“ST”) uses a single spanning tree VLAN to
carry traffic. The random traffic policy (“Rnd”) uses a

round robin assignment of hash classes to routing
VLANs. The Rnd policy is oblivious to measured data
and shares some characteristics with Valiant routing [2].
Unlike Valiant routing, our random routing has been
adapted to support arbitrary and faulty fabrics. The
Symmetric policy (“Sym”) uses best effort heuristics for
symmetric routing where round-trip traffic takes a single
path. It is known that asymmetric routing policies (not
reported here) will yield superior results [10]. For the fat
tree and clique experiments a bound (“B”) is provided
that, for each flow pattern, identifies a worst case ingress
or egress bottleneck at some edge switch. From this bot-
tleneck, we calculate a bound on overall throughput.

For symmetric routing, in a first time epoch the input traf-
fic pattern is initially routed using the random routing
policy. Port traffic is measured over this time epoch.
These measurements are used as the basis for the Sym
optimization in which dynamic load balancing is applied
to calculate an optimized Sym policy for a subsequent
epoch. Traffic is re-routed using the Sym policy, and
performance results are reported after optimization.

Our experiments show the effects of injecting link failures
into each of the fabrics. Each experiment begins with a
fault-free fabric and randomly injects faults on uplinks
within the routing fabric. Each experiment progressively
adds a new fault to previous faults until the maximum
number of faults is achieved. Routing VLANs are recon-
structed after each new fault is injected to avoid broken
links. Rare experiments that bifurcate the fabric cannot
be completed and are ignored. Multiple randomly chosen
experiments are averaged to produce final results (100
trials for fat tree and clique, 40 trials for HyperX).

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6

Gb/s

Number of Faults

B10000 Sym10000

Rnd10000 ST10000

B200 Sym200

Rnd200 ST200

Figure 8 – Faulty Fat-tree Performance

Figure 8 shows the performance of a fat tree (Figure 1)
with eight edge switches and four top switches. Faults are
sequentially injected among 32 10Gbps uplinks. One
hundred independent trials are averaged to provide each
data point. The fabric is managed using 512 hash classes.
Aggregate throughput is plotted in Gigabits per second,
and performance is shown for the bound (B), symmetric
(Sym), random (Rnd), and spanning tree (ST) policies.

First, we discuss fault-free fabric performance. Mice ex-
periments inject 10000 randomly selected uniform flows

into the fabric. Each hash class specifies a single routing
VLAN for about 19.5 mice. Optimized symmetric per-
formance for 10000 uniformly distributed mice
(Sym10000) yields about 300 Gb/s of aggregate band-
width. This corresponds to using 30 of 32 available up-
links. The optimized performance for mice is about four
times higher than spanning tree (as expected with 4 top
switches). When mice are randomly routed (Rnd10000)
we see that for unbroken fabrics this approach is also
nearly optimal and implements a form of Valiant routing
for uniform traffic on a symmetric fat-tree network. This
demonstrates efficient scalable throughput when the num-
ber of flows greatly exceeds the number of hash classes.
Here, both Sym10000 and Rnd10000 approach the
B10000 bound. Of course, this performance level is typi-
cally unrealistic as traffic is rarely this uniform.

Elephant experiments inject 200 randomly selected large
flows into the fabric. In this experiment most elephants
reside alone in a hash class and can be individually ma-
naged by HBR. Elephants cannot achieve the highest
performance levels due to non-uniformities in traffic that
prevent co-equal link saturation. For Sym, elephant man-
agement achieves near optimal B200 performance.
Rnd200 is unable to match this efficiency with such un-
even traffic.

As faults are incrementally injected into the fabric, all
approaches suffer lost performance, but Sym10000 and
Sym200 are efficient and remain close to known bounds.
While sym falls off monotonically it delivers performance
that is consistent with diminished hardware availability.
Rnd is not nearly as effective as it routes with no aware-
ness of broken fabric asymmetries. Spanning tree is less
affected by new faults as it always uses 11 links irrespec-
tive of the number of faulty links.

0

10

20

30

40

50

60

0 1 2 3 4 5 6

Gb/s

Number of Faults

B10000 Sym10000

Rnd10000 ST10000

B200 Sym200

Rnd200 ST200

Figure 9 – Faulty Clique Performance

Figure 9 plots experiments for an eight node clique simi-
lar to Figure 3. Cliques can be more efficient than fat
trees as they reduce the average hop count, but they are
more difficult to optimize as conflicting goals for mini-
mizing hops and spreading congestion across non-
minimal paths must be balanced.

For Symmetric optimization (Sym10000) with no faults,
results show excellent speedup over spanning tree
(ST10000) but are not close to bounds (B10000). And,
for uniform mice, Rnd10000 is similar in performance to
Sym10000. When many flows map to one routing class, a
single VLAN carries all flows in the class. If each VLAN
is a height-1 tree rooted at one of the eight edge switches,
then simple arguments indicate that, for a large sample of
random flows, about ¼ of the flows take one hop (those
that begin or end on the root switch) and ¾ of the flows
need two hops. Due to the higher average hop count for
uniform mice, we do not expect optimal results. For
mice, the average hop count for Sym10000 was measured
at 1.56 (not plotted) which is lower than the measured hop
count for Rnd10000 at 1.75 and Span also 1.75. Sym
lowers the hop count by exploiting small non-uniformities
in 10000 flows to enhance performance over random.
Asymmetric optimization has the potential to decrease
this hop count and improve efficiency.

As faults are injected, Sym10000 provides consistent but
decreasing performance and now provides good gains
over Rnd10000 which is unable to rebalance traffic to
accommodate broken links in the fabric.

The small number of elephant flows yields a larger band-
width improvement as Sym200 does a better job of man-
aging 200 flows with the 500 available hash classes.
Sym200 now easily outperforms Rnd200 as it achieves a
measured average hop count of 1.2 versus 1.75 for Rnd.

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gb/S

Number of Faults

SST20000 Sym20000

Rnd20000 ST20000

SST800 Sym800

Rnd800 ST800

Figure 10

Figure 10 shows results for a 5 by 5 HyperX similar to
Figure 4. The unbroken 5 by 5 HyperX has 100 uplinks.
Each switch connects to 8 uplinks. Four uplinks connect
to switches in the same row, and four uplinks connect to
switches in the same column. Elephants are modeled
using 800 flows for this larger fabric while 20000 flows
model mice. Tight bounds are more difficult to establish
so we introduce an estimator called scaled spanning tree
(SST). For each experiment, SST is calculated by scaling
the measured spanning tree performance by the ratio of
total non-faulty links divided by spanning tree links (e.g.
for zero faults: times 100/24). Each additional fault de-
creases the available non-faulty links by one and incre-
mentally decreases this ratio. Thus, we might be satisfied

if we could simply add links, beyond the spanning tree
links, and achieve performance that is proportional to the
number of links deployed.

For mice with no faults, Sym20000 is 7.9 times faster
than spanning tree and 1.98 times scaled spanning tree
(SST20000). The average hop count for fault-free mice
with Sym is 2.69 while the hop count with Rnd is 3.02
(not shown in plot). As faults are added, performance is
incrementally lost in a graceful manner.

Again elephant management produces superior results as
flows are often managed in separate hash classes allowing
lower hop counts. Sym for elephants is 10.2 times faster
than spanning tree and over 2.4 times faster than scaled
spanning tree (SST800). The average hop count for fault-
free elephants with Sym is 1.99 while the hop count with
Rnd is 3.02. Hop counts can be reduced and efficiency
can be increased using asymmetric ensemble routing.
However, this will add to management and Ethernet
learning complexity.

6.2 Multipath Spatial QoS
The HBR architecture can be used to support multi-path
spatial QoS within datacenters. Using spatial QoS, high
priority traffic is isolated to dedicated physical lanes gua-
ranteeing protected bandwidth. Spatial QoS is intended to
be used in conjunction with more traditional link schedul-
ing techniques such as DiffServ [11-12]. When a high
priority tenant fails to utilize assigned bandwidth, physi-
cal resources can be reallocated to lower priority uses. A
high priority tenant reclaims resources through the simple
act of sending more traffic. As the subnet manager de-
tects additional traffic, it quickly moves lower priority
traffic away from protected paths to support the additional
high priority traffic.

We implemented a Quality of Service manager that provi-
sions datacenter network bandwidth to multiple traffic
classes using a spatial allocation of network resources.
Traffic classes are identified by the customer VLAN on
which packets arrive. Our example dynamically allocates
bisection bandwidth within a fat tree by provisioning mul-
tiple top switches, or slices of top switches, to traffic
classes. The example network has 5 top switches with 48
ports each. Each top switch is connected to 16 edge
switches through three separate links. Links are managed
as separate resources and not as a LAG. Thus, each top
switch can be divided into three slices, where each slice
provides one dedicated link for all edge switches. The
network can be provisioned as fifteen separate top-switch
slices with no shared links.

The spatial QoS manager implements both a static and a
dynamic policy. The static policy partitions a datacenter
using fixed QoS ratios that describe relative traffic
amounts allowed for each traffic class. Each class is sep-
arately held to its static QoS restriction.

Figure 11 shows the achieved bandwidth as a function of
time in seconds when three traffic classes (green, orange,
and blue) compete for a shared bandwidth with respective
QoS fractions: .6, .33, and .07. The three traffic classes
generate input flow requests that vary as a function of
time. The green class (QoS=.6) ramps up requests to peak
levels at times 78 and 130. Peak green traffic levels of
1.5 terabit/s are fully satisfied on a dedicated network (not
shown). For class orange (QoS=.33) similar peak traffic
levels are requested at times 26, and 78. The blue
(QoS=.07) class steadily submits requests at a high rate of
about 1.8 terabit/s but is identified as a low-priority best
effort task which might use excess bandwidth opportunis-
tically. We show in Figure 11 that with static manage-
ment each traffic class is held closely to QoS ratios allow-
ing flexible partitioning of a datacenter network that can-
not jointly satisfy all requests. The sum of all satisfied
requests is plotted as TOT. A static policy necessarily
leaves much bandwidth unused as TOT separates widely
from the total bisection bandwidth BB. HBR scales to
large datacenters with many short-lived flows. In this
example, datacenter-wide software dynamically manages
47,000 new flows per second from 5280 hosts at one
second management intervals.

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200

Tb/s

Seconds

BB

TOT

Q=.60

Q=.33

Q=.07

Figure 11 - Static QoS

Figure 12 - Dynamic QoS

Dynamic QoS (Figure 12) exploits bandwidth variation in
the three traffic classes. The manager detects when a
class is not using its full QoS share and opportunistically
borrows bandwidth from over-provisioned classes.
Bandwidth is loaned to under-provisioned classes that can
temporarily use bandwidth that exceeds their QoS share.

In Figure 12, the blue low-priority task makes good
progress as it receives bandwidth that greatly exceeds its
QoS ratio during green and orange idle periods. At time
130, all three classes request high bandwidth, and the
manager enforces static QoS ratios that saturate the net-
work.

Under a dynamic policy, total network usage (TOT) is
greatly enhanced. Since the network has no direct me-
chanism to determine per-class bandwidth needs, total
usage cannot always sum to the bisection bandwidth
(BB). Traffic classes must be allocated surplus band-
width to indirectly detect whether more per-class band-
width is needed.

7. Related Work
There has been extensive research on designing efficient
network topologies for scalable clusters or datacenters [8-
9, 13-14]. Randomized routing has been used to load
balance traffic across multiple routes. Valiant routing [2]
was developed as a means for load balancing traffic using
paths through random intermediate switches. However,
this work does not support Ethernet.

The InfiniBand, Quadrics, and Myrinet [15] networks
have been used for high-end applications needing high
bandwidth communications. When these networks are
used with Ethernet, conversions are required between
network standards, and separate administrative expertise
is required for both networks.

A number of Ethernet architectures have been developed
to support specific network topologies. The Portland ar-
chitecture [16] uses a structured internal address to navi-
gate fat-trees. VL2 [17] uses Layer 3 encapsulation and
Valiant routing to navigate fat trees. Both approaches are
optimized to one topology, suffer L2 Ethernet limitations
(e.g. no FCoE support) as they rely on L3 ARP, and do
not address dynamic traffic management.

TRILL is a next generation standard that defines distri-
buted protocols for shortest path routing in multipath net-
works. This ambitious effort addresses both enterprise
and datacenter needs and features interoperability with
conventional switches and routers. In contrast HBR fo-
cuses more narrowly on simpler techniques for dynamic
datacenter management. The MOOSE network [18] re-
writes MAC addresses at the edge of the fabric as a spe-
cialized address that is used in a shortest path routing pro-
tocol. Again, MOOSE relies on layer 3 ARP traffic to
establish MOOSE addresses and does not address dynam-
ic traffic management.

VLANs have been used to encapsulate traffic to support
scalable routing in prior efforts [5-7]. This work does not
optimize for non-uniform fabrics, for non-uniform traffic,
or for time varying traffic. Scalability using randomized
path selection has been incorporated into real Ethernet
products [19], but dynamic routing and complex topolo-
gies are not supported.

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200

Tb/s

Seconds

BB

TOT

Q=.60

Q=.33

Q=.07

BB

TOT

.07

.60
.33

.60
.60

.33

.33.60

.07.07

.33.07

Centralized subnet manager software [4] has been devel-
oped for InfiniBand and has demonstrated the viability of
centrally controlled multipath managers for datacenter
fabrics. However, current subnet managers are designed
for the InfiniBand network architecture and are not very
reactive to changes in traffic.

Multipath routing has been described for IP routing in an
RFC from the IETF [20-21]. This work is for higher net-
work layers and not appropriate for L2.

The Open Flow architecture [3, 22-23] routes packets
based on flow specifications that can include both source
and destination information. Per-flow routing based on
flow source and destination pairs presents great difficul-
ties for dynamic routing. For networks having a large
number of end stations (E), providing routing resources
for up to E2 address pairs can be expensive. These ap-
proaches suffer dramatic performance loss when the
number of active flows exceeds the number of routing
table entries or when flows arrive and depart at a rate that
cannot be processed by a central controller.

Measurement techniques have been developed that use
sparsely placed network measurements to estimate actual
network traffic [24]. This work, like ours, uses linear
algebra and Singular Value Decomposition but does not
address traffic optimization in datacenters.

8. Conclusions
This paper describes and evaluates the Hash-Based
Routing (HBR) architecture for datacenter Ethernet fa-
brics. The architecture is unique as it incrementally
builds on standard Ethernet while providing a combina-
tion of advantages that are unmatched by other approach-
es including: scalability, flexibility of topology, dynamic
management and interoperability with traditional Ether-
net. Ethernet switch enhancements are modest and added
as an enhancement to commodity switches. Arbitrary
topologies and faulty fabrics are easily accommodated.
The management state size is highly compressed to facili-
tate reactive management of very large fabrics. Multipath
traffic optimization is performed within the fabric and
without host or device modifications. Conventional L2
Ethernet switches and devices are attached at the fabric
edge and are recognized using traditional L2 techniques.

Techniques for ensemble management have been devel-
oped to allow a reduced number of measurements and a
reduced routing state size that is independent of the num-
ber of devices or flows. Measurement techniques do not
require tracking of individual flows and do not require
sampling data on all links in the fabric. Reactive optimi-
zation heuristics significantly enhance efficiency. Simu-
lations validate the architecture for a range of attractive
scalable topologies in the presence of multiple faults.
While simulations cannot accurately model future work-
loads, they do prove the efficiency of the architecture for
a broad range of topologies and traffic conditions.

9. References
1. Schlansker, M., et al. Killer Fabrics for Scalable

Datacenters. in IEEE ICC. 2010. Cape Town, ZA.
2. Valiant, L.G., A Scheme for Fast Parallel Communication.

SIAM Journal on Computing, 1982. 11(2).
3. McKeown, N., et al., OpenFlow: enabling innovation in

campus networks. SIGCOMM Comput. Commun. Rev.,
2008. 38(2): p. 69-74.

4. Bermudez, A., et al. Evaluation of a subnet management
mechanism for InfiniBand networks. in ICPP. 2003.

5. Sharma, S., et al., Viking: A Multi-Spanning-Tree Ethernet
Architecture for Metropolitan Area and Cluster Networks, in
IEEE INFOCOM. 2004.

6. Otsuka, T., et al., Switch-tagged VLAN Routing
Methodology for PC Clusters with Ethernet, in ICPP 2006.
2006. p. 479-486.

7. Mudigonda, J., et al., SPAIN: COTS Data-Center Ethernet
for Multipathing over Arbitrary Topologies, in NSDI. 2010.

8. Leiserson, C.E., et al., The network architecture of the
connection machine CM-5. J. Parallel Distrib. Comput.,
1996. 33(2): p. 145-158.

9. Ahn, J.H., et al., HyperX: topology, routing, and packaging
of efficient large-scale networks, in SC09. 2009, ACM:
Portland, Oregon.

10. Schlansker, M., et al. Killer Fabrics for Scalable
Datacenters. in Hewlett Packard Labs Technical Report -
HPL-2009-26 2009.

11. RFC2474, Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers

12. RFC2475, An Architecture for Differentiated Services.
13. Clos, C., A study of non-blocking switch networks. Bell

Systems Technical Journal, 1953. 32(5).
14. Guo, C., et al., BCube: a high performance, server-centric

network architecture for modular data centers, in
SIGCOMM 2009. 2009, ACM: Barcelona, Spain.

15. Liu, J., et al., Performance Comparison of MPI
Implementations over InfiniBand, Myrinet and Quadrics, in
Proceedings of the 2003 ACM/IEEE conference on
Supercomputing. 2003, IEEE Computer Society. p. 58.

16. Al Fares, M., A. Loukissas, and A. Vahdat, A Scalable,
Commodity Data Center Architecture, in SIGCOMM. 2008,
ACM: Seattle, WA. p. 63-74.

17. Greenberg, A., et al., VL2: A Scalable and Flexible Data
Center Network, in SIGCOMM. 2009: Barcelona.

18. Scott, M., A. Moore, and J. Crowcroft. Addressing the
Scalability of Ethernet with MOOSE. in DC CAVES
workshop. 2009. Issy-les-Moulineaux, France.

19. FulcrumMicrosystems (2007) FocalPoint Switches in the
Datacenter. http://www.fulcrummicro.com/
documents/applications/datacenter.pdf.

20. RFC2991 Multipath Issues in Unicast and Multicast Next-
Hop Selection.

21. RFC2992, Analysis of an Equal-Cost Multi-Path Algorithm.
22. Casado, M., et al., Ethane: taking control of the enterprise,

in SIGCOMM 2007. 2007, ACM: Kyoto, Japan. p. 1-12.
23. Gude, N., et al., NOX: towards an operating system for

networks. SIGCOMM Comput. Commun. Rev., 2008. 38(3):
p. 105-110.

24. Zhao, Q., et al., Robust traffic matrix estimation with
imperfect information: making use of multiple data sources,
in SIGMETRICS 2006. 2006, ACM: Saint Malo, France.

